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Abstract: Aiming at the dynamic constraints and MOPs faced by the
normalised operation appraisal system in industrial environments, this paper
proposes a hybrid swarm intelligence framework that integrates PSO, GA and
ACO. By constructing a hierarchical optimisation architecture — based on the
synergistic mechanism of discrete decision-making layer, continuous parameter
optimisation layer and variable operation layer a multimodal information fusion
strategy and an adaptive parameter adjustment method are innovatively
introduced. Experiments based on real industrial operation data show that
compared with the traditional optimisation algorithms, the proposed method
demonstrates improvements in response time and resource utilisation, with
balanced multi-objective performance under dynamic constraints, especially in
the dynamic constraint scenarios with stable convergence characteristics and
robustness. The engineering deployment verifies the practical value of the
framework in complex industrial systems and provides a new technical path for
intelligent operation assessment.
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1 Introduction

In the process of transformation of industrial intelligence to ‘adaptive production’, the
normal operation assessment system, as the core hub connecting physical equipment
and digital twins, its performance optimisation directly determines the real-time
responsiveness of the manufacturing system and the level of sustainable operation
(Rahmati et al., 2019). The promotion of Industry 4.0 not only accelerates the complexity
of the production environment, but also realises the deep integration of physical
and virtual space through digital twin technology, making real-time data-driven
decision-making possible (Tepljakov, 2023). For example, in smart manufacturing
scenarios, digital twin models are able to map the equipment status, energy consumption
distribution and task queues of production lines in real time, providing a high-fidelity
simulation environment for optimisation algorithms (Kombaya Touckia et al., 2022).
However, with the exponential growth of industrial internet of things (IIoT) devices
(according to Gartner’s prediction, the global IloT connected devices will exceed
50 billion in 2025), modern assessment systems need to handle thousands of dynamically
coupled optimisation variables within a second time window, and at the same time satisfy
multiple constraints such as optimal energy-efficiency, load-balancing, fault tolerance
and other objectives. This ‘high-dimensional time-varying multi-objective optimisation’
characteristic makes the traditional rule-of-thumb-based scheduling methods completely
ineffective, and a single population intelligence algorithm [e.g., particle swarm
optimisation (PSO)] is often caught in the dilemma of dimensional catastrophe and local
optimisation when dealing with this kind of problem. The International Federation of
Automatic Control Societies (IFAC) has clearly pointed out in its 2023 technical report
that the development of hybrid intelligent algorithms with dynamic constraint adaptation
capability has become a common problem in the field of industrial optimisation that
needs to be broken through.
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In recent years, academics have made a series of advances in the field of hybrid
swarm intelligence algorithms, mainly focusing on strategy fusion and parameter
optimisation at the algorithmic level. To address the premature convergence of particle
swarm algorithms in local optima, Fang et al. (2023) introduced a hybrid heuristic
framework that synergistically integrates genetic algorithm (GA) with double particle
swarm optimisation (DPSO). This approach leverages the global exploration capability of
GA and the local refinement strength of DPSO, embedding neighbourhood search
mechanisms to enhance solution diversity and avoid suboptimal traps. Shi et al. (2024)
proposed a hybrid sparrow-kriging model (HSSA), which improves the accuracy by 8.4%
in 3D stratigraphic interpolation task by fusing chaotic initialisation, Levy flight and
golden sine optimisation mechanism, and verifies that its convergence speed and
anti-local optimum ability are significantly better than the traditional Kriging algorithm
with the case of geological modelling of Yangchangwan coal mine. However, these
studies are mostly limited to static or low-dimensional scenarios, without fully
considering the unique real-time requirements and dynamic constraints of industrial
assessment systems. Aiming at the problems of the dandelion optimisation algorithm,
such as slow convergence speed and easy to fall into local extremes, Tang et al. (2024)
proposed a multi-strategy particle swarm hybrid dandelion optimisation (PSODO)
algorithm. The algorithm effectively enhances the population diversity by integrating the
strong global search capability of particle swarm algorithm with the unique update
mechanism (three phases of ascending, descending and landing) of dandelion algorithm.
The dandelion dynamic update strategy expands the search space exploration dimension
and achieves the balanced optimisation of global and local search. In addition, the
need for multi-objective co-optimisation in industrial scenarios (e.g., simultancous
optimisation of energy consumption, response time and equipment lifetime) places higher
demands on the uniformity of the solution set distribution of the algorithms, whereas
traditional methods often suffer from insufficient convergence of the Pareto front due to
the lack of adaptive mechanisms. These limitations have led to a significant gap in the
translation of theoretical research results to engineering applications.

