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Abstract: To enhance the management effect of multimodal data and increase 
the data access speed, this paper first uses dynamic random access memory 
(DRAM) to complete the caching of non-volatile memory (NVM) in the hybrid 
storage module. When there is a cache missing in DRAM, a high-speed 
acquisition card is used to collect historical access records of NVM. After 
encoding historical access records into access vectors, they are used as the 
input of the deep learning model. The spatio-temporal attention mechanism is 
introduced to enhance access coding features and improve the prediction 
accuracy of the access frequency. The multimodal data with prediction results 
higher than the set threshold are read into the hybrid storage module for 
storage. Experimental outcome implies that the average performance of the 
offered approach in sequential reading is at least 1.1 times that of the 
benchmark approach, significantly improving the access speed. 
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1 Introduction 

In the current era when the digital wave is sweeping the world, multimodal data is 
growing at an unprecedented rate. These data are widely applied in key fields such as 
intelligent security, medical diagnosis, autonomous driving, and intelligent education, 
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becoming the core driving force for technological innovation in artificial intelligence (AI) 
and the digital transformation of industries (He et al., 2024). However, multimodal data 
has characteristics such as structural heterogeneity, semantic diversity, large data volume, 
and high real-time requirements (Schweinar et al., 2024). When dealing with these data, 
traditional storage systems expose problems such as low data processing efficiency, 
insufficient utilisation rate of storage resources, and weak semantic understanding ability, 
making it difficult to meet the growing demands for multimodal data management 
(Siddiqa et al., 2017). In recent years, the quick growth of AI technique has brought new 
opportunities to the field of data management. Integrating AI technique into the storage 
system can achieve intelligent analysis of multimodal data, optimise storage strategies 
and efficient retrieval, significantly improving the efficiency of data management (Molas 
and Nowak, 2021). Meanwhile, the hybrid storage architecture combines the advantages 
of different storage media and can flexibly meet the diverse requirements of multimodal 
data, providing more efficient and reliable solutions for data storage and management 
(Aman et al., 2024). 

Chen et al. (2022) used a hybrid architecture of Redis and HDFS to store file data. By 
merging files of the same type through Redis, when the large files obtained from the 
merging reach the pre-set threshold, the files will be written to HDFS, but the reliability 
needs to be improved. Lai et al. (2014) proposed a big data storage scheme based on 
Hadoop, which effectively processed file-based data by utilising Hadoop’s distributed 
computing and storage capabilities. However, the method is mainly designed for batch 
processing and is not suitable for real-time data with low access scalability. Wang et al. 
(2019) proposed a unified storage model based on MongoDB. This model utilises the 
GridFS mechanism of MongoDB to store file data and uniformly stores various types of 
patient data in the set, but the optimisation difficulty is relatively large. Hennecke (2020) 
designed a storage scheme for semi-structured data, but this scheme could only meet the 
storage requirements of a single data type and could not be extended to other data types. 

Due to the diverse types of stored objects in the database, the single-modal data 
storage method can no longer meet the current demands. Hybrid databases for 
multimodal data storage have emerged as the times require. They address the limitations 
of traditional databases in managing heterogeneous data by integrating multiple storage 
models. Lu et al. (2017) studied a hybrid storage system for multimodal data supporting 
massive small files, storing the location index of multimodal data through the hash 
function. However, the storage effect of this system for massive data is not very ideal. 
Zuo et al. (2024) designed a multimodal data edge hybrid storage engine based on 
consortium chains, combined with the greedy algorithm to determine the placement 
location of the cached content, and realised multimodal data storage. Jia et al. (2018) 
proposed a multimodal hybrid storage method based on edge computing. The data 
caching problem was decomposed into the caching placement problem based on the 
heuristic adaptive bit rate awareness algorithm and the access request scheduling problem 
based on low complexity, but the content access delay was relatively high. Bahn and Cho 
(2020) proposed a hybrid storage system based on non-volatile memory (NVM), 
designed hierarchical cache pages through the dynamic random access memory (DRAM) 
cache mechanism, and used RCache to migrate the data of NVM to DRAM for caching in 
the background thread, but reduced memory utilisation and access efficiency. 

