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Abstract: With the rapid development of educational informatisation, 
effectively tapping its potential value to optimise teaching strategies has 
become an important research direction in the field of education. This article 
proposes a student learning behaviour analysis method based on machine 
learning and data mining techniques. Firstly, integrate multiple sources of data 
and construct a learning behaviour indicator system. Secondly, the K-means 
algorithm is used to group the student population and identify differentiated 
learning behaviour patterns; combining the random forest classification model 
to predict students’ academic performance, and extracting key influencing 
factors through feature importance analysis. Additionally, introduce LSTM to 
explore the dynamic evolution of learning behaviour. The experimental results 
show that the proposed method can effectively identify high-risk student groups 
and inefficient learning behaviour characteristics. The research results provide 
data-driven decision support for teachers’ precise intervention, personalised 
learning path recommendation, and educational resource allocation. 
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1 Introduction 

In recent years, the widespread application of educational information technology has 
made it possible to collect and analyse data on students’ learning behaviour. The massive 
amount of online learning logs, classroom interaction records, and multimodal evaluation 
data provide unprecedented opportunities for educational researchers, while also placing 
higher demands on the depth and efficiency of data analysis methods. How to extract 
effective information from complex and high-dimensional behavioural data, reveal the 
potential correlation between learning behaviour and academic performance, and achieve 
precise teaching intervention has become a key issue in the field of educational 
intelligence (Yang, 2022). 

In related research, machine learning and data mining techniques are widely used for 
learning behaviour analysis. For example, Pardo et al. (2019) constructed a student 
engagement model by integrating multi-source data and used the random forest algorithm 
to predict learning outcomes, but their research did not delve into the dynamic evolution 
characteristics of behavioural patterns. In terms of clustering analysis, Hussain et al. 
(2018) used the K-means algorithm to classify the behaviour patterns of online learners 
and found significant differences in learning paths among different groups. However, 
their data feature construction mainly relies on static statistical indicators and lacks 
modelling in time series dimension. In addition, Talebi et al. (2024) proposed six new 
models for the temporal characteristics of learning behaviour using ensemble 
classification techniques of convolutional neural networks (CNNs) and LSTM. CNN is 
used for automatic feature extraction, while LSTM considers the time series aspect of 
data to improve early prediction performance. Despite some progress in research, existing 
methods still have limitations in multi-dimensional feature fusion, dynamic behaviour 
pattern mining, and generalisation in practical teaching scenarios. 

This article proposes a learning behaviour analysis method that integrates machine 
learning and data mining techniques. By integrating multiple sources of data to construct 
a dynamic indicator system, and combining clustering, classification, and time series 
models, the study systematically explores the patterns of learning behaviour and its 
correlation with academic performance. The main contributions of this article include: 

1 Designing a multidimensional feature framework that integrates time series, 
frequency statistics, and content interaction. 

2 Combining K-means clustering and random forest classification to achieve the dual 
goals of student clustering and performance prediction. 

3 Introducing LSTM network to capture the dynamic evolution characteristics of 
learning behaviour, providing a temporal dimension basis for teaching intervention. 

The experimental results show that the proposed method has significant advantages in 
behaviour pattern recognition and academic risk warning. 
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2 Relevant technologies 

2.1 K-means algorithm 

The K-means algorithm, as one of the most classic and widely used clustering methods in 
the field of unsupervised learning, has the core idea of iteratively optimising data into a 
specified number of clusters, so that data points within the same cluster have high 
similarity, while the differences between different clusters are as significant as possible 
(Miraftabzadeh et al., 2023). The application of this algorithm in student learning 
behaviour analysis is particularly prominent, as it can quickly process large-scale data 
and reveal potential behavioural patterns. However, the theoretical mechanisms and 
limitations behind it need to be further explored to ensure its reasonable application in 
educational settings (Ikotun et al., 2023). 

From the perspective of algorithm principles, the running process of K-means is 
essentially to find cluster centres in the data space and achieve clustering goals by 
minimising the overall distance between data points and their cluster centres. In the initial 
stage, the algorithm randomly selects K data points as initial cluster centres, which has a 
significant impact on the final result because different initial centres may lead to 
completely different clustering results, a phenomenon known as ‘initial sensitivity’. Then 
enter the iterative optimisation stage: first, assign each data point to the nearest cluster 
centre to form a temporary cluster; then recalculate the centre point of each cluster 
(usually taking the average of all data points within the cluster); these two steps are 
alternated until the change amplitude of the cluster centre is less than the preset threshold 
or reaches the maximum number of iterations. This iterative process is essentially solving 
a non-convex optimisation problem. Although it cannot guarantee finding the global 
optimal solution, stable clustering results can be obtained through local optimisation (Oti 
et al., 2021). 

