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Abstract: This paper proposes a collaborative optimisation method that 
integrates machine learning and stochastic programming to address the high 
demand uncertainty, complex logistics links, and rising operating costs faced 
by cross-border e-commerce supply chain networks for exports. Firstly, a 
dynamic demand forecasting model is constructed using random forest and 
XGBoost algorithm. Secondly, based on the predicted results, a two-stage 
stochastic programming model is established. In the first stage, the overseas 
warehouse location and basic inventory configuration are decided, and in the 
second stage, dynamic replenishment strategies are generated. Further 
introduce an improved sample average approximation (SAA) algorithm to 
solve the model, and design a multi-objective evaluation system to balance 
cost, timeliness, and service level indicators. Through actual enterprise data 
verification, it has been shown that this method reduces total costs by 14.7% 
compared to traditional deterministic models, and the demand forecasting error 
is controlled within 8.5%. 

Keywords: machine learning; random programming; cross border e-commerce 
supply chain; dynamic demand forecasting. 
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1 Introduction 

Driven by the dual benefits of the global digital economy and cross-border e-commerce 
policies, the scale of China’s export cross-border e-commerce market continues to 
expand. According to statistics from the General Administration of Customs, the import 
and export scale of cross-border e-commerce in China reached 2.11 trillion yuan in 2022, 
a year-on-year increase of 9.8%, with exports accounting for over 70% (Ma et al., 2018). 
However, with the expansion of the market comes an exponential growth in the 
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complexity of the supply chain: on the one hand, overseas consumer demand presents 
short-term and fragmented characteristics, significantly influenced by cultural 
differences, seasonal promotions, and the international political and economic 
environment; On the other hand, cross-border logistics involves overseas warehouse 
location selection, multimodal transportation path planning, tariff policy adaptation, and 
other links, which have pain points such as transportation delays, inventory mismatches, 
and cost control (He et al., 2021). Especially after the Regional Comprehensive 
Economic Partnership (RCEP) came into effect, the expansion of emerging markets such 
as Southeast Asia further exacerbated the multidimensional uncertainty of supply chain 
networks (Basu Das, 2015). In this context, how to build a supply chain system that 
combines response efficiency and cost advantages has become the core proposition for 
export cross-border e-commerce enterprises to achieve sustainable development. 

Traditional cross-border e-commerce supply chain optimisation research is mostly 
based on deterministic assumptions, using linear programming or integer programming 
methods for static network design. This type of method has significant limitations: 

1 Insufficient response to demand side dynamics: ignoring pulse like demand 
fluctuations such as ‘Black Friday’ and ‘Double Eleven’, resulting in both peak 
season overstocking and off-season vacancy (Lv, 2018). 

2 Lack of modelling for supply side random factors: port congestion (such as the 2021 
Suez Canal incident) and exchange rate fluctuations (with an annual volatility of up 
to ± 15%) were not included in the decision-making framework (Wang et al., 2021). 

3 Weak multi-objective collaboration mechanism: Existing models often focus on 
minimising costs as a single objective, ignoring competitive indicators such as 
performance time (e.g. 48 hour commitment) and customer satisfaction (return rate  
≤ 5%) (Giuffrida et al., 2020). 

More importantly, the unique phenomenon of ‘whip effect amplification’ in cross-border 
e-commerce – the distortion of supply chain demand signals caused by information delay, 
leads to geometric amplification of errors in traditional optimisation models in  
multi-level networks. Therefore, it is urgent to build a new decision-making framework 
that integrates data-driven and stochastic optimisation to meet the optimisation needs of 
complex supply chain networks in dynamic and uncertain environments. 

There are three mainstream methods in academia for optimising supply chain 
networks. Deterministic optimisation model: Early studies such as Tancrez et al. (2012) 
proposed a multi-level inventory positioning model, and Cheng (1991) constructed a cost 
optimisation model based on economic order quantity (EOQ). Although these methods 
can achieve local optima, they cannot handle random parameters in reality. Robust 
optimisation method: The robust optimisation framework enhances the robustness  
of the solution by setting an uncertainty set and is applied to emergency logistics 
(Saldanha-da-Gama, 2022). But its conservative assumption may lead to cost redundancy 
and be difficult to adapt to high-frequency dynamic scenarios in cross-border  
e-commerce. Random programming technique: Two stage random programming has 
made progress in manufacturing supply chains by characterising uncertainty through 
scenario trees (Maharjan and Kato, 2022). However, the explosion of dimensions in 
cross-border e-commerce scenarios has limited its direct application. 

In the field of demand forecasting, machine learning techniques have shown 
significant advantages. ARIMA and exponential smoothing methods are suitable for 
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stationary sequences, but their ability to capture unexpected events is limited 
(Ostertagova and Ostertag, 2012). Deep learning models such as LSTM perform 
outstandingly in time series prediction, but their black box nature makes it difficult to 
connect with optimisation models (Yadav et al., 2020). Ensemble learning algorithms can 
improve predictive interpretability through feature importance analysis, but existing 
research mostly focuses on improving prediction accuracy and lacks collaborative 
optimisation mechanisms with downstream decision models (Mitchell and Frank, 2017). 