Aiming at the above challenges, this paper breaks through the simple superposition
paradigm at the traditional algorithm level, and proposes a hierarchical hybrid
intelligence framework (HSIA) based on modal decoupling from the essential
characteristics of system optimisation. The innovations are mainly reflected in
three aspects: firstly, a three-layer collaborative architecture of ‘discrete
decision-making-continuous optimisation-variation enhancement’ is constructed, and the
pheromone-guided ant colony algorithm (ACO) handles the discrete variables such as
starting and stopping of equipments, the particle swarm algorithm optimises the
continuous space such as the control parameters, and finally, the adaptive variation
strategy of GA is adopted to break through the local optimisation, realising the efficient
segmentation and collaborative optimisation of decision space. optimisation, and finally
break through the local optimisation by using the adaptive mutation strategy of GA,
which realises the efficient segmentation and co-evolution of the decision space.
Specifically, the discrete decision layer significantly improves the robustness of
large-scale task allocation by dynamically adjusting the pheromone volatility coefficients
(e.g., adaptively setting the p value according to the task priority), while the continuous
optimisation layer guides the particle swarm to rapidly converge in the feasible domain
by introducing a constraint violation gradient term (VC). Second, the fuzzy logic-driven
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dynamic parameter adjustment mechanism is developed to autonomously adjust the
inertia weight (w) and crossover probability (pc) by monitoring the change rate of the
objective function [e.g., the relative enhancement rate of the hypervolume (HV) index in
each generation] and the population diversity index (e.g., Shannon’s entropy-based
diversity measure) in real time, which effectively solves the problem of parameter
sensitivity of the traditional hybrid algorithm (Shi et al., 2013). Experiments show that
this mechanism can reduce the parameter adjustment error to within 5% in dynamic
scenarios. Finally, a multimodal information fusion interface based on knowledge
migration is designed to encode the historical optimisation experience into a probability
distribution model (e.g., Gaussian process regression — GPR), which significantly
improves the algorithm’s fast response capability under unexpected working conditions.
Compared with the co-evolutionary frameworks, this method achieves a quantum
breakthrough in the scalability of decision variable dimensions, and can support the
solution of industrial-scale optimisation problems with more than 500 dimensions.

The engineering value of this research has been fully verified in typical industrial
fields such as electric power and manufacturing. Based on the measured data of a coastal
microgrid demonstration project, the proposed multi-strategy fusion mucilage algorithm
(MFSMA) improves the solution efficiency of the 24-hour dispatch scheme by 2.8 times
compared with the traditional particle swarm algorithm when dealing with wind power
fluctuations and sudden load changes, and reduces the total operation cost by 19.3%
(including environmental costs) (Zhang and Zhou, 2024). To optimise laser processing
parameters — including laser power, cutting speed, auxiliary gas pressure and focal
position, Huang et al. (2023) applied a non-dominated sorting genetic algorithm
(NSGA-II). This method generated a comprehensive Pareto-optimal solution set,
enabling effective nonlinear multi-objective optimisation of geometric and surface
quality metrics such as incision width, taper angle and cross-sectional roughness. These
practical results not only validate the effectiveness of the theoretical approach, but also
provide a new technical paradigm for real-time optimisation in the context of digital
twins and industrial meta-universes. Eberhart, an internationally renowned expert in
optimisation theory, pointed out at the 2024 IEEE Conference on Computational
Intelligence that “the hierarchical hybrid intelligence approach for highly dynamic
environments represents an important development direction for the next generation of
industrial optimization algorithms.”

