

International Journal of Information and Communication
Technology

ISSN online: 1741-8070 - ISSN print: 1466-6642
https://www.inderscience.com/ijict

Design of AI-enhanced hybrid storage engine for multimodal
data management

Pinjie Liu, Jing Li

DOI: 10.1504/IJICT.2025.10072361

Article History:
Received: 23 May 2025
Last revised: 07 June 2025
Accepted: 08 June 2025
Published online: 25 July 2025

Powered by TCPDF (www.tcpdf.org)

Copyright © 2025 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijict
https://dx.doi.org/10.1504/IJICT.2025.10072361
http://www.tcpdf.org

 Int. J. Information and Communication Technology, Vol. 26, No. 28, 2025 67

 Copyright © The Author(s) 2025. Published by Inderscience Publishers Ltd. This is an Open Access Article

distributed under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

Design of AI-enhanced hybrid storage engine for
multimodal data management

Pinjie Liu* and Jing Li
School of Computer Engineering,
Guangzhou Huali College,
Guangzhou 511325, China
Email: liupinjie0922@163.com
Email: wwlijing@163.com
*Corresponding author

Abstract: To enhance the management effect of multimodal data and increase
the data access speed, this paper first uses dynamic random access memory
(DRAM) to complete the caching of non-volatile memory (NVM) in the hybrid
storage module. When there is a cache missing in DRAM, a high-speed
acquisition card is used to collect historical access records of NVM. After
encoding historical access records into access vectors, they are used as the
input of the deep learning model. The spatio-temporal attention mechanism is
introduced to enhance access coding features and improve the prediction
accuracy of the access frequency. The multimodal data with prediction results
higher than the set threshold are read into the hybrid storage module for
storage. Experimental outcome implies that the average performance of the
offered approach in sequential reading is at least 1.1 times that of the
benchmark approach, significantly improving the access speed.

Keywords: multimodal data management; hybrid storage engine; non-volatile
memory; NVM; deep learning; attention mechanism.

Reference to this paper should be made as follows: Liu, P. and Li, J.
(2025) ‘Design of AI-enhanced hybrid storage engine for multimodal data
management’, Int. J. Information and Communication Technology, Vol. 26,
No. 28, pp.67–83.

Biographical notes: Pinjie Liu received her Master’s degree from the Lanzhou
University of Technology in 2023. She is currently an Associate Professor in
the School of Computer Engineering at Guangzhou Huali College. Her research
interests include database technology and deep learning.

Jing Li received her Master’s degree from the Harbin Institute of Technology in
1997. She is currently a Professor in the School of Computer Engineering at
Guangzhou Huali College. Her research interests include data mining and
analysis, machine learning, and artificial intelligence.

1 Introduction

In the current era when the digital wave is sweeping the world, multimodal data is
growing at an unprecedented rate. These data are widely applied in key fields such as
intelligent security, medical diagnosis, autonomous driving, and intelligent education,

 68 P. Liu and J. Li

becoming the core driving force for technological innovation in artificial intelligence (AI)
and the digital transformation of industries (He et al., 2024). However, multimodal data
has characteristics such as structural heterogeneity, semantic diversity, large data volume,
and high real-time requirements (Schweinar et al., 2024). When dealing with these data,
traditional storage systems expose problems such as low data processing efficiency,
insufficient utilisation rate of storage resources, and weak semantic understanding ability,
making it difficult to meet the growing demands for multimodal data management
(Siddiqa et al., 2017). In recent years, the quick growth of AI technique has brought new
opportunities to the field of data management. Integrating AI technique into the storage
system can achieve intelligent analysis of multimodal data, optimise storage strategies
and efficient retrieval, significantly improving the efficiency of data management (Molas
and Nowak, 2021). Meanwhile, the hybrid storage architecture combines the advantages
of different storage media and can flexibly meet the diverse requirements of multimodal
data, providing more efficient and reliable solutions for data storage and management
(Aman et al., 2024).

Chen et al. (2022) used a hybrid architecture of Redis and HDFS to store file data. By
merging files of the same type through Redis, when the large files obtained from the
merging reach the pre-set threshold, the files will be written to HDFS, but the reliability
needs to be improved. Lai et al. (2014) proposed a big data storage scheme based on
Hadoop, which effectively processed file-based data by utilising Hadoop’s distributed
computing and storage capabilities. However, the method is mainly designed for batch
processing and is not suitable for real-time data with low access scalability. Wang et al.
(2019) proposed a unified storage model based on MongoDB. This model utilises the
GridFS mechanism of MongoDB to store file data and uniformly stores various types of
patient data in the set, but the optimisation difficulty is relatively large. Hennecke (2020)
designed a storage scheme for semi-structured data, but this scheme could only meet the
storage requirements of a single data type and could not be extended to other data types.