The particularity of cross-border e-commerce scenarios brings three research gaps: 

 The data decision loop is broken: there is a lack of error feedback mechanism 
between the output of the prediction model and the input of the optimisation model. 

 Low efficiency in handling high-dimensional randomness: Traditional sample 
average approximation (SAA) algorithms face a sudden drop in convergence speed 
when dealing with random variables over a hundred dimensions. 

 Insufficient quantification of multi-objective trade-offs: The Pareto front of 
indicators such as cost, timeliness, and service level lacks quantitative evaluation 
tools. 

The optimisation of cross-border e-commerce supply chain network involves multiple 
fields such as demand forecasting, stochastic planning, and multi-objective decision-
making. This section summarises the relevant research progress and shortcomings from 
the following four aspects. 

Firstly, in terms of deterministic optimisation of supply chain networks, early 
research focused on supply chain network design in deterministic environments. 
Federgruen (1993) proposed the multi echelon inventory location model (MEIO), which 
determines facility location and inventory allocation through linear programming, but 
does not consider demand volatility. Ye (2024) constructed a cost optimisation model 
based on EOQ, incorporating transportation and warehousing costs into the objective 
function. However, its static assumptions are difficult to cope with the dynamic demand 
scenarios of cross-border e-commerce. Nicolis and Nicolis (2012) systematically 
analysed the limitations of deterministic models and pointed out their vulnerability to 
unexpected events such as port strikes. In recent years, improvements to deterministic 
models have mostly focused on improving algorithm efficiency, such as Sun et al. (2023) 
using branch and bound methods to accelerate large-scale network solving, but have not 
yet broken through the theoretical bottleneck of environmental uncertainty. 

In robust optimisation and stochastic programming methods, overly conservative 
assumptions in robust optimisation may lead to cost redundancy. In contrast, stochastic 
programming characterises uncertainty through probability distribution and is more 
suitable for stochastic scenarios in cross-border e-commerce. Two stage stochastic 
programming is widely used in manufacturing supply chains, with the first stage 
determining facility location and the second stage adjusting replenishment strategies 
based on random parameters such as demand and exchange rates (Moadab et al., 2023). 
However, its application in cross-border e-commerce faces two major challenges: one is 
the exponential increase in computational complexity caused by the generation of  
high-dimensional scenarios, and the other is the lack of quantitative tools for multi-
objective trade-offs. 

Scholars have proposed various innovative methods to address the unique 
characteristics of cross-border e-commerce. Jayathilaka (2020) established a mixed 
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integer programming model to optimise overseas warehouse layout, but did not consider 
the dynamic nature of tariff policies. Gong (2024) used the NSGA-II algorithm to balance 
cost and time, but its Pareto solution set lacks practical operability. Fünfgeld et al. (2017) 
used Monte Carlo simulation to generate transportation delay scenarios, but did not 
integrate them with machine learning prediction modules. 

Despite progress, there are still three shortcomings in existing research. The 
prediction model is disconnected from the optimisation model and has not formed a 
dynamic feedback mechanism. The processing efficiency of high-dimensional random 
variables is low. Multi-objective weight allocation relies on subjective experience. 

In response to the above issues, this article proposes a three in one cross-border  
e-commerce supply chain network optimisation method of ‘data perception random 
optimisation dynamic feedback’. The main innovations include: 

1 Dynamic demand forecasting stochastic programming coupling architecture: Design 
a hybrid prediction model based on stacking ensemble, integrating random forest 
(processing high-dimensional feature interactions), XGBoost (capturing nonlinear 
trends), and Prophet (identifying holiday effects), and implementing interpretability 
mapping of prediction results through Shapley value decomposition, providing 
accurate input for stochastic programming. 

2 Improved two-stage stochastic programming model: 

Phase 1 Construct a joint decision-making model for overseas warehouse location 
and basic inventory, introducing robustness constraints to handle 
fluctuations in facility construction costs. 

Phase 2 Establish a dynamic replenishment strategy, embed random variables of 
transportation time (following Gamma distribution) and tariff jump 
process (using Poisson geometric Brownian motion mixed model), and use 
an improved SAA algorithm (integrating Latin hypercube sampling (LHS) 
and importance sampling) to accelerate high-dimensional scene solving. 

3 Multi objective collaborative optimisation mechanism: Design a multi-objective 
evolutionary algorithm based on NSGA-III, combined with TOPSIS method to 
quantify the trade-off relationship between cost (transportation, inventory, tariffs), 
timeliness (order response time, transportation delay), and service level (order 
satisfaction rate, return rate), and generate a Pareto optimal solution set for decision 
makers to choose from. 