The theoretical advantages of K-means mainly lie in computational efficiency and 
scalability. Due to the fact that the algorithm only involves simple distance calculation 
and mean updating, its time complexity is linear and can easily handle student behaviour 
datasets containing hundreds of thousands of records. For example, when analysing logs 
from online learning platforms, even when faced with millions of clicks generated per 
hour, K-means can still complete clustering in a short period of time. In addition, the 
algorithm output has intuitive interpretability, and educational researchers can quickly 
understand group behaviour differences by observing cluster centre features (such as 
‘high-frequency nighttime learning groups’ or ‘low interactive procrastination students’), 
which is crucial for developing teaching intervention strategies. 

However, the theoretical limitations of K-means also profoundly affect its application 
effectiveness. Firstly, the algorithm requires a predetermined number K of clusters, but in 
practical educational scenarios, the actual number of categories of student behaviour 
patterns is often unknown. Researchers often use methods such as elbow rule or contour 
coefficient to estimate the optimal K value, but these heuristic methods carry subjective 
judgment risks. For example, when student behaviour shows a continuous distribution 
rather than obvious clustering, forcibly dividing may lead to misleading conclusions. 
Secondly, the algorithm assumes that clusters are distributed in a convex shape (such as 
spherical or hypersphere), and has weak ability to capture non-convex structures (such as 
circular distribution or data with uneven density). If there are multimodal features in 
student behaviour data (such as the simultaneous existence of ‘continuous learning’ and 
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‘intermittent explosion’ patterns), traditional K-means may erroneously merge complex 
patterns. Furthermore, algorithms are highly sensitive to noise and outliers, and a single 
extreme data point (such as abnormal login records caused by system failures) may 
significantly distort the position of cluster centres, thereby affecting the overall clustering 
quality. Finally, K-means uses Euclidean distance as a similarity measure, which implies 
the assumption that all feature dimensions have equal importance. When analysing 
student behaviour data containing multidimensional heterogeneous features (such as time 
intervals, click frequency and text interaction length), if not standardised, high variance 
features will dominate distance calculation, leading to clustering results biased towards 
specific dimensions. 

In response to the above issues, the academic community has proposed various 
improvement plans. The K-means++ algorithm optimises the initial centre selection 
strategy to keep the initial points as far away from each other as possible, thereby 
reducing dependence on random initialisation. In educational data experiments, it can 
improve clustering stability by about 30%. For non-convex data distributions, spectral 
clustering and other methods achieve more flexible partitioning by constructing data 
similarity graph structures, but the computational complexity significantly increases. To 
enhance noise robustness, researchers propose fuzzy C-means clustering, which allows 
data points to belong to multiple clusters in a probabilistic form. This has potential value 
for characterising mixed patterns in student behaviour, such as ‘semi-active learning’. In 
addition, combining dimensionality reduction techniques such as principal component 
analysis or t-SNE for data preprocessing can alleviate the problem of high-dimensional 
sparsity. For example, when analysing complex datasets containing hundreds of 
behavioural indicators (such as video pause times and forum reply depth), the 
visualisation results after dimensionality reduction can help educators more intuitively 
verify the rationality of clustering. 

In the specific practice of educational data mining, the application of K-means needs 
to be closely integrated with the characteristics of the scenario. For example, when 
identifying high-risk student groups, researchers often combine clustering results with 
supervised learning models (such as logistic regression): first, behaviour patterns are 
divided through K-means, and then differentiated prediction models are constructed for 
different groups. This hierarchical modelling strategy can improve prediction accuracy 
and avoid bias in the ‘one size fits all’ intervention strategy. It is worth noting that the 
behaviour clustering generated by K-means must be explained and validated by 
educational theory. For example, if a certain group of students exhibits the characteristic 
of ‘concentrated access to review materials before exams’, it is necessary to further 
combine cognitive science theory to determine whether this belongs to an effective 
learning strategy, rather than simply classifying it as a ‘rush type’ group. This 
interdisciplinary theoretical integration is an important prerequisite for the 
implementation of machine learning algorithms in the field of education (Fahim, 2021). 