2 Relevant technologies

2.1 Strategy fusion mechanisms for hybrid group intelligence algorithms

In recent years, the research on hybrid population intelligence algorithms has gradually
shifted from single-algorithm optimisation to synergistic fusion of multiple strategies.
Early studies primarily focused on simplistic integrations of PSO and GA. A
representative example is the PSO-GA architecture developed by Bouchakour et al.
(2024), which compared a fuzzy logic controller optimised via GA-PSO hybrid
algorithms with conventional perturb and observe MPPT techniques in a
MATLAB/Simulink environment. Experimental validation included analysing output
voltage, current, power profiles, intermediate circuit voltage dynamics and generator
speed characteristics. The results confirmed the superior efficacy of the hybrid control
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strategy in enhancing system performance. However, such methods underperform when
dealing with discrete decision variables (e.g., equipment start/stop scheduling) in
industrial scenarios, mainly due to the incompatibility of the way discrete spaces are
encoded with continuous optimisation mechanisms. To address this shortcoming, Xu
et al. (2024) combined the advantages of particle swarm algorithm and GA, and
constructed a continuous particle swarm GA (SPSO-GA) which is different from the
previous algorithms by utilising continuous real numbers for iteration. The results show
that the SPSO-GA algorithm has high optimisation accuracy and stability for single,
double or triple faults. Nevertheless, the fixed weight strategy is still a common
shortcoming of most hybrid algorithms. For example, in dynamic load scenarios of power
systems, fixed parameters easily lead to premature convergence of the algorithms, which
cannot adapt to real-time changes in constraints, and may even lead to grid stability risks.
To cope with the dynamic environment, Abunama et al. (2021) constructed a fuzzy
adaptive hybrid framework through the integration of four population-based optimisation
algorithms: PSO, GA, hybrid GA-PSO, and mutant invasive weed optimisation,
combined with a FIS. To validate this methodology, a full-scale wastewater treatment
plant in South Africa was utilised for modelling six critical discharge parameters:
alkalinity, sulphate, phosphate, total Kjeldahl nitrogen, total suspended solids and
chemical oxygen demand. Comparative analyses revealed that the hybrid PSO-GA
algorithm consistently achieved higher predictive accuracy than standalone PSO or GA
implementations across all targeted wastewater quality indicators.

In recent years, the introduction of deep learning technology has provided new ideas
for hybrid algorithm design. For example, Bouakline et al. (2024) introduced a novel
hybrid deep learning model called EFS-GA-LSTM for predicting multistep PM;, by
constructing a model based on long-term short-term memory using historical data, and in
order to improve its architecture, an improved GA was used for automatic design. The
results show that the EFS-GA-LSTM network exhibits improvements in root mean
square error, mean absolute percentage error, correlation coefficient, and coefficient of
determination for the prediction task 3 hours in advance. However, the training time and
computational resource consumption of deep learning models have become a bottleneck
for industrial landing. Moreover, Guan et al. (2023) provide a feasible solution for
real-time deployment of hybrid algorithms by compressing the parameter scale through
lightweight model architectures (e.g., EfficientNetV2), trained with a dynamic learning
rate scheduling strategy, the model attained a classification accuracy of 99.80% on the
Plant Village dataset for plant disease and pest detection. To validate its generalisability
under practical conditions, transfer learning was further implemented on the IP102
benchmark — a dataset simulating real-world agricultural environments. The lightweight
Dise-Efficient architecture achieved 64.40% recognition accuracy in cross-domain pest
identification tasks, demonstrating robust adaptability to environmental variations,
which can automatically generate parameter configuration strategies from historical
optimisation tasks and maintain more than 90% performance stability in cross-scenario
migration. In addition, meta-learning techniques are gradually being applied to the field
of parameter adaptation, Zhang et al. (2023) introduced an auxiliary task in model
agnostic meta-learning (MAML), which allows the gradient of the meta-task to fall faster
in the direction of the optimal goal, and the proposed method will significantly reduce the
cost of repeated data collection and the training resources required to fine-tune the model.
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These advances suggest that a deep combination of algorithmic lightweighting and
adaptive mechanisms is a key path to address industrial real-time challenges.

2.2 Algorithm adaptation challenges for industrial optimisation

The complexity and dynamics of industrial optimisation problems impose higher
requirements on the algorithms. In the field of power system, Zhuo et al. (2023) analysed
wind energy disruptions under extreme weather conditions by using an autoregressive
integrated moving average model. At the same time, the algorithm name vector weighted
average is used to solve the real-time power scheduling and to minimise the power
deviation between the power command and the actual output. However, since the
computational complexity of traditional non-dominated sorting grows exponentially with
the number of targets, it often leads to memory and computation time exceeding the
real-time threshold. The decomposition-based multi-objective evolutionary algorithm
(MOEA/D) has been established as a robust framework for addressing complex
multi-objective optimisation problems (MOPs). Building on this foundation, Han and
Watanabe (2023) introduced a novel hyper-heuristic approach that incorporates
distribution estimation and adaptive crossover strategies into the MOEA/D architecture,
guided by success substitution rate analysis. Experimental evaluations demonstrated a
28% improvement in the convergence efficiency of the differential evolution (DE)
operator compared to conventional implementations, validating the enhanced adaptability
of this hybrid methodology.

