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Abstract: The implementation of the dual carbon policy has introduced increased complexity in 
power system control and operation, owing to the interdependent nature of diverse generation 
units. To resolve the limitation in current research where power generation costs and 
environmental benefits cannot be optimised concurrently, this article first offers a multi-strategy 
adaptive particle swarm optimisation (PSO) approach (MAPSO) in light of a reward mechanism. 
Then, a dual-objective optimisation framework was established, simultaneously addressing 
power generation costs and gaseous pollutant emissions, while satisfying all necessary system 
constraints. Finally, by integrating external archiving technology, a multi-objective MAPSO 
(MOMAPSO) was proposed to compute dominated solutions for multiple objectives, thereby 
achieving overall operational optimisation. Simulation outcome indicate that the offered 
algorithm reduces fuel costs for power generation by at least $294.6863/h and reduces pollutant 
emissions by at least 0.0101 t/h, achieving both economic and environmental benefits. 

Keywords: power system control; operation algorithm optimisation; particle swarm optimisation 
algorithm; reward mechanism; external archiving technology. 
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1 Introduction 
As the global energy transition accelerates and the dual 
carbon objectives advance progressively, the power system 
is undergoing a historic transformation from a traditional 
fossil fuel-dominated vertical centralised architecture to a 
new power system dominated by new energy sources 
(Ardeshiri et al., 2021). The operation and control of power 
systems face two challenges: on the one hand, they must 
meet the stringent requirements of high-proportion 
renewable energy consumption for dispatch flexibility; on 
the other hand, they must cope with the new challenges to 
safety and stability posed by dynamic changes in grid 
topology. Traditional control algorithms based on 
mathematical modelling (such as optimal power flow and 
model predictive control) are constrained by parameter 
uncertainty, computational complexity, and real-time 
bottlenecks, making it difficult to efficiently handle  
multi-objective optimisation problems in new power 
systems (Ahmad et al., 2021). Heuristic optimisation 
algorithms in artificial intelligence (AI) technology provide 
a revolutionary approach to solving the above challenges. 
By simulating natural phenomena, they offer solutions with 
strong global search capabilities and high robustness for 

complex optimisation problems in power systems (Özlü  
et al., 2021). 

Bogdan et al. (2007) fully considered the characteristics 
of air pollutants and carbon emissions from cement plants 
and their demand response capabilities in the control 
optimisation of power systems with wind power, achieving 
green and low-carbon operation of power systems through 
source-load coordination. Lotfy et al. (2017) considered 
factors such as system rotation reserves and network losses, 
and established a multi-objective dynamic environmental 
economic control optimisation model for wind-solar hybrid 
power systems. Panda and Das (2021) proposed the equal 
incremental rate method, which does not consider the 
constraints of each unit when optimising the output power 
of the units, resulting in the obtained unit output being too 
different from the actual production and unable to meet the 
actual operation requirements. Subsequently, people used 
mathematical methods to solve such problems, such as the 
gradient method (Souza et al., 2022) and Newton’s method 
(Li et al., 2020), but these methods all have certain 
shortcomings. Heuristic algorithms, as an important branch 
of AI technology (Sangaiah et al., 2023), thereby improving 
the chance of discovering the globally optimal solution. 
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Mostafa et al. (2012) offered a novel combined  
AI-based optimisation technique based on particle swarm 
optimisation (PSO), in light of an unified control and 
performance optimisation approach, to minimise power 
consumption. Hasanien (2018) addressed the growing 
impact of photovoltaic uncertainty on power grids and 
proposed an economic control method for power systems 
that considers demand response based on the whale 
optimisation algorithm (WOA). Al‐Shamma’a and 
Addoweesh (2014) proposed a decomposition-based  
multi-objective genetic algorithm (GA). Bai et al. (2021) 
proposed a Gaussian Cauchy difference evolution approach 
to address the economic environmental control optimisation 
issue in power systems, improving the algorithm in terms of 
solution accuracy and stability. Torkan et al. (2022) 
considered valve point effects, power transmission losses, 
and the feasible operating region of the system, and 
proposed a new GA based on collective information to solve 
the optimal control problem of multi-fuel cogeneration. 