The K-means algorithm has become a fundamental tool for analysing student learning 
behaviour due to its simplicity and efficiency, but its theoretical assumptions and 
application conditions require researchers to have a deep understanding. In the context  
of educational informatisation, algorithm selection should not only pursue the 
progressiveness of technology, but should be based on the essential characteristics of 
educational problems, and make technology truly serve the core goal of teaching 
optimisation through reasonable pre-processing, improvement strategies and result 
interpretation. In the future, as the complexity of educational data continues to increase, 
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adaptive clustering methods that combine domain knowledge will become a key direction 
to overcome existing limitations. 

2.2 Random forest 

The random forest algorithm, as a representative of ensemble learning methods, achieves 
higher generalisation ability and robustness by integrating the prediction results of 
multiple decision trees (Hu and Szymczak, 2023). It is particularly suitable for  
high-dimensional, nonlinear, and noisy data scenarios commonly used in student learning 
behaviour analysis. The core idea is to construct a large number of differentiated  
decision trees and reduce the overfitting risk of individual trees through collective 
decision-making mechanisms, thereby demonstrating unique advantages in tasks such as 
academic performance prediction and learning risk identification. The running process of 
the algorithm can be summarised into two key randomness steps: firstly, using bootstrap 
sampling to selectively extract multiple subsets of samples from the original data, 
providing differentiated training data for each tree; secondly, during the node splitting 
process of each tree, randomly select some features for the selection of partitioning 
conditions. This dual randomness mechanism effectively increases the diversity between 
base learners, enabling the model to maintain high prediction accuracy while having 
stronger tolerance for outliers and data disturbances. 

In educational data mining, the core advantages of random forests are reflected in 
three aspects. Firstly, the algorithm can automatically handle the complex interaction 
relationships between high-dimensional features. For example, when analysing dozens of 
behavioural indicators including online learning duration, forum interaction frequency, 
and on-time submission of assignments, a single decision tree may fail due to ignoring 
feature combination effects, while random forests can capture nonlinear patterns such as 
the synergistic effect of nighttime learning duration and video repeat viewing frequency 
by dividing the feature space from multiple perspectives through multiple trees (Sun  
et al., 2024). Secondly, the built-in feature importance assessment function of the 
algorithm provides crucial support for educational interpretability. By calculating the 
average purity improvement of each feature when all tree nodes in the forest split, 
researchers can quantify the contribution of different behavioural features to academic 
performance, thereby identifying factors such as ‘delayed response to classroom 
questioning’ or ‘depth of access to preview materials’ that are difficult to discover 
through traditional research. Thirdly, random forests have natural fault tolerance for 
missing data, which is particularly important for common issues of incomplete data 
collection in educational settings, such as sensor omission of classroom participation 
behaviour. The algorithm uses surrogate splits mechanism to approximately compensate 
for missing values by utilising information from other relevant features, avoiding model 
performance degradation caused by insufficient data quality. 

However, the theoretical limitations of random forests also need to be approached 
with caution. Firstly, the algorithm sacrifices some interpretability while pursuing 
prediction accuracy (Iranzad and Liu, 2024). Although feature importance ranking can 
provide a global explanation, the decision-making logic for specific prediction results is 
still hidden in the complex voting mechanism of hundreds of trees, which poses a 
challenge for the development of educational intervention strategies that require causal 
reasoning. For example, when the model determines that a student is at risk of dropping 
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out, teachers may find it difficult to trace which specific behavioural sequences triggered 
the prediction, which may affect the accuracy of intervention measures. Secondly, 
random forests are more sensitive to high cardinality category features such as student 
IDs or school codes. If not properly encoded, the model’s performance may be reduced 
due to feature splitting that prioritises these irrelevant variables. In addition, although the 
default parameters of the algorithm usually perform robustly, when the distribution of 
educational data is extremely uneven (such as the proportion of high-risk students being 
less than 5%), it is necessary to adjust the category weights or adopt a stratified sampling 
strategy, otherwise the model may lean towards the majority class, leading to recognition 
failure of key minority groups (Salman et al., 2024). 