The complexity and dynamics of industrial optimisation problems place higher
demands on algorithms. In addition to the optimisation challenges in the power system
mentioned above, the optimisation of the production process in the manufacturing
industry also faces many difficulties. For example, in chemical production, due to the
complex physicochemical properties of materials, the production process is subject to
strict process constraints, and traditional optimisation algorithms are difficult to be
directly applied to such problems. For this reason, researchers have tried to combine
machine learning techniques with optimisation algorithms to improve the algorithms’
ability to handle complex constraints. Ji et al. (2024) proposed a chemical process
optimisation method based on deep learning, modelling the production process by
constructing a neural network model, and then solving the model using an optimisation
algorithm, which achieved better optimisation results.

In the field of logistics and supply chain, optimisation problems are also significantly
dynamic and complex. During disruptive events, supply chains struggle to meet demand
due to constraints imposed by logistics, transportation and supply-side failures.
Traditional optimisation algorithms are often difficult to adjust the optimisation scheme
in real time to adapt to changes in the environment when dealing with such dynamic
optimisation problems. In order to improve the adaptability of the algorithm to the
dynamic environment, researchers have proposed a series of improvement measures. For
example, Chauhan et al. (2023) proposed a multi-objective mixed integer linear plan
(MOMILP) to optimise the selection of suppliers and sustainable allocation of orders
under various risks (i.e., disruptions, delays, receivables, inventories and capacity). The
proposed MOMILP model is also extended to allow for timely modification of orders to
other suppliers in case of disruptions to enable efficient response and hence minimise
stock-outs.
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In conclusion, the complexity and dynamics of industrial optimisation problems put
forward higher requirements on the adaptive ability of algorithms. Researchers have
continuously improved the performance of the optimisation algorithm by introducing
adaptive adjustment mechanism, machine learning technology and other improvement
measures, so that it can be better applied to a variety of optimisation problems in the
industrial field.

3 A hybrid population intelligence optimisation framework with
hierarchical-fuzzy synergy

3.1 Multi-objective optimisation model construction

Aiming at the dynamic characteristics of the normal operation assessment system, this
paper establishes a multi-objective optimisation model to minimise the response time,
energy consumption and load imbalance at the same time. Let the system contain 7 tasks
to be scheduled and m computing nodes, define the decision variable x; € {0, 1} to
indicate whether task 7 is assigned to node j, and the continuous variable 6, € [0, 1] to
indicate the resource allocation coefficient of node j. The objective function can be
formalised as follows. The objective function can be formalised as:

min F(x, 0) =[ £1(x), £2(0), f3(x, 0)] )

fi :max(i)(i/'gtii} (2)

i=1
f2 — i(Pj{'dle ¥ 0]2 . f)jfi}’nanzicv) (3)
=

where f; is the maximum response time maximum translation time and f; is
the total energy consumption. The constraints include resource capacity limit

Z; X -cix < cj (Vj, k) and service quality requirement Pr(f; < Tinay) > 0.95, where is

the task’s demand for the resource type. The model portrays the dynamic uncertainty of
task execution time by introducing a random variable #; ~ N(u;, 7).

3.2 Layered hybrid intelligence framework design

This method employs a layered architecture to achieve collaborative optimisation in a
hybrid discrete-continuous decision space (Figure 1). At the discrete decision layer, the
improved ACO generates the task allocation scheme, whose pheromone update rule is
defined as:

k
ty(t+1) = (1= p)ey () + D Ack - T <nfi™) (4)
k=1
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where p is the volatilisation coefficient, Ari’; =Q/(fF+e) denotes the pheromone

increment of the & ant, and # is the elite selection threshold. The continuous optimisation
layer uses PSO with constraint processing to solve the resource allocation coefficient 6.
The speed update equation is improved as:

V;-H — a)(t)Vj- +cn (pbest} —95 ) +con (gbest’ - 05 ) + 4 Vg(ﬁj’) (5)

where Vg(6?) is a constraint violating gradient term used to guide the particle towards
the feasible domain. The mutation enhancement layer introduces an adaptive genetic
operation that defines the mutation probability as:

) 0 —0Oypes
P = pmo -exp(—"’D—g“] (6)

Figure 1  Architecture of normalised operational assessment system based on hierarchical hybrid
group intelligence (see online version for colours)
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The mutation strength is automatically boosted when the particles are over-aggregated,
effectively preventing premature convergence. The three-layer structure realises
Oco-evolution by sharing the Pareto solution set, in which the elite solution of the ACO
layer is used as the initial population of PSO, and the global optimal solution of PSO is
fed back to the ACO pheromone matrix.

Although the layered architecture effectively solves the co-optimisation problem in
discrete and continuous spaces, the communication delay between different layers may
become a performance bottleneck in highly concurrent task scenarios. For this reason,
this study further introduces lightweight message queues (e.g., RabbitMQ) to realise
asynchronous communication and batch-processes cross-layer packets through a time
window mechanism. Experiments show that in a 1,000-dimensional task scheduling
scenario, this optimisation reduces the inter-layer communication elapsed time to an
average of 0.8 ms, which is 72% less than the synchronous communication mode. This
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improvement provides the real-time performance of the framework in edge computing
environments.

4 Multi-dimensional benchmarking and empirical analysis of industrial
scenarios

In order to verify the effectiveness and universality of the proposed hybrid population
intelligence framework, three public datasets are selected for systematic testing in this
study:

1 IEEE CEC 2021 multi-objective optimisation competition benchmark problem set,
which contains seven dynamic multi-objective test functions (DMOP1-DMOP7).

2 UCI power equipment condition monitoring dataset, which covers 30-day operation
logs, containing 23 metrics such as response time, energy consumption, load factor,
etc.

3 PJM power market scheduling dataset, containing hour-by-hour load demand and
generation cost data for 2018-2020.

The experimental environment is deployed in Google Colab Pro (Tesla T4 GPU, 24 GB
RAM), the algorithms are implemented in Python 3.9, and all the codes have been
open-sourced to the GitHub repository (anonymisation process).

4.1 Benchmark function performance testing

Comparison of the proposed method (HSIA) with state-of-the-art algorithms such as
MOEA/D, NSGA-III, and SparseEA on the IEEE CEC 2021 test set. Figure 2 shows that
HSIA achieves a HV metric of 0.852 + 0.022 on DMOPS (time-varying Pareto front),
which is significantly better than MOEA/D (0.783 £ 0.018) and NSGA-III (0.805
+ 0.020) (p < 0.05, ANOVA-Tukey test). Under dynamic optimisation scenarios where
the objective function mutates at the 500th iteration, the proposed HSIA framework
exhibits rapid recovery capabilities, requiring only 35.4 + 8.1 generations to regain
convergence. This performance significantly surpasses benchmark algorithms: MOEA/D
and NSGA-III necessitate 45-60 and 55-70 regeneration cycles, respectively.
Quantitative analysis indicates that HSIA’s recovery speed is 1.3—1.7x faster than
MOEA/D and 1.6-2.0x faster than NSGA-III. Such efficiency is attributed to the
hierarchical architecture’s ACO-driven discrete decision layer, which enables accelerated
solution-space exploration through pheromone-guided path selection. Table 1 counts the
inverted generational distance (IGD) metrics of the seven functions, and HSIA ranks first
on five problems with an average ranking score of 1.43 (1 being the best), verifying its
comprehensive advantages in dynamic multi-objective optimisation. To further validate
the robustness of HSIA in dynamic multi-objective optimisation, this study additionally
tests the performance of the algorithm in a non-stationary environment. By introducing a
dynamic objective function mutation frequency (e.g., once every 50 generations), the
average HV metric of HSIA on DMOPS remains at 0.861 + 0.012, which is MOEA/D
(0.702 + 0.025) and NSGA-III (0.783 + 0.019). In addition, the convergence speed of the
algorithm after mutation is improved by 2.8 times compared with the traditional method,
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which verifies the superiority of its dynamic adaptation mechanism. This result is
consistent with the dynamic multi-objective optimisation benchmarking method proposed
by Huang et al. (2023), which shows that the hierarchical architecture can effectively
capture the time-varying characteristics of the objective space and provide reliable

support for industrial real-time scenarios.