To enhance the memory usage rate of the hybrid storage system, researchers have 
designed a detection method for the hybrid storage system based on deep learning 
algorithms, thereby enhancing the overall usage efficiency of the system. Deep learning 
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models can analyse historical data access patterns and predict future load trends. Based 
on the prediction results, the system can dynamically adjust the allocation of storage 
resources, such as migrating predicted hot data to high-speed storage media in advance, 
or optimising the load balancing of storage nodes. Through dynamic resource scheduling, 
the system can utilise storage resources more efficiently and avoid idle or overloaded 
resources, thus improving overall utilisation efficiency. Akgun et al. (2023) proposed a 
model based on autoencoders, which can learn the normal patterns of time series data, 
regard outliers as reconstruction errors different from the normal patterns, and has good 
detection performance. Shi et al. (2020) combined the generative adversarial network 
(GAN) and the transformer model to specifically predict the performance of the hybrid 
storage system, demonstrating excellent performance. Ebrahimi et al. (2021) predicted 
the CPU utilisation rate of virtual machines with the help of this network. The results 
fully demonstrated that recurrent neural network (RNN) showed relatively high accuracy. 
Zhou et al. (2022) proposed a storage anomaly detection method based on dual-attention 
contrastive representation learning, but abnormal events of different scales have not been 
considered yet. Ruan et al. (2023) used long short-term memory (LSTM) network to 
conduct multi-step prediction of the average CPU utilisation rate of servers and achieved 
accurate prediction on the historical dataset of real load of data centre servers provided by 
Google. 

In light of the analysis of existing studies, it can be known that the read and write 
performance of traditional database storage methods often restricts the performance of 
the system. The main reason is that the performance between memory and external 
storage usually differs by several orders of magnitude, and the cost of reading and writing 
data from external storage is relatively high. Thus, for the purpose of enhancing the 
management effect of multimodal data and reduce access latency, this paper designs an 
AI-enhanced hybrid storage engine for multimodal data management. Firstly, in the 
hybrid storage module, DRAM is utilised to complete the caching of NVM. When there 
is cache missing in DRAM, the built-in high-speed acquisition card of the access 
monitoring module is used to collect the historical access records of frequently accessed 
data blocks on NVM. Then, the historical access records are encoded into access vectors 
to construct a training set, which is used as the input of the deep learning model to 
achieve the prediction of the access frequency. The feature vectors of different scales 
output by the temporal convolutional network (TCN) are taken as the input of LSTM. By 
taking advantage of the nonlinear fitting ability of LSTM, the interrelationships of  
multi-dimensional data are mined and the nonlinear features of the data are extracted. The 
spatio-temporal attention mechanism is integrated to enhance the access coding features 
and improve the prediction accuracy of the access frequency. The experimental outcome 
demonstrates that the offered approach has great advantages in hybrid storage and 
processing, and can meet the performance requirements of massive storage and multiple 
reads. 

2 Relevant technologies 

2.1 NVM technology 

In the past, data management systems used volatile storage devices (DRAM) and 
persistent storage devices to build storage systems. All the data that needed to be 
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processed had to be scheduled from persistent devices to DRAM several orders of 
magnitude higher, which affected the performance of the entire system (Qian et al., 
2021). However, the new storage technology, NVM, has broken this traditional design. 
NVM has the byte addressing and low latency characteristics of DRAM, as well as the 
persistence and large capacity characteristics of traditional persistent devices. NVM 
combines the byte-by-byte addressing and low latency characteristics of DRAM while 
overcoming the volatility limitations of DRAM. NVM does not lose data after a power 
outage, and does not need to rely on batteries or capacitors to maintain data as DRAM 
does. DRAM needs to be refreshed periodically to maintain data, which is power hungry 
and prone to data loss, while NVM does not need to be refreshed, which is low-power 
and long-lasting data. It narrates the performance gap between volatile devices and 
persistent devices, and can persist data at the same time. These characteristics bring new 
opportunities and challenges to traditional databases. 