Due to the diverse types of stored objects in the database, the single-modal data
storage method can no longer meet the current demands. Hybrid databases for
multimodal data storage have emerged as the times require. They address the limitations
of traditional databases in managing heterogeneous data by integrating multiple storage
models. Lu et al. (2017) studied a hybrid storage system for multimodal data supporting
massive small files, storing the location index of multimodal data through the hash
function. However, the storage effect of this system for massive data is not very ideal.
Zuo et al. (2024) designed a multimodal data edge hybrid storage engine based on
consortium chains, combined with the greedy algorithm to determine the placement
location of the cached content, and realised multimodal data storage. Jia et al. (2018)
proposed a multimodal hybrid storage method based on edge computing. The data
caching problem was decomposed into the caching placement problem based on the
heuristic adaptive bit rate awareness algorithm and the access request scheduling problem
based on low complexity, but the content access delay was relatively high. Bahn and Cho
(2020) proposed a hybrid storage system based on non-volatile memory (NVM),
designed hierarchical cache pages through the dynamic random access memory (DRAM)
cache mechanism, and used RCache to migrate the data of NVM to DRAM for caching in
the background thread, but reduced memory utilisation and access efficiency.

To enhance the memory usage rate of the hybrid storage system, researchers have
designed a detection method for the hybrid storage system based on deep learning
algorithms, thereby enhancing the overall usage efficiency of the system. Deep learning

 Design of AI-enhanced hybrid storage engine 69

models can analyse historical data access patterns and predict future load trends. Based
on the prediction results, the system can dynamically adjust the allocation of storage
resources, such as migrating predicted hot data to high-speed storage media in advance,
or optimising the load balancing of storage nodes. Through dynamic resource scheduling,
the system can utilise storage resources more efficiently and avoid idle or overloaded
resources, thus improving overall utilisation efficiency. Akgun et al. (2023) proposed a
model based on autoencoders, which can learn the normal patterns of time series data,
regard outliers as reconstruction errors different from the normal patterns, and has good
detection performance. Shi et al. (2020) combined the generative adversarial network
(GAN) and the transformer model to specifically predict the performance of the hybrid
storage system, demonstrating excellent performance. Ebrahimi et al. (2021) predicted
the CPU utilisation rate of virtual machines with the help of this network. The results
fully demonstrated that recurrent neural network (RNN) showed relatively high accuracy.
Zhou et al. (2022) proposed a storage anomaly detection method based on dual-attention
contrastive representation learning, but abnormal events of different scales have not been
considered yet. Ruan et al. (2023) used long short-term memory (LSTM) network to
conduct multi-step prediction of the average CPU utilisation rate of servers and achieved
accurate prediction on the historical dataset of real load of data centre servers provided by
Google.

In light of the analysis of existing studies, it can be known that the read and write
performance of traditional database storage methods often restricts the performance of
the system. The main reason is that the performance between memory and external
storage usually differs by several orders of magnitude, and the cost of reading and writing
data from external storage is relatively high. Thus, for the purpose of enhancing the
management effect of multimodal data and reduce access latency, this paper designs an
AI-enhanced hybrid storage engine for multimodal data management. Firstly, in the
hybrid storage module, DRAM is utilised to complete the caching of NVM. When there
is cache missing in DRAM, the built-in high-speed acquisition card of the access
monitoring module is used to collect the historical access records of frequently accessed
data blocks on NVM. Then, the historical access records are encoded into access vectors
to construct a training set, which is used as the input of the deep learning model to
achieve the prediction of the access frequency. The feature vectors of different scales
output by the temporal convolutional network (TCN) are taken as the input of LSTM. By
taking advantage of the nonlinear fitting ability of LSTM, the interrelationships of
multi-dimensional data are mined and the nonlinear features of the data are extracted. The
spatio-temporal attention mechanism is integrated to enhance the access coding features
and improve the prediction accuracy of the access frequency. The experimental outcome
demonstrates that the offered approach has great advantages in hybrid storage and
processing, and can meet the performance requirements of massive storage and multiple
reads.

2 Relevant technologies

2.1 NVM technology

In the past, data management systems used volatile storage devices (DRAM) and
persistent storage devices to build storage systems. All the data that needed to be

 70 P. Liu and J. Li

processed had to be scheduled from persistent devices to DRAM several orders of
magnitude higher, which affected the performance of the entire system (Qian et al.,
2021). However, the new storage technology, NVM, has broken this traditional design.
NVM has the byte addressing and low latency characteristics of DRAM, as well as the
persistence and large capacity characteristics of traditional persistent devices. NVM
combines the byte-by-byte addressing and low latency characteristics of DRAM while
overcoming the volatility limitations of DRAM. NVM does not lose data after a power
outage, and does not need to rely on batteries or capacitors to maintain data as DRAM
does. DRAM needs to be refreshed periodically to maintain data, which is power hungry
and prone to data loss, while NVM does not need to be refreshed, which is low-power
and long-lasting data. It narrates the performance gap between volatile devices and
persistent devices, and can persist data at the same time. These characteristics bring new
opportunities and challenges to traditional databases.

NVM, also known as storage-type memory and NVRAM, is a brand-new and highly
promising storage device (Chen, 2016). Currently, NVM encompasses a variety of
technologies, each with slightly different characteristics. However, they typically
combine the low latency and word addressable nature of DRAM with the persistence of
storage technologies such as solid state drive (SSD). In addition, the lifespan of NVM is
limited. Repeatedly writing to the same location storage unit can lead to memory failure,
as wear balancing needs to be considered in the same way as SSD.