2 Relevant technologies 

2.1 The complexity characteristics of cross-border e-commerce supply chain 

The cross-border e-commerce supply chain network is a product of the deep integration 
of global trade and digital technology, and its complexity is mainly reflected in the 
following dimensions. 

 Multi-level network topology structure. Unlike the linear hierarchy of traditional 
supply chains, cross-border e-commerce supply chains exhibit a ‘multi centre 
radiating’ network characteristic. From domestic consolidation warehouses, 
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international trunk transportation nodes, overseas warehouses (including bonded 
warehouses and third-party cooperative warehouses), last mile distribution stations, 
to reverse logistics return processing centres, all links are interconnected in real-time 
through digital platforms. For example, in the Amazon FBA (fulfilment by Amazon) 
model, goods may be shipped directly from Chinese factories to American 
consumers, or transferred to French users through German overseas warehouses, 
with the route combination dynamically adjusted according to demand (Sun et al., 
2020). This multi-level network not only enhances coverage capability, but also 
leads to an explosion in decision variable dimensions - only the location problem of 
10 candidate overseas warehouses can generate   effective combination. 

 The dual uncertainty of demand and supply. The uncertainty on the demand side 
stems from short-term fluctuations in overseas consumer behaviour (Malik et al., 
2024). For example, the Ramadan promotion in the Southeast Asian market and the 
‘Black Friday’ shopping season in Europe and America can both trigger a  
300%–500% surge in order volume, while cultural differences such as colour 
preferences and size standards further exacerbate the difficulty of predicting demand 
for long tail products. The uncertainty on the supply side is reflected in the 
vulnerability of international logistics: in 2021, the Suez Canal jam event led to a 
400% surge in global shipping prices, while the energy crisis caused by the  
Russia-Ukraine conflict expanded the fluctuation range of China Europe train 
transportation time from ± 3 days to ± 15 days. More complexly, there is a coupling 
effect between the randomness of demand and supply - transportation delays may 
trigger consumers to cancel orders, leading to inventory backlog and cash flow 
pressure. 

 Heterogeneity between policies and market rules. The tariff policies, value-added tax 
rates (such as EU VAT reform), and product certification standards (such as US FCC 
certification and European CE marking) of different countries/regions form an 
implicit constraint network. Taking the location of overseas warehouses as an 
example, choosing warehouses in EU member states requires compliance with the 
restrictions on cross-border transfer of inventory data under the General Data 
Protection Regulation, while Southeast Asian countries often attract foreign 
warehouse construction through phased tariff reductions (such as Indonesia’s 
‘National Strategic Projects’ policy). In addition, cross-border payment settlement 
involves exchange rate fluctuations (annual volatility up to ± 20%) and foreign 
exchange control risks, requiring supply chain models to be embedded with financial 
risk hedging mechanisms. 

 Multi objective conflicts and dynamic trade-offs. The optimisation of cross-border  
e-commerce supply chain needs to simultaneously meet the competitive goals of 
cost, timeliness, and service level. The cost dimensions include international 
transportation costs (charged by weight or volume), overseas warehouse leasing 
costs (such as monthly rent of $15/m3 in Los Angeles, USA), and tariff costs (bound 
to the HS code of the goods). In terms of timeliness, consumers’ tolerance window 
for cross-border delivery continues to shrink, with the proportion of orders delivered 
within 48 hours increasing from 12% in 2019 to 35% in 2023. In the dimension of 
service level, the return rate (averaging 15%–30% in the European and American 
markets) and the negative review rate (every 1% increase in negative reviews leads 
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to a 5% decrease in traffic weight) directly affect the platform ranking and 
repurchase rate. 

The trade-off relationship between these goals dynamically changes with the market 
cycle – peak season may prioritise time efficiency, while off-season focuses on cost 
control, and traditional static weight allocation methods are difficult to adapt to. 

2.2 The core decision-making dimensions and constraint system of  
cross-border e-commerce 

The core decisions for optimising cross-border e-commerce supply chain networks can be 
summarised into three levels: 

 Strategic layer: Overseas warehouse network layout. The selection of overseas 
warehouse locations requires comprehensive consideration of factors such as 
political stability (such as geopolitical risks in Eastern Europe), infrastructure 
maturity (port throughput capacity, road freight density), and market radiation radius 
(covering 80% of orders in a ‘24-hour delivery circle’). Taking the Middle East 
market as an example, Dubai warehouse can cover six Gulf countries, but the rent is 
high. Türkiye warehouse has low cost but is affected by the risk of lira depreciation. 
In addition, the selection of warehouse types (self-built warehouse, third-party 
warehouse, platform managed warehouse) involves a balance between fixed asset 
investment and operational flexibility. For example, the initial investment payback 
period for self-built warehouses usually exceeds 3 years, but in the long run, it can 
reduce unit warehousing costs by 30%–40%. 