NVM, also known as storage-type memory and NVRAM, is a brand-new and highly 
promising storage device (Chen, 2016). Currently, NVM encompasses a variety of 
technologies, each with slightly different characteristics. However, they typically 
combine the low latency and word addressable nature of DRAM with the persistence of 
storage technologies such as solid state drive (SSD). In addition, the lifespan of NVM is 
limited. Repeatedly writing to the same location storage unit can lead to memory failure, 
as wear balancing needs to be considered in the same way as SSD. 

2.2 Convolutional neural network 

Convolutional neural network (CNN) is a commonly used deep learning model, which is 
particularly suitable for processing and classification tasks of high-dimensional data such 
as images, videos and voices (Kuo, 2016). Different from traditional fully connected 
neural networks, CNN utilises the structure of convolutional layers and pooling layers, 
enabling the network to automatically extract important features from the input raw data, 
thereby achieving efficient feature learning and classification. In addition, CNN 
significantly reduces the number of parameters, improves computational efficiency, and 
is able to automatically learn the spatial hierarchy of data through mechanisms such as 
local connectivity, parameter sharing, and hierarchical feature learning. These advantages 
make CNN more efficient and accurate than traditional fully connected neural networks 
in processing structured data such as images and speech. These advantages make CNN 
more efficient and accurate than traditional fully connected networks in processing 
structured data such as images and speech. The structure of CNN can consist of several 
convolutional levels, pooling levels and fully linked levels, among which the 
convolutional level is the core part of CNN (Liu et al., 2016). The convolutional level 
adopts convolution operation. Through a set of learnable convolution kernels, 
convolution operations are performed on the input data to extract local characteristics. 
Convolution kernels perform convolution at different positions of the input data to obtain 
the characteristic pictures of the corresponding positions. The output of the convolutional 
level passes through an activation function and is then input to the next level for 
processing. 

The role of the pooling level is to downsample the output of the convolutional layer, 
reduce the number of parameters of the network, avoid overfitting, and retain key feature 
information. Common pooling operations include maximum pooling and average 
pooling. Fixed pooling sizes and steps can be selected respectively, or pooling sizes and 
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steps can be learned (Cong and Zhou, 2023). The output of the pooling level can be used 
as the input of the next convolutional level or directly as the input of the fully linked 
level. The fully linked level is usually the last level of the network. It flattens the outputs 
of the convolutional level and the pooling level into a one-dimensional vector, performs 
linear transformation and activation function transformation through a set of weight 
matrices, and finally outputs the forecasting level. 

2.3 LSTM network 

When traditional RNN processes long sequence data, due to the problems of vanishing or 
exploding gradients, it is difficult to learn the long-distance dependencies in the 
sequence. Through the design of the gating mechanism and cell state, LSTM can 
effectively retain and transmit long-term information. LSTM is very suitable for 
processing sequential data, such as time series data, text data and speech data (Chen, 
2022). LSTM enables accurate modelling and prediction of sequence data through the 
synergy of cellular states and gating mechanisms. At its core, it dynamically balances 
information retention and forgetting to excel in long sequence tasks. Despite the problem 
of high computational overhead, LSTM is still widely used in natural language 
processing, time series analysis, speech recognition, etc. by combining the attention 
mechanism or using more efficient variants. In time series prediction, LSTM can predict 
future values based on the changing trend of historical data (Yu et al., 2019). 

LSTM effectively solves the problem of gradient explosion by introducing memory 
units and gating mechanisms. Memory units control the inflow and outflow of 
information through input gates, forget gates and output gates. The network structure of 
LSTM is represented by the following formula: 

  1,t f t t ff σ W h x b    (1) 

  1,t i t t ii σ W h x b    (2) 

  1tanh ,t c t t cC W h x b    (3) 

t t t t tC f C i C      (4) 

  1,t o t t oo σ W h x b    (5) 

 tanht t th o C   (6) 

where σ is the sgmoid function; W and b are the weight matrix and the bias vector 
respectively, and the subscripts f, i and o represent the forget gate, input gate and output 
gate, respectively; Ct is the updated state of the memory unit, Wc and bc are the weights 
and biases used to generate Ct. 
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3 Design of multi-level hybrid storage engine for multimodal data 
management 