In response to the above issues, researchers have proposed various improvement 
strategies. For example, by integrating post hoc interpretation methods such as Shapley 
value, the contribution of each feature to a single prediction result can be quantified, 
providing teachers with a visual basis for ‘why the student is marked as high-risk’. In 
educational settings, this explanatory enhancement enables random forests to not only 
predict academic performance, but also assist educators in understanding the dynamic 
relationship between behavioural patterns and learning outcomes. In addition, for  
time-series behaviour data, random forests can be combined with sequence models such 
as LSTM. The former captures the interaction effects between static features, while the 
latter extracts long-term dependencies of behaviour sequences, thereby achieving a recall 
rate of over 90% in dropout prediction tasks. It is worth noting that feature engineering in 
the field of education requires deep integration of domain knowledge, such as converting 
raw clickstream data into derived indicators such as ‘learning rhythm stability’ or 
‘knowledge module mastery’, which can significantly enhance the educational 
significance of the model. 

In educational practice, random forests have been successfully applied in multiple key 
scenarios. For example, in MOOCs platforms, by analysing the characteristics of 
learners’ video viewing interruption frequency, test retry frequency, and forum sentiment 
polarity, the random forest model can predict course dropout behaviour four weeks in 
advance, with an accuracy improvement of 23% compared to logistic regression; in the 
smart classroom scenario, by combining eye tracking data with electronic textbook 
interaction logs, the algorithm can identify two learning modes: ‘surface participation’ 
(frequent page flipping but scattered gaze) and ‘deep engagement’ (staying in difficult 
content for a long time), providing a basis for personalised feedback. These applications 
demonstrate that random forests are not only a technical tool, but also a bridge 
connecting data science and educational cognitive theory. The key to its success lies in 
whether researchers can organically integrate algorithm mechanisms with educational 
laws. 

2.3 Long short-term memory network 

LSTM, as an important variant of recurrent neural networks (RNNs), is designed to solve 
the problem of gradient vanishing or exploding in traditional RNNs when processing long 
sequence data. It achieves precise modelling of long-term dependencies in time series by 
introducing gating mechanisms. In the analysis of student learning behaviour, LSTM has 
become a core tool for analysing the evolution of learning behaviour, such as fluctuations 
in learning engagement and knowledge mastery trajectories, due to its excellent ability to 
capture temporal dynamic features. Unlike static machine learning models, LSTM 
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regards learning behaviour as a continuous process and can infer future trends from 
historical behaviour sequences, providing a temporal dimension of decision-making basis 
for educational interventions (Al-Selwi et al., 2024). 

The core innovation of LSTM lies in its unique cellular state structure and gating 
units. The cellular state serves as a ‘memory channel’ that runs through the entire time 
series, allowing information to be transmitted persistently between different time steps. 
This mechanism achieves fine-grained regulation through three key gating units (forget 
gate, input gate, output gate): the forget gate determines which historical information in 
the cell state needs to be discarded (Zha et al., 2022). For example, when a student does 
not log in to the learning platform for several consecutive days, the model can 
automatically weaken the influence weight of early activity behaviour; the input gate is 
responsible for filtering new information at the current time step and updating the cell 
state, such as identifying students’ sudden increase in video review behaviour after a test 
failure; the output gate controls the hidden state output at the current time and combines 
it with the accumulated information in the cell state to generate predictions for the next 
time step. This dynamic adjustment mechanism enables LSTM to adaptively capture key 
events in learning behaviour (such as exam sprints and persistent slackness) and their 
subsequent effects, breaking through the traditional time series model’s dependence on 
fixed time windows (Landi et al., 2021). 

In educational data modelling, the core advantages of LSTM are reflected in  
three aspects. Firstly, its inclusiveness towards variable length sequences enables flexible 
handling of irregular sampling data commonly found in educational settings. For 
example, students’ online learning activities may exhibit sparsity (such as no records 
during holidays) or suddenness (such as centralised access to resources at the end of the 
semester), and LSTM can still effectively extract behavioural patterns by ignoring invalid 
time steps or interpolation processing. Secondly, the algorithm’s ability to model  
long-term dependencies can reveal cross-cycle learning patterns (Bhandari et al., 2022). 
For example, by analysing the entire semester’s homework submission time series, 
LSTM can identify the behavioural inertia of ‘early procrastination and later remediation’ 
and predict its nonlinear impact on final grades. Furthermore, the robustness of LSTM to 
noise makes it suitable for low-quality data in educational settings. The classroom 
participation data collected by sensors often contains random fluctuations (such as device 
false triggering), and LSTM can suppress short-term noise through a gating filtering 
mechanism, focusing on extracting real behavioural trends. 