 Tactical layer: dynamic inventory configuration. The inventory strategy needs  
to address the amplification problem of the bullwhip effect. Due to the long  
cross-border replenishment cycle (average 14–28 days), dealers often adopt a 
‘double buffer’ mechanism of safety stock and predicted orders. For example, a 
seller of a certain 3C category set up basic inventory (meeting 30 day normal 
demand) and dynamic inventory (predicting 15 day demand based on LSTM model) 
in the German warehouse, but inventory mismatch still resulted in an average annual 
unsold loss of 12%. In addition, the ‘1210 model’ (cross-border e-commerce retail 
import supervision method) of bonded warehouses allows for bulk entry of goods 
and retail tax payment, requiring deep coordination between inventory allocation and 
customs clearance strategies. 

 Operations layer: Real-time path optimisation. Cross border logistics path selection 
faces multi-objective conflicts, such as the most cost-effective path: such as the 
China Europe freight train (60% lower than air freight) + overseas truck delivery. 
The most efficient path: direct air mail (3–5 days delivery) but with a 400% increase 
in carbon emissions. Robust path: Multimodal transportation (sea + rail + road) to 
cope with interruptions in a single mode of transportation. 

In addition, path optimisation requires dynamic response to real-time disturbances such 
as customs clearance delays (such as an average inspection time of 72 hours by Brazilian 
customs) and fluctuations in fuel surcharges (11 increases in international air freight fuel 
surcharges in 2022). 
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2.3 Mathematical model construction 

To address the aforementioned complexity, the mathematical model framework proposed 
in this article is based on the following design principles. 

 System view of data physical fusion. Integrate the real-time data flow of cross-border 
e-commerce platforms (order data, logistics trajectory, user evaluation) with the 
constraints of the physical world (tariff policies, transportation capacity). For 
example, the weekly sales data of Shopify stores can be captured through API 
interfaces and synchronised with the port congestion index (from the IHS Markit 
database) to input into the prediction optimisation closed-loop system. This fusion 
mechanism enables the model to capture both micro level demand fluctuations and 
respond to macro level environmental changes. 

 Dynamic coupling of prediction and optimisation. Breaking through the traditional 
serial mode of ‘prediction before optimisation’, constructing a prediction error 
feedback mechanism. Specifically, when the prediction error of the XGBoost model 
exceeds the threshold (such as actual sales deviating from the predicted value by 
15%), the parameter recalibration of the two-stage stochastic programming model is 
triggered, and an emergency replenishment strategy is generated (such as activating 
redundant inventory in the Singapore warehouse). This mechanism can increase the 
order fulfilment rate under sudden demand shocks to 92%, which is 18 percentage 
points higher than the static model. 

 Multi granularity uncertainty modelling. Hierarchical modelling of uncertainty based 
on the impact range and frequency of random events. 

 High frequency and low impact events (such as daily transportation delays). Use 
probability distribution (Gamma distribution to fit transportation time) and Monte 
Carlo simulation. 

 Low frequency and high impact events (such as epidemic lockdowns): Set a safety 
margin through robust optimisation (such as increasing safety stock by 20%). 

 Policy uncertainty (such as tariff adjustments): Construct a scenario tree and generate 
probability weights based on the WTO policy database and expert interviews. 

 Human machine collaborative decision-making mechanism. Introduce decision 
maker preferences into the Pareto optimal solution set. For example, by using the 
analytic hierarchy process to quantify the weight tendency of management towards 
cost, timeliness, and service level, and then combining it with the NSGA-III 
algorithm to generate customised solutions. In addition, a visual decision board is 
designed to dynamically display key indicators of different solutions (such as the 
cost time curve of the North American warehouse solution vs. the service level risk 
heatmap of the European warehouse solution), supporting managers to make agile 
decisions in uncertainty. 

2.4 The essential differences from traditional supply chain models 

The core differences between this model and traditional supply chain optimisation tools 
are reflected in three aspects: 
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 Temporal and spatial compression: Traditional models assume that there are 
geographical boundaries between production and consumption, while cross-border  
e-commerce needs to handle the direct link between ‘global factories and global 
consumers’, requiring the model to embed multi time zone collaboration mechanisms 
(such as using time differences to achieve 24-hour rolling replenishment). 

 Policy sensitivity: The weight of non-economic factors such as tariffs and data 
compliance has significantly increased, and a policy risk quantification module needs 
to be developed (such as using fuzzy logic to evaluate the host country’s trade 
facilitation index). 

 Consumer sovereignty pressure: The speed of evaluation dissemination on social 
media forces models to shift service levels from soft constraints to hard constraints 
(such as a negative review rate not exceeding 2%) and introduce real-time public 
opinion monitoring data streams. 