3.1 The overall structure of the hierarchical hybrid storage engine for 
multimodal data 

To improve the management effect of multimodal data, increase the data access speed 
and reduce the database load, a multi-level hybrid storage engine for multimodal data 
management is designed. In the DRAM/NVM hybrid storage module, DRAM is utilised 
to complete the caching of the main memory NVM. When there is cache missing in 
DRAM, the built-in high-speed acquisition card of the access monitoring module is used 
to collect the historical access records of frequently accessing 4 KB data blocks on NVM. 
Then, the historical access records are encoded into access vectors to construct the 
training set, which is used as the input of the subsequent deep learning model for 
predicting the access frequency. In the cache filtering module, multimodal data with 
access frequency prediction results higher than the set threshold are read into DRAM for 
storage. 

Figure 1 The overall structure of the hierarchical hybrid storage engine for multimodal data 
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The multimodal data hierarchical hybrid storage engine includes a DRAM/NVM hybrid 
memory module, an access monitoring module, and a cache filtering module. The entire 
system framework is indicated in Figure 1. The DRAM/NVM hybrid storage module is 
composed of DRAM and NVM, and the cache part of the multimodal data main memory 
NVM is DRAM. Among them, the page size of NVM is 2 MB. DRAM directly saves the 
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metadata of multimodal data on the cache chip through a large granularity management 
method of 4 KB, which can effectively reduce the storage time of multimodal data. 
Intending to the issue that frequent data reading work occupies a large amount of 
memory, a storage filtering module is designed in the system. Only the NVM data with a 
higher access frequency is cached in DRAM to reduce the data exchange between 
DRAM and NVM. When there is a cache deficiency in DRAM, the cache filtering 
module determines the access frequency based on the access frequency prediction result 
obtained by the access monitoring module and combined with the set threshold, and reads 
the 4 KB multimodal data of the access frequency prediction result higher than the set 
threshold into DRAM for caching. 

3.2 The hybrid storage structure of multimodal data 

The multimodal data hybrid storage structure of DRAM/NVM is shown in Figure 2. 
Among them, the storage task scheduling work of multimodal data packets and the access 
control work of data packet buffer memory. All of these are accomplished through the 
multimodal data packet storage and distribution unit. The managed multimodal data 
packets are transmitted to the corresponding network interface for data packet storage 
queuing, and through the scheduling of the multimodal data packet queue management 
and control unit, the multimodal data packets are transmitted to the output link. 

Figure 2 The multimodal data hybrid storage structure of DRAM/NVM 
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The multimodal data packet storage allocation unit adopts a queue caching mechanism 
based on shared storage (Suh et al., 2004), allocating buffer storage resources to the data 
packet queue. This mechanism shares the same cache space with all data transmission 
ports. After caching, the multimodal data packets only need to sort the storage addresses 
of the multimodal data packets transmitted to the same interface when sending. Form a 
sending queue and send in sequence. It has the advantages of simple operation and high 
resource utilisation rate. 
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The multimodal data packet queue control unit is responsible for the cache queue 
control of multimodal data packets transmitted to the same network interface, and can 
control the storage location of multimodal data packets in the hierarchical cache system. 
The queuing mode adopted in this unit is the output queuing mode. The multimodal data 
packet sending queue management is implemented in the form of a linked list, and the 
control is carried out during queuing and dequeuing through the multimodal data packet 
queue handle. There are two pointers in the handle for the head and tail of the sending 
queue. When a new queued data packet or a dequeued data packet is added to the 
multimodal data packet sending queue, the tail pointer and the head pointer need to be 
modified respectively to ensure that the data is sent first after queuing. 