2.2 Convolutional neural network

Convolutional neural network (CNN) is a commonly used deep learning model, which is
particularly suitable for processing and classification tasks of high-dimensional data such
as images, videos and voices (Kuo, 2016). Different from traditional fully connected
neural networks, CNN utilises the structure of convolutional layers and pooling layers,
enabling the network to automatically extract important features from the input raw data,
thereby achieving efficient feature learning and classification. In addition, CNN
significantly reduces the number of parameters, improves computational efficiency, and
is able to automatically learn the spatial hierarchy of data through mechanisms such as
local connectivity, parameter sharing, and hierarchical feature learning. These advantages
make CNN more efficient and accurate than traditional fully connected neural networks
in processing structured data such as images and speech. These advantages make CNN
more efficient and accurate than traditional fully connected networks in processing
structured data such as images and speech. The structure of CNN can consist of several
convolutional levels, pooling levels and fully linked levels, among which the
convolutional level is the core part of CNN (Liu et al., 2016). The convolutional level
adopts convolution operation. Through a set of learnable convolution kernels,
convolution operations are performed on the input data to extract local characteristics.
Convolution kernels perform convolution at different positions of the input data to obtain
the characteristic pictures of the corresponding positions. The output of the convolutional
level passes through an activation function and is then input to the next level for
processing.

The role of the pooling level is to downsample the output of the convolutional layer,
reduce the number of parameters of the network, avoid overfitting, and retain key feature
information. Common pooling operations include maximum pooling and average
pooling. Fixed pooling sizes and steps can be selected respectively, or pooling sizes and

 Design of AI-enhanced hybrid storage engine 71

steps can be learned (Cong and Zhou, 2023). The output of the pooling level can be used
as the input of the next convolutional level or directly as the input of the fully linked
level. The fully linked level is usually the last level of the network. It flattens the outputs
of the convolutional level and the pooling level into a one-dimensional vector, performs
linear transformation and activation function transformation through a set of weight
matrices, and finally outputs the forecasting level.

2.3 LSTM network

When traditional RNN processes long sequence data, due to the problems of vanishing or
exploding gradients, it is difficult to learn the long-distance dependencies in the
sequence. Through the design of the gating mechanism and cell state, LSTM can
effectively retain and transmit long-term information. LSTM is very suitable for
processing sequential data, such as time series data, text data and speech data (Chen,
2022). LSTM enables accurate modelling and prediction of sequence data through the
synergy of cellular states and gating mechanisms. At its core, it dynamically balances
information retention and forgetting to excel in long sequence tasks. Despite the problem
of high computational overhead, LSTM is still widely used in natural language
processing, time series analysis, speech recognition, etc. by combining the attention
mechanism or using more efficient variants. In time series prediction, LSTM can predict
future values based on the changing trend of historical data (Yu et al., 2019).

LSTM effectively solves the problem of gradient explosion by introducing memory
units and gating mechanisms. Memory units control the inflow and outflow of
information through input gates, forget gates and output gates. The network structure of
LSTM is represented by the following formula:

  1,t f t t ff σ W h x b   (1)

  1,t i t t ii σ W h x b   (2)

  1tanh ,t c t t cC W h x b   (3)

t t t t tC f C i C     (4)

  1,t o t t oo σ W h x b   (5)

 tanht t th o C  (6)

where σ is the sgmoid function; W and b are the weight matrix and the bias vector
respectively, and the subscripts f, i and o represent the forget gate, input gate and output
gate, respectively; Ct is the updated state of the memory unit, Wc and bc are the weights
and biases used to generate Ct.

 72 P. Liu and J. Li

3 Design of multi-level hybrid storage engine for multimodal data
management

3.1 The overall structure of the hierarchical hybrid storage engine for
multimodal data

To improve the management effect of multimodal data, increase the data access speed
and reduce the database load, a multi-level hybrid storage engine for multimodal data
management is designed. In the DRAM/NVM hybrid storage module, DRAM is utilised
to complete the caching of the main memory NVM. When there is cache missing in
DRAM, the built-in high-speed acquisition card of the access monitoring module is used
to collect the historical access records of frequently accessing 4 KB data blocks on NVM.
Then, the historical access records are encoded into access vectors to construct the
training set, which is used as the input of the subsequent deep learning model for
predicting the access frequency. In the cache filtering module, multimodal data with
access frequency prediction results higher than the set threshold are read into DRAM for
storage.

Figure 1 The overall structure of the hierarchical hybrid storage engine for multimodal data

Historical Access
Frequency Info

NVM Main
Memory

DRAM/NVM Hybrid Memory Module

DRAM Cache

2 KB

...

...

2 KB

Metadata

Metadata

Metadata

Metadata

4 KB

...

4 KB

4 KB

SRAM

Access Monitoring Module

High-speed Acquisition Card

RNN-based Access Frequency Prediction

Cache Filtering Module

Set Threshold

Comparison

Access Frequency
Prediction

The multimodal data hierarchical hybrid storage engine includes a DRAM/NVM hybrid
memory module, an access monitoring module, and a cache filtering module. The entire
system framework is indicated in Figure 1. The DRAM/NVM hybrid storage module is
composed of DRAM and NVM, and the cache part of the multimodal data main memory
NVM is DRAM. Among them, the page size of NVM is 2 MB. DRAM directly saves the

 Design of AI-enhanced hybrid storage engine 73

metadata of multimodal data on the cache chip through a large granularity management
method of 4 KB, which can effectively reduce the storage time of multimodal data.
Intending to the issue that frequent data reading work occupies a large amount of
memory, a storage filtering module is designed in the system. Only the NVM data with a
higher access frequency is cached in DRAM to reduce the data exchange between
DRAM and NVM. When there is a cache deficiency in DRAM, the cache filtering
module determines the access frequency based on the access frequency prediction result
obtained by the access monitoring module and combined with the set threshold, and reads
the 4 KB multimodal data of the access frequency prediction result higher than the set
threshold into DRAM for caching.