2.5 Multi objective optimisation theory 

The multi-objective conflict of cross-border e-commerce supply chain essentially 
requires breaking through the traditional single objective optimisation paradigm, and the 
evolution of related theories is reflected in the shift from linear weighting to intelligent 
optimisation. 

1 Pareto optimality theory (Giagkiozis and Fleming, 2014). The Pareto front defines 
the boundary of the solution set for multi-objective optimisation, and its core idea is 
that any improvement to a single objective must come at the expense of other 
objectives. Traditional methods generate compromise solutions by manually setting 
weights, but it is difficult to quantify the dynamic priority of the target. 

2 Evolutionary multi-objective optimisation algorithm. Evolutionary algorithms  
such as NSGA-II search for Pareto optimal solution sets by simulating biological 
evolution processes (selection, crossover, mutation) (Hua et al., 2021). In  
cross-border e-commerce scenarios, customised gene coding rules can be designed, 
such as encoding the ‘overseas warehouse location selection plan’ as a binary gene 
string and the ‘replenishment cycle’ as an integer gene segment, in order to optimise 
strategic and tactical decisions within a unified framework. 

3 Preference based interactive optimisation. To enhance the operability of  
decision-making, Granat and Guerriero (2003) proposed the reference point method, 
which allows decision-makers to adjust their target preferences based on real-time 
market changes. For example, during the ‘Black Friday’ promotion period, 
companies can temporarily increase the weight coefficients of their time efficiency 
targets through interactive interfaces, and the algorithm dynamically generates a new 
Pareto solution set based on this. 

2.6 Prediction and decision coordination theory 

The collaborative mechanism between predictive models and optimisation decisions is a 
core issue in the research of intelligent supply chain, and its theoretical development has 
gone through three stages. 
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 Early research regarded prediction and optimisation as independent modules, such as 
using ARIMA models to predict demand and inputting it into linear programming 
models. This one-way information flow leads to the problem of ‘prediction error 
transmission’: if the demand forecast deviation exceeds 15%, the replenishment 
strategy may completely fail.  

 Xu et al. (2018) proposed introducing an error feedback loop in the prediction 
optimisation link, and using the optimisation results to feedback the parameter 
adjustment of the prediction model. For example, when the random programming 
model identifies that the replenishment quantity of a certain category continues to 
deviate from the predicted value, it can trigger the feature weight retraining of the 
XGBoost model. This framework partially alleviates the problem of error 
accumulation, but has not yet achieved real-time dynamic collaboration. 

 The latest research advocates for a deep integration of prediction and optimisation. 
Stratigakos et al. (2022) proposed the ‘forecast optimisation’ framework, which 
directly trains prediction models with decision quality (such as total cost) as the 
objective function. In cross-border e-commerce scenarios, demand forecasting 
models can be trained using reinforcement learning algorithms to naturally adapt 
their prediction results to the optimisation goals of downstream replenishment 
strategies. 

3 Construction and validation of mixed demand forecasting model 

Cross border e-commerce demand forecasting faces challenges such as pulse promotions, 
long tail product fluctuations, and multi market heterogeneity. This chapter proposes a 
hybrid prediction model that integrates the advantages of multiple algorithms, achieving 
high-precision prediction through four steps: data preprocessing, feature engineering, 
model integration, and dynamic interpretation, and verifying it with actual enterprise 
data. The framework diagram of this chapter is shown in Figure 1. 

Figure 1 Framework diagram of mixed demand forecasting model 
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3.1 Data preprocessing and feature engineering 

The data source covers three major dimensions, and historical transaction data includes 
SKU level sales volume (in daily granularity), transaction price, and promotional tags 
(such as ‘Prime Day’ and ‘Double Eleven’). Market environment data includes Google 
Trends search index, social media volume (captured through Twitter API), and 
competitor prices (crawled from Amazon platform data). Macroeconomic data includes 
exchange rate fluctuations (such as the daily rate of change of the US dollar against the 
European dollar), tariff adjustment records of RCEP member countries, and the 
International Logistics Freight Index. 

Multiple imputation strategies are adopted to address the issue of missing data. Use 
multiple interpolation chain equation (MICE) algorithm for continuous variables (such as 
sales volume), and use mode imputation combined with dummy variable labelling for 
categorical variables (such as promotion type) to indicate missing states. 

Using STL (seasonal trend decomposition using loess) to decompose the original 
sales sequence into trend, seasonal, and residual terms. The trend term is used to capture 
the product lifecycle (such as the new product ramp up period, maturity period, and 
decline period). Seasonal terms are used to identify weekly/monthly/annual cycles. The 
residual term is used to extract the impact signal of sudden events. 

Constructing four types of derived features to enhance prediction robustness. Create 
dummy variable markers for seven days before and after the big promotion, and calculate 
the elasticity coefficient of historical promotions during the same period. Based on the 
Huffman index to measure the concentration of the target market and predict the demand 
for long tail products. Calculate the price ratio and rating ratio between this product and 
its top 3 competitors as the demand transfer factor. Calculate the average delay days of 
each transportation route based on historical data as a feasibility indicator for 
replenishment. 