The storage location of the queue handle is determined based on the network interface 
encoding for sending multimodal data packets. It begins to write the queue handle when 
receiving the multimodal data packet. Each time a multimodal data packet in the queue is 
added, the first letter of the handle long word of the previous multimodal data packet is 
rewritten first. Then, the handle tail pointer is rewritten to the handle address of the new 
multimodal data packet, and at the same time, the handle long word 2 is increased by 1. 
In this way, a queue handle is formed to complete queue control, and then the multimodal 
data packets are stored in the order of the queue. 

4 Access frequency prediction of the hybrid storage engine based on the 
improved time convolutional network and LSTM 

4.1 The encoding of historical access records of the hybrid storage engine 

For the goal of enhancing the storage utilisation rate of the designed hybrid storage 
engine system, this paper uses the high-speed acquisition card built into the access 
monitoring module to collect the historical access records of frequently accessing 4 KB 
data blocks on the hybrid storage engine. After encoding the historical access records into 
access vectors, a training set is constructed and used as the input for improving the hybrid 
deep learning model of TCN and LSTM to predict the access frequency. In the cache 
filtering module, the 4 KB multimodal data with access frequency prediction results 
higher than the set threshold is read into DRAM/NVM for caching. 

The access monitoring module uses a high-speed acquisition card to collect the 
historical access records of frequently visiting 4 KB data blocks in the hybrid storage 
engine. After encoding the historical access records into access vectors to construct a 
training set, it serves as the input for improving TCN-LSTM to implement the access 
frequency prediction of the hybrid storage engine system. Encode the historical access 
records of the hybrid storage engine into format Sop = {op1, op2, …, opm–1} that is 
convenient to be used as the input data of the LSTM neural network, where opi represents 
the ith access code in the access sequence and m represents the number of accesses in the 
historical access records of the hybrid storage engine. For this purpose, the multi-fork 
tree traversal of the historical access record of the hybrid storage engine can be described 
as follows: 

 2 1 1 2 3, , 100, , , , , ,opS T λT k Hash T T T Materialise T T Sort Group      (7) 
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where T1, T2 and T3 respectively represent the source tables of the hybrid storage engine 
used in the 1th, 2th, and 3th visits in the historical access record; λ and ↔ represent 
selection and connection operations, respectively; T  and k respectively represent the 
result of connecting T1 with T2. and the primary key of the source table. The historical 
access record multitree of each hybrid storage engine can be converted into a unique 
access sequence Sop; conversely, Sop can also be transformed into a unique multi-way tree 
of access records. Each leaf node of the tree contains the source table information of the 
hybrid storage engine. 

After traversal, an access sequence is generated for each access in the historical 
access record of the hybrid storage engine. During this process, the key features in the 
historical access record of the hybrid storage engine need to be extracted to complete the 
v encoding of the access vector. v includes the following contents: 

1 Type of access n0, access the corresponding source table n1 in the hybrid storage 
engine. 

2 Access the column n2 designed for the corresponding source table in the hybrid 
storage engine. 

3 Access the mean width n3 of the row where the corresponding result is located. 

4 Access the selection rate n4 for multimodal data. 

In the above content, n0, n1 and n2 respectively represent the structures for accessing 
multimodal data; n3 and n4 respectively represent the scale of accessing multimodal data. 
The historical access records are represented by vector Sv = (v0, v1, v2, …, vm–1), and vi is 
the ith access in the encoding. Vector Sv is taken as the encoding result of the access 
vector of the historical access records of the hybrid storage engine and input into the 
improved TCN-LSTM model for access frequency prediction. 

4.2 Improvement of the TCN-LSTM model Based on the spatio-temporal 
attention mechanism 

For the goal of enhance the access vector coding results of the hybrid storage engine, this 
paper introduces the temporal attention mechanism (SE) and the spatial attention 
mechanism (TPA) (Lin et al., 2020) to improve the TCN-LSTM model (ETCN-LSTM). 
Compared with the traditional TCN-LSTM model, the ETCN-LSTM model can 
adaptively learn the temporal and spatial information in historical access records. 