3.2 The hybrid storage structure of multimodal data

The multimodal data hybrid storage structure of DRAM/NVM is shown in Figure 2.
Among them, the storage task scheduling work of multimodal data packets and the access
control work of data packet buffer memory. All of these are accomplished through the
multimodal data packet storage and distribution unit. The managed multimodal data
packets are transmitted to the corresponding network interface for data packet storage
queuing, and through the scheduling of the multimodal data packet queue management
and control unit, the multimodal data packets are transmitted to the output link.

Figure 2 The multimodal data hybrid storage structure of DRAM/NVM

Input Link Packet
Processing

Output Link

Multimodal Packet
Queue Control Unit

Multimodal
Packet

Queue 1

Multimodal
Packet

Queue 2

Multimodal
Packet

Queue n
...

Packet Buffer
Memory

Multimodal Packet
Buffer Allocation Unit

Processor
Engine

The multimodal data packet storage allocation unit adopts a queue caching mechanism
based on shared storage (Suh et al., 2004), allocating buffer storage resources to the data
packet queue. This mechanism shares the same cache space with all data transmission
ports. After caching, the multimodal data packets only need to sort the storage addresses
of the multimodal data packets transmitted to the same interface when sending. Form a
sending queue and send in sequence. It has the advantages of simple operation and high
resource utilisation rate.

 74 P. Liu and J. Li

The multimodal data packet queue control unit is responsible for the cache queue
control of multimodal data packets transmitted to the same network interface, and can
control the storage location of multimodal data packets in the hierarchical cache system.
The queuing mode adopted in this unit is the output queuing mode. The multimodal data
packet sending queue management is implemented in the form of a linked list, and the
control is carried out during queuing and dequeuing through the multimodal data packet
queue handle. There are two pointers in the handle for the head and tail of the sending
queue. When a new queued data packet or a dequeued data packet is added to the
multimodal data packet sending queue, the tail pointer and the head pointer need to be
modified respectively to ensure that the data is sent first after queuing.

The storage location of the queue handle is determined based on the network interface
encoding for sending multimodal data packets. It begins to write the queue handle when
receiving the multimodal data packet. Each time a multimodal data packet in the queue is
added, the first letter of the handle long word of the previous multimodal data packet is
rewritten first. Then, the handle tail pointer is rewritten to the handle address of the new
multimodal data packet, and at the same time, the handle long word 2 is increased by 1.
In this way, a queue handle is formed to complete queue control, and then the multimodal
data packets are stored in the order of the queue.

4 Access frequency prediction of the hybrid storage engine based on the
improved time convolutional network and LSTM

4.1 The encoding of historical access records of the hybrid storage engine

For the goal of enhancing the storage utilisation rate of the designed hybrid storage
engine system, this paper uses the high-speed acquisition card built into the access
monitoring module to collect the historical access records of frequently accessing 4 KB
data blocks on the hybrid storage engine. After encoding the historical access records into
access vectors, a training set is constructed and used as the input for improving the hybrid
deep learning model of TCN and LSTM to predict the access frequency. In the cache
filtering module, the 4 KB multimodal data with access frequency prediction results
higher than the set threshold is read into DRAM/NVM for caching.

The access monitoring module uses a high-speed acquisition card to collect the
historical access records of frequently visiting 4 KB data blocks in the hybrid storage
engine. After encoding the historical access records into access vectors to construct a
training set, it serves as the input for improving TCN-LSTM to implement the access
frequency prediction of the hybrid storage engine system. Encode the historical access
records of the hybrid storage engine into format Sop = {op1, op2, …, opm–1} that is
convenient to be used as the input data of the LSTM neural network, where opi represents
the ith access code in the access sequence and m represents the number of accesses in the
historical access records of the hybrid storage engine. For this purpose, the multi-fork
tree traversal of the historical access record of the hybrid storage engine can be described
as follows:

 2 1 1 2 3, , 100, , , , , ,opS T λT k Hash T T T Materialise T T Sort Group     (7)

 Design of AI-enhanced hybrid storage engine 75

where T1, T2 and T3 respectively represent the source tables of the hybrid storage engine
used in the 1th, 2th, and 3th visits in the historical access record; λ and ↔ represent
selection and connection operations, respectively; T and k respectively represent the
result of connecting T1 with T2. and the primary key of the source table. The historical
access record multitree of each hybrid storage engine can be converted into a unique
access sequence Sop; conversely, Sop can also be transformed into a unique multi-way tree
of access records. Each leaf node of the tree contains the source table information of the
hybrid storage engine.

After traversal, an access sequence is generated for each access in the historical
access record of the hybrid storage engine. During this process, the key features in the
historical access record of the hybrid storage engine need to be extracted to complete the
v encoding of the access vector. v includes the following contents:

1 Type of access n0, access the corresponding source table n1 in the hybrid storage
engine.

2 Access the column n2 designed for the corresponding source table in the hybrid
storage engine.

3 Access the mean width n3 of the row where the corresponding result is located.

4 Access the selection rate n4 for multimodal data.

In the above content, n0, n1 and n2 respectively represent the structures for accessing
multimodal data; n3 and n4 respectively represent the scale of accessing multimodal data.
The historical access records are represented by vector Sv = (v0, v1, v2, …, vm–1), and vi is
the ith access in the encoding. Vector Sv is taken as the encoding result of the access
vector of the historical access records of the hybrid storage engine and input into the
improved TCN-LSTM model for access frequency prediction.