3.2 Hybrid prediction model architecture 

The hybrid model consists of three base models: random forest (RF), XGBoost (XGB), 
and prophet (Pro), and their prediction functions are defined as follows. 

Random forest is used to process high-dimensional feature interactions and capture 
nonlinear market competition effects. By integrating the outputs of B decision trees, the 
predicted value on day t is: 

 
1

1
ˆ

B
RF RF
t tb

b

y f x
B 

   (1) 

where xt is the input feature vector, and RF
bf  represents the prediction function of the bth 

tree. 
XGBoost optimises long tail product prediction through regularisation and gradient 

boosting mechanisms, reducing the risk of overfitting. Generate predictions using an 
additive model based on gradient boosting tree: 

 
1

ˆ
K

XGB
k tt

k

y η g x


   (2) 



   

 

   

   
 

   

   

 

   

   94 R. Li    
 

    
 
 

   

   
 

   

   

 

   

       
 

where η is the learning rate and gk represents the output of the kth tree, iteratively 
optimised by minimising the regularisation loss function. 

Prophet has a built-in holiday effect model that accurately identifies regional 
promotional nodes such as Ramadan and Black Friday. It decomposes the time series into 
trend term T(t), seasonal term S(t), and holiday effect H(t), and the prediction formula is: 

Prˆ ( ) ( ) ( )o
tty T t S t H t ε     (3) 

where εt is Gaussian noise. 

Stacking integration strategy 

Adopting a two-layer stacked structure to achieve model fusion. 
The first layer (base model) trains random forests XGBoost, prophet, output the daily 

sales forecast values of each model for the next 30 days. 
The second layer (meta model) takes the predicted values of the base model, the slope 

of the trend term, and holiday markers as input features, and trains the LightGBM model 
to generate the final prediction results: 

Prˆ ˆ ˆ, , , ( ), ( )RF XGB o
t t holidayt tz y y y T t I t     (4) 

where T(t) is the first-order difference of the trend term, and Iholiday(t) is the holiday 
indicator function. 

The output of the meta model is: 

 
1

ˆ
M

Final
m m tt

m

y h z


  (5) 

3.3 Model training and optimisation 

This article uses rolling time window cross validation for model training. To avoid data 
leakage, time series split is used to divide the five-year historical data into a 48 month 
training set and a 12 month testing set. Roll forward for one month each time, with a total 
of 12 training testing cycles. The evaluation indicators include mean absolute error 
(MAE), root mean square error (RMSE), and weighted average absolute percentage error 
(WMAPE). 

This article uses the Optuna framework for automated hyperparameter search, 
optimising tree depth (range 3–15) and feature sampling ratio (0.6–1.0) for random 
forests. Adjust the learning rate (0.01–0.3) and minimum leaf node sample size (10–100) 
for XGBoost. Adjust the seasonal smoothing coefficient (0.1–10) and festival effect prior 
scale (1–50) for Prophet. 

Set overfitting suppression strategies for model training. Implement early stopping 
method on random forest/XGBoost, and terminate training when the validation set error 
does not decrease for five consecutive times. Use MCMC sampling to estimate 
uncertainty intervals for prophet, avoiding excessive sensitivity to outliers. 
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4 Two stage stochastic programming model and improved SAA algorithm 

4.1 Two stage stochastic programming model 

The supply chain network consists of M candidate overseas warehouses and N target 
markets, considering a discrete-time period t. The model is defined as follows. 

The first stage model is called strategic decision-making, and the decision variables 
are whether to build (xi = 1 indicating selection) for overseas warehouse i in xi  {0, 1}, 
and the initial inventory allocation for overseas warehouse i in si0 ≥ 0. 

We set the objective function of minimising fixed costs and expected operating costs, 
in the specific form of: 
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The constraint conditions are: 
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where Q(x, si0, ξ) is the second stage cost function, and ξ is the random parameter vector. 
The second stage model is for operational decision-making, with the following 

random parameter settings. The demand of market j in cycle t follows the output 
distribution of the prediction model, represented as djt(ξ). The transportation time from 
warehouse i to market j follows the Gamma distribution, represented as τijt(ξ). The tariff 
rate of warehouse i in cycle t is represented as θit(ξ). 

The decision variables are as follows. The replenishment quantity from warehouse i 
to market j during cycle t is represented as qijt, and the ending inventory of warehouse i 
during cycle t is represented as sit. 