However, the theoretical limitations of LSTM also need to be addressed in a targeted 
manner. First, the high complexity of the model leads to a significant increase in training 
costs. When processing fine-grained behaviour logs that can last for months, such as 
clickstreams per minute, LSTM may require hours or even days of training time, posing a 
challenge for institutions with limited educational resources. Secondly, the model is 
extremely sensitive to super parameters (such as hidden layer dimension and time 
window length). For example, when analysing the behaviour of MOOC learners, if the 
time window is set too short (such as divided by hours), the periodic pattern of the 
‘weekly learning plan’ may be ignored; if the setting is too long (such as monthly 
division), it will be difficult to capture the temporary mode of ‘high-intensity learning in 
a single day’. Thirdly, the black box nature of LSTM makes its decision logic difficult to 
explain intuitively (Wen and Li, 2023). 



   

 

   

   
 

   

   

 

   

   56 Y. Wang and X. Sun    
 

    
 
 

   

   
 

   

   

 

   

       
 

In response to the above issues, various improvement plans have been proposed in the 
field of educational data mining. At the level of model structure, Bi LSTM enhances the 
integrity of behaviour pattern recognition by simultaneously considering historical and 
future contextual information. For example, when analysing classroom interaction 
sequences, it can trace the impact of previous knowledge gaps and predict the possibility 
of subsequent learning strategy adjustments. In terms of interpretability, the introduction 
of attention mechanism allows the model to annotate key time steps (such as identifying 
‘regular review in the two weeks before exams’ as the main basis for predicting academic 
success), and helps teachers understand the model’s decision logic through heatmap 
visualisation. In addition, transfer learning techniques are used to alleviate the problem  
of data scarcity: by pre-training LSTM models using public education datasets and  
fine-tuning them to adapt to the behavioural data features of specific schools, high 
prediction accuracy can be maintained even with a small amount of labelled data. 

In educational practice, LSTM has demonstrated unique application value. For 
example, in adaptive learning systems, LSTM dynamically predicts the evolution 
trajectory of students’ knowledge states by analysing their historical answer sequences, 
and recommends personalised learning paths – if the model detects that a student 
repeatedly watches the same knowledge point video in the algebra chapter, it 
automatically pushes basic concept reinforcement exercises. In academic risk warning, 
LSTM can integrate multi semester behavioural data (such as attendance rate, homework 
score fluctuations, and forum participation), identify the ‘gradual learning motivation 
decline’ mode, and issue warnings 3–4 weeks earlier than traditional methods to buy 
intervention time for teachers. It is worth noting that the application of LSTM needs to be 
deeply integrated with educational cognitive theory. For example, the ‘intermittent  
high-intensity learning’ behaviour identified by the model needs to be judged based on 
metacognitive theory to determine whether it belongs to an effective self-regulation 
strategy or an inefficient temporary memory behaviour, in order to avoid one-sided 
conclusions driven by technology. The bidirectional verification of ‘data-driven’ and 
‘theory driven’ is the key to the rooting of LSTM in the field of education. 

3 Student learning behaviour analysis algorithm 

This article proposes a student learning behaviour analysis method based on machine 
learning and data mining techniques, aiming to reveal learning behaviour patterns and 
their intrinsic correlation with academic performance through multidimensional data 
modelling. Firstly, integrate multiple sources of data (including online learning platform 
logs, classroom interaction records, homework and assessment data, etc.) to construct a 
learning behaviour indicator system that covers features such as time series, behaviour 
frequency and content interaction. Secondly, the K-means algorithm is used to group the 
student population and identify differentiated learning behaviour patterns; Combining the 
random forest classification model to predict students’ academic performance, and 
extracting key influencing factors through feature importance analysis. Further introduce 
LSTM to explore the dynamic evolution of learning behaviour. The method framework is 
shown in Figure 1. 
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Figure 1 Method framework diagram 
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3.1 Data collection and preprocessing 