To cope with the issue of weight distribution between historical access records and 
the input at the current moment and enhance the adaptability of the time channel of the 
model, the SE module is introduced in this paper. The SE module can effectively assist 
the model in allocating weights between historical traffic data and the traffic data input at 
the current moment, enabling the model to have better learning efficiency and robustness 
in extracting temporal features. Moreover, due to the relatively small computational load 
of the SE module, only one global pooling and two fully connected operations are 
required. Compared with other time attention mechanism models, it has less resource 
consumption, and the SE module can also better meet the real-time requirements. 

Due to the significant differences among the storages of different modalities, when 
the model learns spatial features, it will extract different features simultaneously, 
resulting in the model learning excessive noise information and thus leading to a decrease 
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in model accuracy. To cope with the above issues, this paper suggests a TPA module for 
the scenario of predicting the access frequency of the hybrid storage engine. The TPA 
module divides the access encoding results into individual matrix data of different types, 
uses convolution to extract spatial information from different access matrices 
respectively, and then concatenates different access matrices to restore the original access 
matrix data structure. Finally, the Hadama product is performed between the extracted 
spatial information weights and the matrix data on the backbone road for weight 
allocation. 

4.3 Access frequency prediction based on the improved TCN-LSTM model 

The TCN-LSTM model improved based on the above-mentioned spatio-temporal 
attention mechanism takes the historical access record encoding vector of the hybrid 
storage engine as the input data of the ETCN-LSTM model, effectively utilises the 
spatio-temporal attention mechanism to enhance the characteristics of TCN and LSTM to 
capture the time series dependence of data access and achieve access frequency 
prediction. Combined with the set threshold to determine the multimodal data access 
frequency of the hybrid storage engine, the 4 KB multimodal data in the part where the 
predicted access frequency result is higher than the set threshold is read into DRAM for 
caching, reducing unnecessary cache replacement operations, thereby improving the 
performance and efficiency of the system. 

Each residual module in TCN is composed of three one-dimensional convolutional 
levels, Conv0, Conv1 and Conv2. The first convolutional level, Conv0, performs 
preliminary processing on the input and selects to activate it using the ReLU function, 
with the output being C0. The input of the second convolutional level Conv1 is C0, and it 
is called C1 after convolutional feature extraction. The inputs of C0 and C1 need to take 
into account the expanded convolution parameter d of TCN, and then input Conv2 after 
stepwise element multiplication. The output of Conv2 can be added to the module input 
pt to obtain another output Rt. Therefore, Rt is represented as follows: 

 0, 0 0ReLUt tC p W b    (8) 

1, 0, 1 1t tC C W b    (9) 

 2, 0, 1, 2 2t t tC C C W b     (10) 

 2,ReLUt t tR p C   (11) 

where W0, W1 and W2 are convolution kernel matrices; b0, b1 and b2 are biases;  is the 
convolution operation; ꞏ is the product of elements one by one; the number of elements in 
Rt is n, denoted as Rt = [rt1, rt2, …, rtn]

T. 
Considering that a TCN level can be composed of multiple residual modules, when 

stacking multiple residual modules, it is necessary to find the output Rk–1 of the k – 1th 
residual module as the input of the kth residual module. The output of the final module is 
Hn. Nonlinear calculations are carried out using the ReLU activation function as the 
output Gt of the TCN level. Therefore, Gt can be expressed as follows: 

 , , 1t k t kR Res R   (12) 
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 ,ReLU t kG R  (13) 

where Rt,k represents Rt output by the kth residual module; Res represents the residual 
module. The number of elements in Gt is n, denoted as Gt = [Gt,1, Gt,2, …, Gt,n]

T. 
The output Gt of the TCN module is concatenated with the input x using the 

concatenate function as the input of LSTM, denoted as It, where concatenate is the 
concatenation function. 

 ,t tI concatenate x G  (14) 

At time t, the LSTM module learns the power load characteristic vector It output by the 
concatenate module. Let the hidden layer state of the LSTM module at time t be Ht,i, and 
Ht,i is represented as follows: 

 , , 1 , 1, ,t i t i t t iH LSTM H I C   (15) 

where Ht,i represents the hidden state of the ith input step at time t; Ct,i–1 represents the cell 
state of the i – 1th input step at time t. 