The objective function for minimising operating costs is: 

 0
,

1 1

, , min ( )
ijt it

M N
tr hold

i ijt it it ijtijt it
q s

t T i j

Q x s ξ C q C s θ ξ q
  

      (8) 

The constraint conditions are: 
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4.2 Improved SAA algorithm 

Traditional SAA generates S approximate expected values for scenes through Monte 
Carlo sampling, but faces the problem of low efficiency in high-dimensional scenes. The 
improvement of this article is to perform hierarchical sampling on the joint distribution of 
djit, τijt, θit in LHS scene generation. Divide the cumulative distribution function of each 
random variable into S equal probability intervals. Afterwards, randomly select a sample 
point within each interval to form an S × D dimensional scene matrix (where D is the 
dimension of random variables). Compared to simple random sampling, LHS can 
improve the convergence speed by O(S–1/2) → O(S–1). 

We use importance sampling (IS) to accelerate the solution and assign higher weights 
to high cost scenarios in the objective function. We define the IS weighted objective 
function: We use importance sampling (IS) to accelerate the solution and assign higher 
weights to high cost scenarios in the objective function. We define the IS weighted 
objective function: 

 
   0

1

min , ,
S s

s
is

s

P ξ
Q x s ξ

Q ξ

  (10) 

where Q(ξs) is the importance distribution, which is fitted to the historical high cost 
scenario distribution through kernel density estimation (KDE): 
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where K is the Gaussian kernel function, and ωk is the loss weight of scene k. 

5 Multi objective evaluation system and case studies 

5.1 Experimental setup 

Select the European market business of a leading cross-border e-commerce enterprise as 
the empirical object, covering the following scenarios. The product categories mainly 
include 3C electronics, household goods, and clothing accessories. The logistics network 
consists of three domestic consolidation warehouses (Shanghai, Shenzhen, Zhengzhou) 
and six candidate overseas warehouses (Frankfurt, Germany, Warsaw, Poland, Madrid, 
Spain, Rotterdam, Netherlands, Milan, Italy, Prague, Czech Republic). The market scope 
includes 27 European countries, with an average daily order volume of 120,000 and over 
500,000 SKUs. 

In terms of data, we use the company’s SKU level daily sales data from 2021 to 2024 
and generate a 30 day rolling forecast through a hybrid forecasting model. In terms of 
logistics data, we have used historical transportation times, including sea, rail, and air 
freight. 

In the comparison method, we choose three models. The benchmark model 1 is 
deterministic programming (DP), which uses mean demand and fixed transportation time 
(Gerevini et al., 2009). Benchmark Model 2 is a single-stage stochastic programming 
(SSP) that only optimises replenishment strategies (Rockafellar and Wets, 2017). The 
comparative model is traditional two-stage stochastic programming (TSSP) + simple 
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SAA (Jiang and Guan, 2018). The model presented in this article consists of two-stage 
stochastic programming (TSSP) and improved SAA (LHS-IS). 

In order to construct a multi-objective evaluation system that covers the four 
dimensions of economy, timeliness, service, and sustainability, our evaluation indicators 
are set as shown in Table 1. 

Table 1 Evaluation indicator setting 

Dimension Index Calculation formula 

Economic Total cost of ownership (TCO) Expected value of fixed cost + Operating cost 

Timeliness Average response time to 
orders (ART) 

Total order fulfilment time / Total number of 
orders 

Service Order fulfillment rate (OSR) Timely and sufficient delivery of orders / Total 
order quantity 

Sustainable Per unit carbon emissions (CE) Transportation carbon emissions + Storage 
carbon emissions 

5.2 Experimental procedure 

Firstly, perform data preprocessing to handle outliers and eliminate sudden changes in 
order volume caused by system failures. Standardise the features, perform Box Cox 
transformation on logistics delay days, and eliminate the right skewed distribution. And 
perform spatiotemporal alignment, aligning multi warehouse inventory data uniformly 
according to UTC+1 time zone. 

In terms of model training, the hybrid prediction model uses XGBoost with pre 
trained load (n_estimators = 200). The random programming model generates 500 
scenarios (including 20% extreme disturbance scenarios) by improving SAA. In terms of 
multi-objective optimisation, NSGA-III is used to initialise the Pareto solution set, with 
reference points set to ART ≤ 4.2 days and OSR ≥ 92%. 

Perform joint sampling (LHS-IS) on transportation delays, tariff fluctuations, and 
demand deviations in scene generation. In the optimisation solution, Gurobi is called to 
solve the MILP problem in parallel, and the single solution takes about 45 minutes. And 
perform dynamic feedback, triggering model recalibration every 7 days to update demand 
forecasts and scenario weights. 

Record the results, including TCO, ART, OSR, and CE values for each optimisation 
cycle. Conduct robustness testing, such as artificially injecting blockages in the Suez 
Canal (transportation time + 300%), EU tariff increases (+5%), and other black swan 
events. Finally, statistical analysis was conducted to perform t-tests on 30 independent 
experiments. 