The data sources of this study include online learning platform logs, classroom IoT 
sensors (including voice interaction frequency, seat distribution heatmap), and 
standardised evaluation system records, forming a cross-platform, multimodal 
heterogeneous dataset. To address the noise and incompleteness in the raw data, a phased 
preprocessing strategy is adopted: firstly, the timestamps of different devices are unified 
through timing alignment (synchronised with millisecond level accuracy), eliminating the 
behaviour sequence misalignment caused by clock bias; secondly, dynamic context aware 
filling is applied to missing values (Augusto, 2022). For example, for a student’s 
unrecorded learning duration on a certain day, interpolation is performed by combining 
the average learning pattern of the previous and subsequent three days with the 
distribution of behaviour within the same group. The equation is: 

( )
3 1
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1 1

3

N i
t t t t

i
x x x x

N
 



    
   (1) 

where N is the number of students in the same cluster to avoid introducing bias due to 
individual outliers. Finally, numerical features such as click counts and resource access 
duration are segmented and normalised, with independent scaling intervals set for 
different behaviour types. For example, video viewing duration is mapped to the [0, 1] 
interval, while forum posting length is compressed logarithmically: 
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This method can effectively alleviate the interference of long tail distribution on model 
training. 

3.2 Multi-dimensional feature construction 

Based on self-regulated learning theory, extract educationally interpretable features from 
raw behaviour logs: 

 Time allocation mode: Calculate the discrete cosine transform coefficients of the 
learning period to capture the daily and weekly cycle patterns (Nawaz et al., 2023). 
The equation is: 

1
cos ( 0.5) ( 0, 1, , )

T
k t

t

π
C x t k k K

T

    
    (3) 

Retain the first five low-frequency components to represent the main sleep rhythm. 

 Cognitive engagement depth: Based on resource types (video/text/test) and 
interactive behaviours (pause/replay/annotation), define weighted scores: 

  (1 )i r r r
r R

d t Entropy a


          (4) 

where r is the weight of resource type (video = 0.7, text = 0.3),  = 0.6 balances 
duration and behavioural diversity, and quantifies the complexity of the operation 
sequence. 

3.3 Cluster analysis of student behaviour 

The improved K-means++ algorithm is used for group clustering, and its core innovation 
lies in introducing educational semantic constraints: in the initial centre selection stage, 
priority is given to selecting student samples with significant differences in performance 
at key teaching nodes (one week before the scheduled mid-term exam) (Li and Wang, 
2022). The objective function minimises intra cluster variance while maximising  
cross-cluster behaviour pattern discrimination: 

  2

1
||

i

K
i i global

i x C
J x μ λ KL p p

 
      (5) 

The KL divergence constrains the difference between the behaviour distribution pi within 
the cluster and the global distribution pglobal, avoiding the generation of trivial subgroups 
without educational significance. The optimal number of clusters K is determined through 
improved contour stability analysis: repeat clustering on the bootstrap resampled dataset 
and select the K value that minimises the variance of contour coefficients. 

3.4 Academic performance classification model 

Constructing a hierarchical classification framework for hybrid gradient boosting tree 
(LightGBM) and random forest: firstly, LightGBM is used to screen high discriminative 
features (with a feature gain threshold > 0.01), and then random forest is trained on a 
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simplified feature space. The splitting criterion for a single decision tree adopts the 
information gain ratio: 

InfoGain( , )
GainRation( , )

SplitInfo( )

D A
D A

D
  (6) 
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| | | |
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| | | |
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   alleviates multi-value feature bias. During 

the model integration phase, dynamic weighted voting is used to adjust the weights of the 
base classifiers based on the performance of the validation set: 
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where η is the temperature parameter, which controls the sharpness of the weight 
distribution. 

3.5 Behavioural time series modelling 

Design a multi-scale LSTM architecture to parallel process time series of different 
granularities: coarse-grained branches extract long-term trends with a weekly window, 
while fine-grained branches analyse intraday behavioural fluctuations (Dang et al., 2023). 
Hidden state updates introduce course event attention mechanism: 

  1;t a t csoftmax W h e  (8) 

 1,t t t th LSTM x h    (9) 

where ec is the embedding vector of course events (such as exam and assignment 
deadlines), and   represents element wise multiplication. This design explicitly models 
the impact of teaching calendars on learning behaviour. 

3.6 Multi-model fusion strategy 

Propose a two-stage fusion framework: in the first stage, cluster labels are used as static 
features to input into the classification model; in the second stage, the classification 
model is dynamically integrated with the output of LSTM through a gate controlled 
network: 

  ;g RF LSTMg σ W h h  (10) 

( 1 | ) ( )RF LSTMP y x g P i g P       (11) 

The gating weight g reflects the contribution ratio of static features and dynamic 
sequences, and can adapt to the behavioural characteristics of different student groups. 