In addition to constraining the economic costs of power 
operation, multiple constraints must also be set in light of 
the characteristics in the power system. Karmellos and 
Mavrotas (2019) established a new multi-objective 
optimisation model. Pure thermal units, pure fire units, and 
cogeneration units were taken as the objectives, and the 
valve point effect of fire units was incorporated into the 
objective function. Mayer et al. (2020) used a Monte Carlo 
simulation GA to address a multi-objective optimisation 
model for power control. This method can more accurately 
simulate the actual operation of microgrid systems, while 
the optimisation search capabilities of GA also make the 
optimisation results more accurate and reliable. Hassan  
et al. (2024) used the white shark optimisation (WSO) 
algorithm to solve the power grid control model, taking into 
account the output characteristics of each power generation 
unit and the optimisation model. Parvin et al. (2023)  
offered a multi-objective PSO to address multi-objective 
improvement issues in power system control, which can 
effectively reduce system operating costs. 

Most of the above studies establish multi-objective 
functions based on economic costs or operating costs, with 
few studies considering environmental benefits in power 
system operation control. Therefore, this paper optimises 
the power system control operation algorithm based on an 
improved PSO algorithm to reduce power generation costs 
and pollutant emissions. The innovative work of this 
algorithm can be summarised in the following four aspects. 

1 To address the issue of traditional PSO easily falling 
into local optima, the multi-strategy adaptive particle 
swarm optimisation (MAPSO) algorithm is proposed, 
which employs a fitness-distance ratio-based particle 
displacement method to enhance population diversity. 
For the inertial weight and learning factor of particles, 
we propose a variation strategy based on a reward 
mechanism, which allows parameters to adaptively 
change during iteration to accelerate convergence 
speed. 

2 The primary optimisation aims of the algorithm are 
centred around achieving the lowest possible aggregate 
power generation cost and the utmost reduction in 
pollutant emissions, for which a multi-objective 
function is established. To address these objectives, 
constraints for example system power balance, heat 
balance, and output capacity limits are proposed. 

3 By integrating external archive technology, 
MOMAPSO was proposed to evaluate the density 
distribution of non-dominated solutions in the archive. 
Subsequently, select the Pareto-optimal and extreme 
solutions with highest crowding distance from the 
external archive to compose the global optimal set. 
With respect to each target particle, arbitrarily retrieve a 
solution from the updated global optimal solution set, 
and utilise it as the optimal solution for achieving 
compromise. 

4 Simulation results demonstrate MOMAPSO’s enhanced 
solution space exploration capability, achieving 
significantly broader coverage compared to baseline 
methods, quickly finding a set of optimal solutions with 
the best possible distribution. Applying this algorithm 
to power system control operations, comparative 
analysis shows that the algorithm can effectively 
balance power generation costs and environmental 
benefits, demonstrating high efficiency and robustness. 

2 Relevant technologies 
2.1 Power system control theory 
The power control system is the core technology system that 
ensures the secure, stable, and cost-effective power system 
operation. It is mainly used for monitoring, regulating, and 
improving the entire process of power generation, 
distribution, and consumption. In the context of the 
extensive integration of renewable energy into large-scale 
power grids and the advancement of smart grid 
technologies, modern power control systems are evolving 
towards intelligence, adaptability, and high reliability. The 
power system has functions such as power generation, 
transmission, and distribution (Mohammad-Alikhani et al., 
2022), mainly including distributed renewable energy, 
energy storage, and load. Traditional power grids only 
handle power supply, but new grids often need to handle 
heating and cooling too. The coupling of multiple energy 
flows, like electricity, heat, and cold, also makes it harder to 
optimise power system operations. 