4.2 Improvement of the TCN-LSTM model Based on the spatio-temporal
attention mechanism

For the goal of enhance the access vector coding results of the hybrid storage engine, this
paper introduces the temporal attention mechanism (SE) and the spatial attention
mechanism (TPA) (Lin et al., 2020) to improve the TCN-LSTM model (ETCN-LSTM).
Compared with the traditional TCN-LSTM model, the ETCN-LSTM model can
adaptively learn the temporal and spatial information in historical access records.

To cope with the issue of weight distribution between historical access records and
the input at the current moment and enhance the adaptability of the time channel of the
model, the SE module is introduced in this paper. The SE module can effectively assist
the model in allocating weights between historical traffic data and the traffic data input at
the current moment, enabling the model to have better learning efficiency and robustness
in extracting temporal features. Moreover, due to the relatively small computational load
of the SE module, only one global pooling and two fully connected operations are
required. Compared with other time attention mechanism models, it has less resource
consumption, and the SE module can also better meet the real-time requirements.

Due to the significant differences among the storages of different modalities, when
the model learns spatial features, it will extract different features simultaneously,
resulting in the model learning excessive noise information and thus leading to a decrease

 76 P. Liu and J. Li

in model accuracy. To cope with the above issues, this paper suggests a TPA module for
the scenario of predicting the access frequency of the hybrid storage engine. The TPA
module divides the access encoding results into individual matrix data of different types,
uses convolution to extract spatial information from different access matrices
respectively, and then concatenates different access matrices to restore the original access
matrix data structure. Finally, the Hadama product is performed between the extracted
spatial information weights and the matrix data on the backbone road for weight
allocation.

4.3 Access frequency prediction based on the improved TCN-LSTM model

The TCN-LSTM model improved based on the above-mentioned spatio-temporal
attention mechanism takes the historical access record encoding vector of the hybrid
storage engine as the input data of the ETCN-LSTM model, effectively utilises the
spatio-temporal attention mechanism to enhance the characteristics of TCN and LSTM to
capture the time series dependence of data access and achieve access frequency
prediction. Combined with the set threshold to determine the multimodal data access
frequency of the hybrid storage engine, the 4 KB multimodal data in the part where the
predicted access frequency result is higher than the set threshold is read into DRAM for
caching, reducing unnecessary cache replacement operations, thereby improving the
performance and efficiency of the system.

Each residual module in TCN is composed of three one-dimensional convolutional
levels, Conv0, Conv1 and Conv2. The first convolutional level, Conv0, performs
preliminary processing on the input and selects to activate it using the ReLU function,
with the output being C0. The input of the second convolutional level Conv1 is C0, and it
is called C1 after convolutional feature extraction. The inputs of C0 and C1 need to take
into account the expanded convolution parameter d of TCN, and then input Conv2 after
stepwise element multiplication. The output of Conv2 can be added to the module input
pt to obtain another output Rt. Therefore, Rt is represented as follows:

 0, 0 0ReLUt tC p W b   (8)

1, 0, 1 1t tC C W b   (9)

 2, 0, 1, 2 2t t tC C C W b    (10)

 2,ReLUt t tR p C  (11)

where W0, W1 and W2 are convolution kernel matrices; b0, b1 and b2 are biases;  is the
convolution operation; ꞏ is the product of elements one by one; the number of elements in
Rt is n, denoted as Rt = [rt1, rt2, …, rtn]

T.
Considering that a TCN level can be composed of multiple residual modules, when

stacking multiple residual modules, it is necessary to find the output Rk–1 of the k – 1th
residual module as the input of the kth residual module. The output of the final module is
Hn. Nonlinear calculations are carried out using the ReLU activation function as the
output Gt of the TCN level. Therefore, Gt can be expressed as follows:

 , , 1t k t kR Res R  (12)

 Design of AI-enhanced hybrid storage engine 77

 ,ReLU t kG R (13)

where Rt,k represents Rt output by the kth residual module; Res represents the residual
module. The number of elements in Gt is n, denoted as Gt = [Gt,1, Gt,2, …, Gt,n]

T.
The output Gt of the TCN module is concatenated with the input x using the

concatenate function as the input of LSTM, denoted as It, where concatenate is the
concatenation function.

 ,t tI concatenate x G (14)

At time t, the LSTM module learns the power load characteristic vector It output by the
concatenate module. Let the hidden layer state of the LSTM module at time t be Ht,i, and
Ht,i is represented as follows:

 , , 1 , 1, ,t i t i t t iH LSTM H I C  (15)

where Ht,i represents the hidden state of the ith input step at time t; Ct,i–1 represents the cell
state of the i – 1th input step at time t.