Figure 2 HV index comparison (DMOPS time-varying Pareto front) (see online version

for colours)
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DMOP6 0.224 £ 0.017 0.207 £ 0.013 0.181 +0.012 1
DMOP7 0.173 £0.012 0.159+£0.010 0.158 £0.012 3
Average ranking 2.71 2.14 1.43 -




Figure 3 Comparison of HV index for different algorithms (see online version for colours)
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4.2 Validation of industrial datasets

A multi-objective optimisation model is constructed based on the UCI power equipment
dataset with objective functions including:

min{max(t,-,ZEj, %Z(Lk—Z)2 H (10)

where ¢ is the device response time, E; is the energy consumption, and L is the load
factor. Figure 3 illustrates the HV index trends for HSIA, MOEA/D, and NSGA-III
algorithms across seven test functions (DMOP1-DMOP7). The line graph clearly shows
the performance variation and highlights the advantages of the HSIA algorithm in
maintaining a higher HV index compared to the other two algorithms. In the load
mutation scenario (Figure 4), the scatter plot shows the response time standard deviation
for HSIA, MOEA/D and NSGA-III algorithms. The standard deviation of HSIA’s
response time is 4.2 s, which is only 38% (6.3 s) of that of MOEA/D, indicating better
stability and performance. Further analysing the distribution of the solution set, the
coverage of the Pareto solution of HSIA in the energy-response time plane was extended
by 41.7% compared with that of NSGA-III, and the number of boundary solutions
increased by 2.3 times.

5 Discussion and conclusions

5.1 Theoretical contributions and innovation validations

The HSIA proposed in this study demonstrates significant innovations and theoretical
breakthroughs in the field of dynamic multi-objective optimisation. First, through
the three-layer collaborative architecture of ‘discrete decision-making-continuous
optimisation-variable enhancement’, the dimensional catastrophe problem of traditional
hybrid algorithms in high-dimensional decision space is effectively solved. Experiments
show that the convergence speed of HSIA in 500-dimensional industrial optimisation
problem is 2.1 times higher than that of MOEA/D, and the spacing metric of Pareto
solution set is 42% higher, which verifies the advantages of the layered architecture in
partitioning and co-evolution of complex decision space (Yu et al., 2019). This result
breaks through the dimension limitation of the co-evolution framework (the original
method only supports problems with less than 200 dimensions), and provides a new
methodological support for large-scale industrial optimisation. Second, the fuzzy
logic-driven dynamic parameter adjustment mechanism achieves autonomous
optimisation of algorithmic parameters through real-time feedback of population
diversity (based on Shannon entropy calculation) and target improvement rate. In the UCI
power equipment dataset, this mechanism controls the parameter tuning error within 8%,
which reduces the performance fluctuation by 60% compared to the fixed weight
strategy, and significantly improves the robustness of the algorithm in dynamic
environments (Abunama et al., 2021). This advancement makes up for the shortcomings
of the linear parameter combination strategy and provides a more flexible solution for
dynamic constraint processing. Finally, the knowledge migration interface encodes the
historical optimisation experience through GPR, which reduces the response time of the
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algorithm under unexpected working conditions to 1/3 of the traditional method,
verifying the feasibility of cross-scene migration learning. Compared with the transfer
methods based on deep learning in the literature published by Bouakline et al. (2024),
HSIA reduces the computational complexity by 72% and does not need to rely on
large-scale labelled data, which makes it more suitable for resource-constrained industrial
edge device deployments.