   

 

   

   
 

   

   

 

   

   60 Y. Wang and X. Sun    
 

    
 
 

   

   
 

   

   

 

   

       
 

3.7 Interpretability analysis 

Quantify the contribution of each time step feature to the prediction results based on the 
improved time aware SHAP value: 

( )
 ,  

t τt τ
i t iτ t T

γ 
 

    (12) 

The attenuation factor gives higher weight to recent behaviour while retaining the 
influence of long-term patterns (Stüber et al., 2023). By visualising the contribution 
heatmap, locate high-risk periods (such as a sudden drop in nighttime learning duration 
for three consecutive days). 

4 Experimental results and analysis 

4.1 Dataset and experimental environment 

The experiment uses a fusion of multi-source public datasets and real educational 
scenario data for verification: 

 EdNet-KT1: includes learning behaviour logs of 98,000 students on a Korean online 
education platform for two consecutive years, covering 120 million records such as 
video watching, problem-solving, and redoing mistakes. 

 Smart classroom local dataset: Collected from IoT data of three grades in a key 
middle school in China, including classroom voice interaction frequency (extracted 
by VAD technology), seat heat map (based on UWB positioning), and electronic 
textbook annotation behaviour, involving a total of 1,245 students and an average 
daily data volume of 2.7 GB. 

 MOOC assessment data: 23,589 learners from six STEM courses on the Coursera 
platform, including weekly test scores, forum sentiment polarity, and video jumping 
behaviour. 

The experimental hardware configuration is NVIDIA A100 GPU cluster. All experiments 
are repeated five times and the mean is taken to eliminate the influence of randomness. 

4.2 Comparative experiment on academic performance prediction 

Figure 2 show the comparison of ROC curves between our model and baseline method on 
the EdNet dataset. When FPR = 0.2, our model shows improvement compared to both 
single random forest and LSTM. Further analysis of Table 1 shows that our method leads 
significantly in both F1 score and AUC. It is worth noting that in MOOCs data, the 
model’s prediction accuracy for course dropout is much higher than traditional logistic 
regression (Recall = 0.62), mainly due to the ability of temporal features to capture the 
decay of learning motivation. 
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Figure 2 ROC curve comparison (see online version for colours) 

 

Table 1 Comparative experimental results 

Method Accuracy F1 AUC 

Logistic regression 0.863 0.843 0.889 

XGBoost 0.882 0.882 0.891 

Ours 0.921 0.931 0.942 

4.3 Visualisation of student behaviour clustering 

Figure 3 shows the t-SNE dimensionality reduction visualisation results of the smart 
classroom dataset. The education constrained K-means++ algorithm proposed in this 
paper divides students into four groups: 

 Deep participation type (blue): High frequency classroom interaction (4.2 daily 
speeches) and stable learning pace (time allocation dispersion coefficient < 0.3). 

 Surface active type (green): High seat heatmap density but low cognitive 
engagement (annotation behaviour only accounts for 12% of resource visits). 

 Intermittent focus type (orange): Presents a periodic pattern of ‘concentrated learning 
long-term stagnation’ (with a cycle length of about two weeks). 

 Potential risk type (red): Sudden drop in classroom participation (weekly average 
decline rate > 15%) and significant fluctuation in assessment scores (variance  
> 25 points). 
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Figure 3 T-SNE clustering visualisation (see online version for colours) 

 

Table 2 shows that the contour coefficient of our clustering method is higher than that of 
traditional K-means and spectral clustering, and the Calinski-Harabasz index indicates a 
higher degree of inter cluster separation. 

Table 2 Comparison of clustering performance 

Method Contour coefficient Calinski-Harabasz 

K-means 0.52 281 

Spectral clustering 0.58 305 

Ours 0.61 342 

4.4 Learning behaviour temporal modelling 

Figure 4 shows the comparison between the LSTM prediction curve and actual behaviour 
of a high-risk student in the MOOCs dataset. The horizontal axis represents the number 
of course weeks, and the vertical axis represents the standardised learning engagement 
index. The model successfully captured the key turning point of week 5, which 
corresponds to a decrease in video viewing completion rate and forum silence in actual 
behaviour. 
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Figure 4 LSTM time series prediction (see online version for colours) 

 

This experiment validated the comprehensive effectiveness and educational practical 
value of the proposed method through multiple datasets. The hierarchical model that 
integrates random forest and LSTM exhibits significant advantages in academic 
performance prediction tasks. This result validates the complementarity between static 
behavioural features and dynamic temporal patterns – for example, in MOOC scenarios, 
the combination of random forest’s capture of ‘resource access diversity’ and LSTM’s 
detection of ‘learning rhythm breakpoints’ enables the model to identify learners who are 
superficially active but substantially inefficient earlier (with a warning lead time of  
3.2 weeks). 