The input of the spatio-temporal attention mechanism is the obscured level state ht
calculated by the LSTM module. The calculation of the attention weight At,i is shown in
equation (16). Let the output of the spatio-temporal attention module at time t be St. The
output St of the spatio-temporal attention module and the output Ht of the LSTM module
are multiplied bit by bit through the Multiply function to achieve the dynamic weighting
process of the obscured level units, which are denoted as Lt and St, as shown below:

 
 
,

,

,1

exp ,

exp ,

T
tt i

t i T
T

tt ik

H q
A

H q





 (16)

, ,

1

T

t t i t i

i

S A H


 (17)

 ,t t tL Multiply S H (18)

where At,i represents the hidden state of the ith input time step in the attention level at time
t; qt represents the randomly initialised attention weight matrix; Multiply means to
multiply elements one by one.

The output module is a fully linked level, with the linear function as the activation
function. After processing, the predicted access frequency value of the mixed storage
engine system at the t + 1 moment is obtained, denoted as y. The calculation equation of
the output level can be expressed as follows:

 ty linear wL b  (19)

where w is the convolution kernel matrix, and b is bias.

 78 P. Liu and J. Li

5 Experimental results and analyses

To verify the storage performance of the AHSE method proposed in this paper, the
NVMain local memory simulator is used to simulate the storage performance of the
system. It mainly simulates the access behaviour of the mixed storage of DRAM and
NVM in the system proposed in this paper, and combines the global simulator to simulate
and generate multimodal data with different distribution situations and access patterns for
the system cache experiment. Meanwhile, simulate the application situations of each
functional module of the system, such as queue management, etc. The hardware and
software configuration of this system includes Hadoop version 3.1.1, the operating
system version Ubuntu 16.04, and the CPU version Core i7-10700. Set the learning
efficiency of the deep learning model for learning different data to 0.01, the feature
matching coefficient to 0.1, and the sampling interval of the deep learning training time
to 1 second.

This paper records the time delays of AHSE, MCVS (Jia et al., 2018) and
GAN-TRANS (Shi et al., 2020) in uploading and downloading multimodal data. The size
of the text is 4.5 M, the size of the image is 25.9 M, and the size of the video is 325.9 M.
The experimental results of uploading and downloading data in different storage systems
are shown in Table 1. The experiment found that when uploading data, the larger the file,
the faster the upload speed. Similarly, the larger the file is, the faster its download speed
will be. This is because AHSE adopts a distributed storage method, dividing multimodal
documents into multiple data blocks and storing them on different nodes, thereby
achieving parallel data transmission and improving the efficiency of upload and
download. Furthermore, this storage method can also ensure the reliability of data. Even
if a certain node fails, it will not affect the integrity and availability of the entire file.
Therefore, AHSE has a significant advantage in hybrid storage and processing, and can
meet the performance requirements of massive storage and multiple reads.

Table 1 Comparison of data download speeds

Text Picture Video
Method

Upload Download Upload Download Upload Download

MCVS 97 ms 62 ms 183 ms 105 ms 9,180 ms 7,051 ms

GAN-TRANS 52 ms 39 ms 106 ms 67 ms 7,200 ms 5,216 ms

AHSE 35 ms 17 ms 59 ms 31 ms 4,240 ms 2,340 ms

This experiment tested the performance of AHSE, MCVS and GAN-TRANS in
sequential writing and random writing. The test uses one million pieces of data, with
values ranging in size from 64 B to 32 Kb, as shown in Figure 3. Figure 3(a) implies the
comparison results in terms of sequential write performance. Regardless of the size of the
values, the sequential write throughput of AHSE is significantly higher than that of
MCVS and GAN-TRANS. When the value size reaches 4 kB, the sequential write
throughput of AHSE is almost stable at 200 MB/s, which is much lower than the
sequential write speed of the hard disk. However, for MCVS and GAN-TRANS, as the
value size increases, the sequential write throughput reaches 800–900 MB/s. The average
performance of AHSE in sequential writing is 3.1 times that of MCVS and 1.4 times that
of GAN-TRANS, respectively.

 Design of AI-enhanced hybrid storage engine 79

Figure 3 The (a) sequential write and (b) random write results of different methods (see online
version for colours)

64B 256B 1KB 2KB 4KB 8KB 16KB 32KB
0

100

200

300

400

500

600

700

800

900

1000

64B 256B 1KB 2KB 4KB 8KB 16KB 32KB
0

100

200

300

400

500

600

700

800
 AHSE
 GAN-TRANS
 MCVS

T
hr

ou
gh

pu
t (

M
B

/s
)

Stored value

 AHSE
 GAN-TRANS
 MCVS

T
hr

ou
gh

pu
t (

M
B

/s
)

Stored value

(a) (b)

Figure 3(b) shows the comparison in terms of random write performance. The overall
random write throughput of MCVS remains at 60–90 MB/s and decreases with the
increase of the value size. The reason for this phenomenon is that as the value size
increases, the storage scale also increases, thereby leading to an increase in the merging
operation time of MCVS and affecting the write performance. On the contrary, since
AHSE and GAN-TRANS adopt hierarchical storage technology, the access scale remains
at a relatively small level. Therefore, in terms of on-machine write, the write throughput
of AHSE and GAN-TRANS is much higher than that of MCVS. The average
performance of AHSE in random writing is 7.6 times that of MCVS and 1.3 times that of
GAN-TRANS, respectively.