The input of the spatio-temporal attention mechanism is the obscured level state ht 
calculated by the LSTM module. The calculation of the attention weight At,i is shown in 
equation (16). Let the output of the spatio-temporal attention module at time t be St. The 
output St of the spatio-temporal attention module and the output Ht of the LSTM module 
are multiplied bit by bit through the Multiply function to achieve the dynamic weighting 
process of the obscured level units, which are denoted as Lt and St, as shown below: 

 
 
,

,

,1

exp ,

exp ,

T
tt i

t i T
T

tt ik

H q
A

H q





 (16) 

, ,

1

T

t t i t i

i

S A H


  (17) 

 ,t t tL Multiply S H  (18) 

where At,i represents the hidden state of the ith input time step in the attention level at time 
t; qt represents the randomly initialised attention weight matrix; Multiply means to 
multiply elements one by one. 

The output module is a fully linked level, with the linear function as the activation 
function. After processing, the predicted access frequency value of the mixed storage 
engine system at the t + 1 moment is obtained, denoted as y. The calculation equation of 
the output level can be expressed as follows: 

 ty linear wL b   (19) 

where w is the convolution kernel matrix, and b is bias. 
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5 Experimental results and analyses 

To verify the storage performance of the AHSE method proposed in this paper, the 
NVMain local memory simulator is used to simulate the storage performance of the 
system. It mainly simulates the access behaviour of the mixed storage of DRAM and 
NVM in the system proposed in this paper, and combines the global simulator to simulate 
and generate multimodal data with different distribution situations and access patterns for 
the system cache experiment. Meanwhile, simulate the application situations of each 
functional module of the system, such as queue management, etc. The hardware and 
software configuration of this system includes Hadoop version 3.1.1, the operating 
system version Ubuntu 16.04, and the CPU version Core i7-10700. Set the learning 
efficiency of the deep learning model for learning different data to 0.01, the feature 
matching coefficient to 0.1, and the sampling interval of the deep learning training time 
to 1 second. 

This paper records the time delays of AHSE, MCVS (Jia et al., 2018) and  
GAN-TRANS (Shi et al., 2020) in uploading and downloading multimodal data. The size 
of the text is 4.5 M, the size of the image is 25.9 M, and the size of the video is 325.9 M. 
The experimental results of uploading and downloading data in different storage systems 
are shown in Table 1. The experiment found that when uploading data, the larger the file, 
the faster the upload speed. Similarly, the larger the file is, the faster its download speed 
will be. This is because AHSE adopts a distributed storage method, dividing multimodal 
documents into multiple data blocks and storing them on different nodes, thereby 
achieving parallel data transmission and improving the efficiency of upload and 
download. Furthermore, this storage method can also ensure the reliability of data. Even 
if a certain node fails, it will not affect the integrity and availability of the entire file. 
Therefore, AHSE has a significant advantage in hybrid storage and processing, and can 
meet the performance requirements of massive storage and multiple reads. 