5.3 Result analysis 

This experiment compared the performance differences between deterministic 
programming (DP), single-stage stochastic programming (SSP), traditional two-stage 
stochastic programming (TSSP + SAA), and our model from four dimensions: economy 
(TCO), timeliness (ART), service capability (OSR), and sustainability (CE). The results 
are shown in Figure 2. 
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Figure 2 Comparison results of multi-objective optimisation performance (see online version  
for colours) 

 

In terms of economy, the DP model ignores demand fluctuations and transportation 
delays, resulting in fixed cost redundancy (such as excessive construction of overseas 
warehouses) and high frequency of emergency replenishment, resulting in slightly higher 
total costs. TSSP+SAA reduces the cost to 8.33 through scenario optimisation, while this 
model further introduces LHS-IS sampling to reduce redundant scenario calculations, 
resulting in a further cost reduction of 5.3%. Reduce invalid fixed assets investment 
through accurate location selection of overseas warehouses. Dynamic replenishment 
strategy reduces inventory holding costs. From this, it can be concluded that cross-border 
e-commerce enterprises can significantly reduce costs by dynamically closing inefficient 
warehouses and implementing tariff sensitive replenishment strategies. 

In terms of timeliness, this model uses a multimodal transport combination strategy to 
shorten the average delivery time from German warehouses to Eastern European markets 
from 4.2 days to 2.9 days. In terms of dynamic inventory allocation, deploying 20% 
redundant inventory (flexible inventory) in the Warsaw warehouse in Poland has reduced 
ART in the region by 37%. In terms of robustness, traditional models have an ART 
fluctuation range of ± 0.6 days during transportation delays, while our model controls the 
fluctuation within ± 0.2 days through real-time path switching. 

In terms of service capability, the hybrid forecasting model reduces the prediction 
error of long tail product demand. Automatically increase safety stock by 10%–15% 
based on high-risk SKUs identified by Shapley values, such as seasonal clothing. By 
shortening ART, the proportion of consumer cancellations decreased from 8.2% to 3.1%. 

In sustainability, by internalising the cost of carbon emissions, the model prioritises 
sea transportation (with 85% lower carbon emissions than air transportation), which 
increases the proportion of sea transportation by 16 percentage points. Regional dynamic 
replenishment reduces cross-border transportation distance, and the proportion of internal 
transportation in Europe has increased from 55% to 72%, reducing carbon emissions per 
unit distance by 13%. Automatically avoid high-risk carbon tariffs and avoid additional 
carbon costs. 

The Pareto front analysis is shown in Figure 3, which shows the distribution of its 
solution set, generating 32 non-dominated solutions covering TCO 7.8M–8.3M and  
ART 3.5–4.5 days. The optimal compromise point is to recommend a solution with  
TCO = 7.95 M, ART = 3.9 days, and OSR = 93.2%. In terms of sensitivity, for every 0.1 
day increase in timeliness, the cost increases by 0.12 M and the OSR decreases by 0.3%. 
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Figure 3 Pareto front heatmap (see online version for colours) 

 

The robustness verification is shown in Figure 4. The model in this paper uses a dynamic 
feedback mechanism to control the service degradation under extreme disturbances 
within 10%. 

Figure 4 The robustness verification (see online version for colours) 
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6 Conclusions 

This article addresses the multidimensional uncertainty challenges of the export  
cross-border e-commerce supply chain network and constructs a three in one decision 
framework of ‘data perception random optimisation dynamic feedback’. The main 
research results are as follows. 

Propose a coupled architecture of dynamic demand forecasting and stochastic 
programming, and control the demand forecasting error within 8.5% through a stacking 
ensemble model (RF+XGBoost+Prophet). Design an improved two-stage stochastic 
programming model and introduce the LHS-IS hybrid sampling algorithm to improve the 
efficiency of solving high-dimensional scenarios and reduce overall costs. Build a  
multi-objective collaborative mechanism based on NSGA-III, quantitatively reveal the 
nonlinear trade-off relationship between cost, timeliness, and service level, and generate 
32 Pareto optimal solutions for decision-making selection. Empirical evidence based on 
real data from top enterprises shows that the model can improve inventory turnover by 
53.7%, shorten order response time by 26.5%, and reduce emergency air freight 
frequency by 61.4%. In extreme scenarios such as the blockage of the Suez Canal and the 
adjustment of EU carbon tariffs, the fluctuation range of order fulfilment rate is 
controlled within 10%, confirming the strong robustness of the model. 

Despite the above achievements, the optimisation of cross-border e-commerce supply 
chain still faces the following breakthrough directions. The current model relies on 
historical logistics data for training, and sparse data in emerging markets may affect 
performance in the early stages. In the future, transfer learning and few sample learning 
techniques can be explored. The solving efficiency of ultra large scale networks still 
needs to be improved, and a mixed integer programming acceleration algorithm based on 
quantum computing needs to be developed. The modelling of tariff jump process relies 
on expert experience and requires the integration of natural language processing 
technology to achieve automatic parsing and risk quantification of policy texts. 
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