Figure 4 Sequential read the comparison results in terms of performance (see online version
for colours)

1KB 2KB 4KB 8KB 16KB 32KB
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

T
hr

ou
gh

pu
t (

ko
ps

/s
ec

)

Stored value

 AHSE
 GAN-TRANS
 MCVS

 80 P. Liu and J. Li

Figure 4 shows the comparison results in terms of sequential reading performance,
among which the throughput of AHSE is significantly higher than that of MCVS and
GAN-TRANS. GAN-TRANS improves the reading performance by sorting the data at
each level. However, MCVS separates the values into the value log file, causing their
values to be stored in an unordered manner, thereby affecting the reading performance.
To cope with this issue, AHSE adopted the parallel reading technology of hybrid storage
to improve the reading performance. The average performance of AHSE in sequential
reading is 1.1 times that of MCVS and 1.5 times that of GAN-TRANS, respectively.

This experiment tested the write amplification of MCVS, GAN-TRANS, and AHSE
under a mixed workload, as shown in Figure 5. As the total data volume increases from
20 GB to 100 GB, the write amplification of MCVS increases from 8 to 11. In contrast,
GAN-TRANS and AHSE have successfully reduced write amplification through
hierarchical storage technology, and the write amplification values of both remain
between 1 and 3. However, since AHSE adopts access monitoring technology and detects
the storage of abnormal access, the storage efficiency has been greatly improved.

Figure 5 The enlarged result graphs of writing by different methods (see online version
for colours)

20GB 40GB 60GB 80GB 100GB
0

2

4

6

8

10

12

14
 AHSE
 GAN-TRANS
 MCVS

w
ri

te
 a

m
pl

if
ic

at
io

n
va

lu
e

6 Conclusions

As the big data quickly growing, the storage and management of multimodal data are
facing huge challenges. The traditional database storage methods have a high cost of
reading and writing from external memory and a slow access speed. To solve the above
problems, this paper designs an AI-enhanced hybrid storage engine for multimodal data
management. Firstly, a multimodal data hierarchical hybrid storage engine was designed.
The DRAM/NVM hybrid storage module is composed of DRAM and NVM, and the
cache part of the multimodal data main memory NVM is DRAM. DRAM/NVM directly
saves the metadata of multimodal data on the cache chip through the large granularity

 Design of AI-enhanced hybrid storage engine 81

management method, which can effectively reduce the storage time of multimodal data.
When there is cache missing in DRAM, the built-in high-speed acquisition card of the
access monitoring module is used to collect the historical access records of frequently
accessed data blocks on NVM. Then, the historical access records are encoded into
access vectors to construct a training set, which is used as the input of the deep learning
model to achieve the prediction of the access frequency. The feature vectors of different
scales output by TCN are taken as the input of LSTM. By taking advantage of the
nonlinear fitting ability of LSTM, the interrelationships of multi-dimensional data are
mined and the nonlinear features of the data are extracted. The spatio-temporal attention
mechanism is integrated to enhance the access coding features and improve the prediction
accuracy of the access frequency. The experimental outcome implies that the suggested
approach has significant advantages in multimodal data storage and management. It can
effectively improve data access efficiency and reduce query response time, providing
strong support for the large-scale storage and application of multimodal data.

The hybrid storage engine designed in this paper has achieved significant
performance advantages. However, the layout and size of other data were not redesigned.
Subsequent work can consider how to design the layout and size of other data, as well as
further fine-grained management of data blocks in DRAM/NVM, thereby improving the
space utilisation rate.

Acknowledgements

This work is supported by the Guangdong Higher Education Society ‘14th Five-Year
Plan’ 2024 Annual Higher Education Research Project (No. 24GYB119), 2024 Teaching
Quality Engineering Construction Project of Guangzhou Huali College named: Database
Principles Course Teaching and Research Office, Outstanding Teaching Team of
Guangzhou Huali College named: Database Teaching Innovation Team, and 2025
Teaching Quality and Teaching Reform Project of Guangzhou Huali College named:
Curriculum Reform Practice of Database Principles Based on Trinity Integration:
Ideological and Political Education Guidance, Technology Empowerment, and
Industry-Academia Collaboration Driven.

Declarations

All authors declare that they have no conflicts of interest.

References

Akgun, I.U., Aydin, A.S., Burford, A., McNeill, M., Arkhangelskiy, M. and Zadok, E. (2023)
‘Improving storage systems using machine learning’, ACM Transactions on Storage, Vol. 19,
No. 1, pp.1–30.

Aman, S.S., Agbo, D.D.A., N’guessan, B.G. and Kone, T. (2024) ‘Design of a data storage and
retrieval ontology for the efficient integration of information in artificial intelligence systems’,
International Journal of Information Technology, Vol. 16, No. 3, pp.1743–1761.

Bahn, H. and Cho, K. (2020) ‘Implications of NVM based storage on memory subsystem
management’, Applied Sciences, Vol. 10, No. 3, pp.62–75.

 82 P. Liu and J. Li

Chen, A. (2016) ‘A review of emerging non-volatile memory (NVM) technologies and
applications’, Solid-State Electronics, Vol. 125, pp.25–38.

Chen, D. (2022) ‘Cloud computing database and travel smart platform design based on LSTM
algorithm’, Mobile Information Systems, Vol. 20, No. 3, pp.51–69.

Chen, L., Zhao, J., Wang, C., Cao, T., Zigman, J., Volos, H., Mutlu, O., Lv, F., Feng, X. and
Xu, G.H. (2022) ‘Unified holistic memory management supporting multiple big data
processing frameworks over hybrid memories’, ACM Transactions on Computer Systems
(TOCS), Vol. 39, No. 4, pp.1–38.