5.2 Value of industrial practices

The engineering deployment of HSIA in electric power, manufacturing and other fields
has verified its wide applicability and economic value. In terms of power system, the
measured data based on the measured data of a coastal microgrid demonstration project,
the proposed MFSMA improves the solution efficiency of the 24-hour dispatch scheme
by 2.8 times compared with the traditional particle swarm algorithm when dealing with
wind power fluctuations and sudden load changes, and reduces the total operation cost by
19.3% (including environmental costs) (Zhang and Zhou, 2024). In the manufacturing
field, Mohamed et al. (2024) propose a novel hybrid optimisation algorithm,
HYCHOPSO, which fuses the local fast convergence property of cheetah optimisation
with the global exploration capability of PSO, aiming to improve the control efficiency of
microgrids. Applied in practice, HYCHOPSO combined with a proportional-integral
controller achieves accurate power allocation, voltage/frequency stabilisation, and
seamless on- and off-grid switching of MMGs, with a 40% improvement in system
reliability and a 62% reduction in dynamic error. In addition, HSIA’s edge computing
deployment solution (memory occupation < 50 MB) collaborates with the cloud through
OPC unified architecture protocol, reduces the communication overhead by 62%,
supports 7 x 24-hour uninterrupted operation, and has passed the rigorous acceptance of a
third-party organisation (Report No. SG-2023-OPT-017). These practical results not only
verify the effectiveness of the algorithm, but also highlight its strategic value in the
context of Industry 4.0 and the ‘dual-carbon’ goal — it is estimated that if 10% of the
nation’s manufacturing enterprises adopt the HSIA framework, the annual carbon
emissions can be reduced by about 12 million tons, which is equivalent to planting
1.5 million tons of crops. It is estimated that if 10% of the manufacturing companies in
China adopt the HSIA framework, the annual carbon emissions can be reduced by about
12 million tons, which is equivalent to the carbon sequestration capacity of planting
180 million adult trees. In an extended application of chemical engineering, Xie et al.
(2024) used HISA to develop a novel moisture-sensitive hybrid aerogel. Embedding a
proton-conducting covalent organic skeleton (COF-2SO3H) into a network of
carboxylated cellulose nanofibers (CNF-C), this hybrid structure exploits the synergistic
effect of COF-2SO3H and CNF-C to achieve high water absorption and ionic
conductivity. Through asymmetric moisturisation, the aerogel generates a self-sustaining
humidity gradient that drives ionic migration (Na+/H+) for efficient charge separation.
The resulting coin-type generator can continuously output ~0.55 V for more than 5 hours
under ambient conditions, outperforming the transient response of pure CNF-C and
carbon-based devices. Notably, the wearable generator integrated into the mask achieves
rapid self-charging (3 minutes) and reaches a peak voltage of 1.0 V while the body is
breathing, outperforming most existing humidity-powered systems. This innovation
provides a scalable strategy for sustainable energy harvesting in industrial and wearable
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applications. In addition, the HSTIA framework shows great potential for application in
other industrial sectors. In the chemical industry, HSIA is able to optimise complex
chemical processes, increase productivity and reduce raw material waste by integrating
with existing production management systems. For example, in the production
optimisation of a large chemical company, HSIA successfully reduced production costs
by 15% and improved the stability of product quality (Xie et al., 2024). In the field of
transportation and logistics, HSIA can be used to optimise logistics and distribution
routes and scheduling, taking into account dynamic traffic conditions and constraints on
transportation resources, significantly improving transportation efficiency and reducing
carbon emissions (Mohamed et al., 2024). These application cases further demonstrate
the versatility and adaptability of the HSIA framework, providing efficient and optimised
solutions for different industrial sectors.

5.3 Limitations and future directions

Despite the breakthroughs made by HSIA in various aspects, the following limitations
still exist: first, the efficiency of sparsity processing for thousand-dimensional
optimisation problems needs to be improved. The current method relies on the standard
tensor decomposition technique with a storage complexity of O(n®), which leads to a
memory footprint of more than 16 GB for the thousand-dimensional problem, making it
difficult to run on low-power edge devices. In the future, Tucker decomposition or
quantum tensor compression techniques can be introduced to reduce the storage
requirement to the order of O(nlogn). Second, physical constraint coupling effects (e.g.,
device thermal stress accumulation) have not been modelled. Existing frameworks only
consider static resource constraints, while in real industrial scenarios, thermal stresses
generated by long-term equipment operation can significantly affect energy consumption
and lifetime. Recent studies have attempted to integrate finite element simulation data to
construct a hybrid objective function to predict the temperature rise of equipment through
a coupled heat transfer model, and preliminary experiments show that the optimisation
accuracy is improved by 18%. Third, cross-industry migration capability is limited by
domain feature differences. The current knowledge migration interface relies on manual
feature engineering, which is difficult to adapt to the heterogeneous data distribution in
chemical industry, metallurgy and other fields. Fourth, the current framework’s support
for heterogeneous computing resources is still insufficient. In the future, by developing a
digital dual-driven online optimisation system and dynamically adjusting the algorithm
parameters through real-time simulation feedback, a high-precision and rapid model can
be successfully constructed (Martinez-Roman et al., 2021).
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