The clustering results of student behaviour reveal the necessity of optimising 
educational constraints: the K-means++ algorithm, which introduces teaching event 
priors, generates four groups (deep participation type, surface activity type, intermittent 
focus type, potential risk type) in smart classroom data with 83% consistency with 
teacher qualitative evaluation, which is 21 percentage points higher than unconstrained 
clustering. Among them, the recall rate of identifying potential risk groups is as high as 
89.2%, and their behavioural characteristics provide clear basis for teachers to formulate 
graded intervention strategies. 

Time series modelling experiments have shown that the multi-scale LSTM 
architecture can effectively capture the periodic patterns and sudden fluctuations of 
learning behaviour. In MOOCs data, the detection error of the inflection point of learning 
engagement by the model is reduced compared to ARIMA, and the coverage of the 
predicted confidence interval is significantly better than the benchmark method. More 
importantly, through the analysis of time perceived SHAP values, it was found that the 
accumulation of academic risks often follows a three-stage pattern of ‘early warning 
signals (such as a sudden increase in video skipping rate in the third week) → mid-term 
behavioural inertia (forum silence in the fifth week) → later grade collapse’, which  
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is highly consistent with the ‘learning motivation decline theory’ in educational 
psychology. 

However, the research still has the following limitations: firstly, the limited size and 
course diversity of the local dataset may affect the model’s generalisation ability across 
different learning stages; Secondly, the computational cost of real-time behaviour 
analysis is relatively high, and further optimisation is needed in large-scale online 
education platforms; Finally, although the interpretability of the model is improved 
through SHAP values, its formal mapping with educational theory still requires expert 
manual intervention. Future work will explore feature semantic association methods 
based on knowledge maps, and develop lightweight edge computing architecture to 
support real-time teaching decisions. 

This experiment systematically verified the feasibility of machine learning and data 
mining techniques in educational behaviour analysis from four dimensions: prediction 
accuracy, pattern discovery, temporal modelling and educational operability. 

5 Conclusions 

This study proposes a multidimensional analysis method that integrates machine learning 
and data mining techniques to address the complexity and dynamic challenges of student 
learning behaviour data in the context of educational informatisation. The method 
achieves full process innovation from data collection, feature modelling to behaviour 
pattern mining. By integrating online learning platform logs, classroom IoT sensors, and 
multimodal assessment data, an educational interpretable feature system covering the 
four dimensions of ‘time frequency content space’ has been constructed, breaking 
through the limitations of traditional research relying on a single data source. At the 
methodological level, we innovatively introduced educational semantic constraints into 
the clustering process, designed a multi-scale LSTM architecture and a dynamic gating 
fusion mechanism, effectively balancing the complementarity between static behavioural 
features and dynamic temporal patterns. At the same time, we quantified the timeliness of 
feature contribution through time aware SHAP values, providing actionable temporal 
window guidance for educational interventions. The experimental results show that the 
proposed method significantly outperforms the benchmark model in key indicators such 
as academic performance prediction and identification of high-risk students, verifying the 
educational effectiveness and practical value of the technical solution. 

The core contribution of this study lies in the construction of a closed-loop analysis 
framework of ‘data model education’. On the one hand, through multi-source 
heterogeneous data fusion and mixed model design, it solves the technical problems of 
long tail distribution, temporal evolution, and noise interference that are commonly 
present in educational scenarios; on the other hand, deeply embedding educational 
theories such as self-regulated learning and cognitive load theory into feature engineering 
and outcome interpretation to ensure the inherent consistency between technological 
discovery and teaching laws. For example, the key factors identified by the model, such 
as ‘stability during nighttime learning periods’ and ‘delayed classroom response’, not 
only have statistical significance, but also align with the attention allocation mechanism 
in metacognitive theory, providing a dual validation basis for data-driven educational 
decision-making. 
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