Figure 1 is a typical power control system, including 
energy input, energy conversion and storage, and energy 
consumption. The power grid contains various forms of 
energy, including cold, heat, electricity, and gas. Under 
specific conditions, different forms of energy can be 
converted into one another, with the ultimate goal of 
meeting the three types of load demands within the power 
grid: cold, heat, and electricity. The main power supply 
equipment for power control systems includes generator 
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sets, switch control equipment, energy storage systems, etc. 
(Hossain et al., 2023). 

Figure 1 New power control system (see online version  
for colours) 
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2.2 PSO algorithm 
PSO locates the optimal solution by means of collaborative 
efforts and the exchange of information among the 
individuals within a group (Gad, 2022). In comparison to 
alternative classical heuristic optimisation approaches, the 
PSO algorithm has the advantages of being easy to operate 
and implement, while requiring only a few control  
variables to be adjusted. It is currently widely used in AI  
algorithm-related application fields. The optimisation 
process of a single particle in PSO is shown in Figure 2. 

Figure 2 The optimisation process of a single particle in PSO 
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The PSO commences with a collection of randomly 
initialised particles, and subsequently locates the optimal 
solution through an iterative process. At every epoch, 
particle tracking is performed to obtain the update based on 
the polarity value global polarity Gbest and individual 
polarity Pbest. After obtaining the individual and global 
extremes, the particle determines its position and velocity 
vectors again by using equation (1) and equation (2), 
respectively, and continues the next iteration until the 
optimal solution is found. 

( ) ( )1
i i 1 1 2 2
k k k k k k

i i iV ωV c r Pbest X c r Gbest X+ = + − + −  (1) 

1 1
i

k k k
i iX X V+ += +  (2) 

where i = 1,2,…,N, N are the total amount of particles in the 
group; Xi is the existing location of the particle; Vi is the 
particle’s existing velocity; Pbest and Gbest represent the 
personal extremum and the global extremum respectively, w 
is the inertia coefficient; r1 and r2 are arbitrary values; c1 
and c2 are studying elements. 

3 Multi-strategy adaptive particle swarm 
algorithm based on reward mechanism 

The traditional PSO approach only moves toward the 
individual’s historical optimal location and the global 
optimal location, which leads to a decrease in population 
diversity. Thus, this article suggests a MAPSO algorithm in 
light of a reward mechanism. The algorithm is based on a 
multi-sample learning mechanism of fitness distance ratio. 
By calculating the fitness distance ratio, particles that are 
farther from the current particle position but have similar 
fitness values can be found. These particles often represent 
another local extreme point, which effectively avoids falling 
into a local optimum while increasing the population’s 
diversity. 

First, standardise the current position of the particles as 
shown in equation (3), where md and sd are the mean and 
standard deviation in dimension d. Calculate the distance 
between other particles and the current particle using 
equation (4), and then calculate the fitness and distance ratio 
of the particles using equation (5), where Xi is the current 
position of the particle, d

iX  is the average value of the 
particle at the current position, Fi and Fj are the fitness of 
the particle, and RFDj is the distance ratio of the particle. 

d d
d i
i d

X m
X

s
−

=  (3) 

( )2

1

D
d d

j i j
d

DG X X
=

= −  (4) 

j i
j

j

F F
RFD

DG
−

=  (5) 

Find the minimum value in matrix RFDj, and use the 
particle corresponding to the minimum value as an 
additional sample RFDbest. Equation (6) gives the new 
particle velocity update equation, where )1(d