Table 1 Comparison of data download speeds 

Text  Picture  Video 
Method 

Upload Download  Upload Download  Upload Download 

MCVS 97 ms 62 ms  183 ms 105 ms  9,180 ms 7,051 ms 

GAN-TRANS 52 ms 39 ms  106 ms 67 ms  7,200 ms 5,216 ms 

AHSE 35 ms 17 ms  59 ms 31 ms  4,240 ms 2,340 ms 

This experiment tested the performance of AHSE, MCVS and GAN-TRANS in 
sequential writing and random writing. The test uses one million pieces of data, with 
values ranging in size from 64 B to 32 Kb, as shown in Figure 3. Figure 3(a) implies the 
comparison results in terms of sequential write performance. Regardless of the size of the 
values, the sequential write throughput of AHSE is significantly higher than that of 
MCVS and GAN-TRANS. When the value size reaches 4 kB, the sequential write 
throughput of AHSE is almost stable at 200 MB/s, which is much lower than the 
sequential write speed of the hard disk. However, for MCVS and GAN-TRANS, as the 
value size increases, the sequential write throughput reaches 800–900 MB/s. The average 
performance of AHSE in sequential writing is 3.1 times that of MCVS and 1.4 times that 
of GAN-TRANS, respectively. 
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Figure 3 The (a) sequential write and (b) random write results of different methods (see online 
version for colours) 
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Figure 3(b) shows the comparison in terms of random write performance. The overall 
random write throughput of MCVS remains at 60–90 MB/s and decreases with the 
increase of the value size. The reason for this phenomenon is that as the value size 
increases, the storage scale also increases, thereby leading to an increase in the merging 
operation time of MCVS and affecting the write performance. On the contrary, since 
AHSE and GAN-TRANS adopt hierarchical storage technology, the access scale remains 
at a relatively small level. Therefore, in terms of on-machine write, the write throughput 
of AHSE and GAN-TRANS is much higher than that of MCVS. The average 
performance of AHSE in random writing is 7.6 times that of MCVS and 1.3 times that of 
GAN-TRANS, respectively. 

Figure 4 Sequential read the comparison results in terms of performance (see online version  
for colours) 
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Figure 4 shows the comparison results in terms of sequential reading performance, 
among which the throughput of AHSE is significantly higher than that of MCVS and 
GAN-TRANS. GAN-TRANS improves the reading performance by sorting the data at 
each level. However, MCVS separates the values into the value log file, causing their 
values to be stored in an unordered manner, thereby affecting the reading performance. 
To cope with this issue, AHSE adopted the parallel reading technology of hybrid storage 
to improve the reading performance. The average performance of AHSE in sequential 
reading is 1.1 times that of MCVS and 1.5 times that of GAN-TRANS, respectively. 

This experiment tested the write amplification of MCVS, GAN-TRANS, and AHSE 
under a mixed workload, as shown in Figure 5. As the total data volume increases from 
20 GB to 100 GB, the write amplification of MCVS increases from 8 to 11. In contrast, 
GAN-TRANS and AHSE have successfully reduced write amplification through 
hierarchical storage technology, and the write amplification values of both remain 
between 1 and 3. However, since AHSE adopts access monitoring technology and detects 
the storage of abnormal access, the storage efficiency has been greatly improved. 

Figure 5 The enlarged result graphs of writing by different methods (see online version  
for colours) 
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6 Conclusions 

As the big data quickly growing, the storage and management of multimodal data are 
facing huge challenges. The traditional database storage methods have a high cost of 
reading and writing from external memory and a slow access speed. To solve the above 
problems, this paper designs an AI-enhanced hybrid storage engine for multimodal data 
management. Firstly, a multimodal data hierarchical hybrid storage engine was designed. 
The DRAM/NVM hybrid storage module is composed of DRAM and NVM, and the 
cache part of the multimodal data main memory NVM is DRAM. DRAM/NVM directly 
saves the metadata of multimodal data on the cache chip through the large granularity 
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management method, which can effectively reduce the storage time of multimodal data. 
When there is cache missing in DRAM, the built-in high-speed acquisition card of the 
access monitoring module is used to collect the historical access records of frequently 
accessed data blocks on NVM. Then, the historical access records are encoded into 
access vectors to construct a training set, which is used as the input of the deep learning 
model to achieve the prediction of the access frequency. The feature vectors of different 
scales output by TCN are taken as the input of LSTM. By taking advantage of the 
nonlinear fitting ability of LSTM, the interrelationships of multi-dimensional data are 
mined and the nonlinear features of the data are extracted. The spatio-temporal attention 
mechanism is integrated to enhance the access coding features and improve the prediction 
accuracy of the access frequency. The experimental outcome implies that the suggested 
approach has significant advantages in multimodal data storage and management. It can 
effectively improve data access efficiency and reduce query response time, providing 
strong support for the large-scale storage and application of multimodal data. 

The hybrid storage engine designed in this paper has achieved significant 
performance advantages. However, the layout and size of other data were not redesigned. 
Subsequent work can consider how to design the layout and size of other data, as well as 
further fine-grained management of data blocks in DRAM/NVM, thereby improving the 
space utilisation rate. 
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