Cong, S. and Zhou, Y. (2023) ‘A review of convolutional neural network architectures and their
optimizations’, Artificial Intelligence Review, Vol. 56, No. 3, pp.1905–1969.

Ebrahimi, S., Salkhordeh, R., Osia, S.A., Taheri, A., Rabiee, H.R. and Asadi, H. (2021) ‘RC-RNN:
reconfigurable cache architecture for storage systems using recurrent neural networks’, IEEE
Transactions on Emerging Topics in Computing, Vol. 10, No. 3, pp.1492–1506.

He, W., Xia, T., Song, S., Huang, X. and Wang, J. (2024) ‘Multimodal data encoding and
compression in Apache IoTDB’, International Journal of Software & Informatics, Vol. 14,
No. 1, pp.1–16.

Hennecke, M. (2020) ‘Daos: a scale-out high performance storage stack for storage class memory’,
Supercomputing Frontiers, Vol. 40, pp.1–12.

Jia, G., Han, G., Du, J. and Chan, S. (2018) ‘A maximum cache value policy in hybrid
memory-based edge computing for mobile devices’, IEEE Internet of Things Journal, Vol. 6,
No. 3, pp.4401–4410.

Kuo, C-C.J. (2016) ‘Understanding convolutional neural networks with a mathematical model’,
Journal of Visual Communication and Image Representation, Vol. 41, pp.406–413.

Lai, W.K., Chen, Y-U., Wu, T-Y. and Obaidat, M.S. (2014) ‘Towards a framework for large-scale
multimedia data storage and processing on Hadoop platform’, The Journal of Supercomputing,
Vol. 68, pp.488–507.

Lin, T., Pan, Y., Xue, G., Song, J. and Qi, C. (2020) ‘A novel hybrid spatial-temporal
attention-LSTM model for heat load prediction’, IEEE Access, Vol. 8, pp.159182–159195.

Liu, M., Shi, J., Li, Z., Li, C., Zhu, J. and Liu, S. (2016) ‘Towards better analysis of deep
convolutional neural networks’, IEEE Transactions on Visualization and Computer Graphics,
Vol. 23, No. 1, pp.91–100.

Lu, W., Wang, Y., Jiang, J., Liu, J., Shen, Y. and Wei, B. (2017) ‘Hybrid storage architecture
and efficient MapReduce processing for unstructured data’, Parallel Computing, Vol. 69,
pp.63–77.

Molas, G. and Nowak, E. (2021) ‘Advances in emerging memory technologies: from data storage
to artificial intelligence’, Applied Sciences, Vol. 11, No. 23, pp.12–27.

Qian, Z., Wei, J., Xiang, Y. and Xiao, C. (2021) ‘A performance evaluation of DRAM access for
in-memory databases’, IEEE Access, Vol. 9, pp.146454–146470.

Ruan, L., Bai, Y., Li, S., He, S. and Xiao, L. (2023) ‘Workload time series prediction in storage
systems: a deep learning based approach’, Cluster Computing, Vol. 6, pp.1–11.

Schweinar, A., Wagner, F., Klingner, C., Festag, S., Spreckelsen, C. and Brodoehl, S. (2024)
‘Simplifying multimodal clinical research data management: introducing an integrated and
user-friendly database concept’, Applied Clinical Informatics, Vol. 15, No. 2, pp.234–249.

Shi, Z., Dang, H., Liu, Z. and Zhou, X. (2020) ‘Detection and identification of stored-grain
insects using deep learning: a more effective neural network’, IEEE Access, Vol. 8,
pp.163703–163714.

Siddiqa, A., Karim, A. and Gani, A. (2017) ‘Big data storage technologies: a survey’, Frontiers of
Information Technology & Electronic Engineering, Vol. 18, pp.1040–1070.

Suh, G.E., Rudolph, L. and Devadas, S. (2004) ‘Dynamic partitioning of shared cache memory’,
The Journal of Supercomputing, Vol. 28, No. 1, pp.7–26.

 Design of AI-enhanced hybrid storage engine 83

Wang, S., Li, G., Yao, X., Zeng, Y., Pang, L. and Zhang, L. (2019) ‘A distributed storage and
access approach for massive remote sensing data in MongoDB’, ISPRS International Journal
of Geo-Information, Vol. 8, No. 12, p.533.

Yu, Y., Si, X., Hu, C. and Zhang, J. (2019) ‘A review of recurrent neural networks: LSTM cells
and network architectures’, Neural Computation, Vol. 31, No. 7, pp.1235–1270.

Zhou, Q., Yang, G., Song, H., Guo, J., Zhang, Y., Wei, S., Qu, L., Gutierrez, L.A. and Qiao, S.
(2022) ‘A BiLSTM cardinality estimator in complex database systems based on attention
mechanism’, CAAI Transactions on Intelligence Technology, Vol. 7, No. 3, pp.537–546.

Zuo, R., Zheng, C., Li, F., Zhu, L. and Zhang, Z. (2024) ‘Privacy-enhanced prototype-based
federated cross-modal hashing for cross-modal retrieval’, ACM Transactions on Multimedia
Computing, Communications and Applications, Vol. 20, No. 9, pp.1–19.