iV t +  is the 

latest particle position, ( )d
iV t  is the particle position at the 

previous moment, ω(t) is the current weight, pbest is the 
individual extreme value, gbest is the global extreme value, 
c1, c2, c3 are the learning factor, r1, r2, r3 are the random 
number. 
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In traditional PSO algorithms, inertia weights and learning 
factors are the key parameters that control the search 
behaviour of particles. The inertia weights mainly control 
the contribution of the particle’s current speed to the next 
move, balancing global exploration and local exploitation. 
The learning factor regulates the attraction of the particle 
toward the individual historical optimum and the group 
historical optimum, respectively. In summary, the reason 
why particles cannot jump out of the local optimum is 
mainly related to the fixed settings of inertia weights and 
learning factors. When a particle becomes stuck in a local 
optimum during an iteration, this prevents the particles from 
effectively escaping the local optimum. Therefore, a 
parameter self-adaptive change strategy based on a reward 
mechanism is proposed. First, the particles obtain the 
reward value for the next iteration based on the fitness value 
after iteration using equation (7). 

( )
( )

2, ( )

( ) 1, ( )
0,

i

i i

f X f gbest

reward t f X f pbest
otherwise

 <


= <



 (7) 

After obtaining the reward value, the particle obtains the 
adjustment parameters through equation (8), and then 
calculates the values of the inertial weight and learning 
factors to be employed in the subsequent iteration, which 
are determined based on the adjusted parameters. The 
formulas for the inertial weight and learning factor are 
shown in equation (9) and equation (10), respectively. 
Through this adaptive reward mechanism, each particle 
obtains parameters suitable for the current iteration process 
in each iteration, thereby improving the convergence, 
diversity, and ability of the population to escape local 
optima, where rewardi(t) is the reward function, f(X) is the 
fitness function, ACi(t) is the adjustment function, and 
f(gbest) is the fitness function for global extremes. 

( ) ( )
1( )

( )i f X f gbest
i

AC t
reward t e −=

+
 (8) 

( )( 1) ( 1)* ( ) 0.5i iω t ω t AC t+ = + +  (9) 
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( 1)
( 1)

( ) 0.7 ,
i
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i

i i

i

c t AC t f X f gbes
c t

t

c t AC t otherwise

+
+ + <

+ ∗ +
= 
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(10) 

The traditional PSO algorithm typically updates positions 
based on the previous iteration’s position and current 

velocity. This position update method lacks a process for 
conducting a detailed search around the global optimum 
solution. Therefore, a spiral search mechanism is introduced 
in the subsequent stages of the approach iteration to enhance 
local search capabilities. The new position update formula is 
as below. 

( ) ( ) ( ),
( 1)

( ) ( 1),

d d d
i

d
i

d d
i i

gbest t X t gbest t
X t rand Pf

X t V t otherwise

 − ⋅ +


+ = >


+ +

β
 (11) 

exp( ) cos(2 )bl πb= ⋅β  (12) 

1.3 tPf
maxgen

= −  (13) 

where b is an arbitrary value among –1 and 1, and Pf is the 
probability of performing a spiral search. To further avoid 
getting stuck in a local optimum, the number of times the 
global optimum solution has not been updated is 
represented by the number of stagnations stag. When the 
amount of stagnations achieves the set threshold, the global 
optimum solution gbest is perturbed using the Cauchy 
perturbation (Haklı and Uğuz, 2014). 

4 Establishment of objective functions and 
constraints for power system control 
optimisation 

4.1 Design of objective function for power system 
control optimisation 

The fundamental goal of power system operation is to 
satisfy electricity demand while minimising generation fuel 
expenditures, without considering the environmental 
impact. However, under the dual carbon context, energy 
conservation and emission mitigation have emerged as a 
pivotal control target within the domain of power systems, 
requiring the lowest possible generation costs while 
ensuring minimal harm to the environment. Therefore, to 
address the current research limitation of not being able to 
balance economic and environmental benefits in power 
system control, a multi-objective optimisation function for 
power system control is designed. Constraints related to 
economic and environmental factors are jointly optimised 
through a composite objective function. The multi-objective 
MAPSO developed in subsequent chapters is adopted to 
optimise the multi-objective problem. The flow of the 
suggested power system control optimisation algorithm is 
shown in Figure 3. 
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Figure 3 Multi-objective MAPSO-based power system control optimisation process (see online version for colours) 
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The process of optimising power system control constitutes 
a non-convex, nonlinear, high-dimensional, multi-objective 
optimisation issue that is subject to a multitude of 
constraints. Its objective function includes economic and 
environmental aspects, and there exists a mutually 
conflicting correlation between the power generation cost 
function and the pollutant emission function. In other 
words, when power generation costs are lowest, 
environmental pollution is more severe. Conversely, when 
pollutant emissions are lowest, economic benefits are low. 
Therefore, it is necessary to seek a compromise solution that 
maximises the benefits of both the economy and the 
environment. 

1 Power generation costs of generator sets. The principal 
aim of power dispatch is to achieve the minimisation of 
the aggregate generation cost across all  
power-producing units within the power system. The 
target function expression for the total generation cost 
of a quadratic function which is employed to represent 
the power generation units within the technical 
framework, as indicated in equation (14). This 
objective does not consider the valve point effect of the 
generator set, so the target function for the aggregate 
cost of power generation is shown in equation (15). 

( ){ }2 min

1

( ) sin
N

i i i i i i i i i
i

C P a P b P c d e P P
=

 = + + + −   (14) 

2

1

( )
N

i i i i i
i

C P a P b P c
=

= + +  (15) 

 

 where C(P) is the overall cost associated with the 
generation of electric power for the designated  
power-generation unit; min

iP  is the least allowable 
active power output magnitude for the ith power 
generating component; N is the total number of power 
generation units in the power generation system; ai, bi, 
ci, di, and ei are the electricity generation cost 
coefficients for the ith power generation unit; and Pi is 
the output power of the power generation unit. 

2 Pollutant gas emissions from generator sets. When 
generator sets burn fossil fuels, they produce large 
amounts of polluting gases that cause serious harm to 
the environment. The dispatch objective is to minimise 
the full emissions of pollutants from power plant 
generating units. The emissions of each pollutant are 
linked to the real power introduced into the system by 
each individual entity and are all independent functions. 
By combining the pollutant emission targets of each 
power generation unit, a comprehensive function 
relationship was established, as shown below. 

( ) ( )2 2

1

( ) 10 i i

N
θ P

i i i i i i
i

E P μ k P π P σ e−

=

 = + + +   (16) 

 where E(P) is the total pollutant gas emissions from 
conventional power generation units; μi, ki, πi, σi, θi is 
the pollutant gas emission coefficient of the ith 
conventional power generation unit. 
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4.2 Establishment of constraints related to power 
system control optimisation 

After establishing the objective functions for power 
generation costs and pollutant emissions, this paper 
proposes a set of constraints for these objective functions, 
including system power balance constraints, heat balance 
constraints, and output capacity limits, as shown below. 

The constraint on system-level power equilibrium and 
the constraint on thermodynamic equilibrium within the 
power control system are shown in equation (17) and 
equation (18), respectively, where PD is the total active 
power of the load, Oi is the output power of the generator 
set, HD is the total heat demand of the power control system, 
N is the amount of generator sets, Hi is the heat generation 
power of the generator set, and Ti is the heat generation 
power of the pure heat generator set. 

( )
1

N

D i i
i

P P O
=

= +  (17) 

( )
1

N

D i i
i

H H T
=

= +  (18) 

In power system control, every individual unit is subject to a 
distinct output capacity constraint. For generator units, due 
to their physical characteristics, the upper and lower 
constraints on output magnitude are presented as follows. 

min max
i iP P≤  (19) 

where i∈1,2,…,N and min
iP  are the minimum thresholds for 

the active power output capacity of the generator assembly; 
max

iP  represents the maximum threshold for the active 
power output capacity of the generator assembly. 

For power generation units, the output is first limited by 
upper and lower limits. Second, electrical power and 
thermal power are interrelated, with one type of output 
constraining the other, thus defining the operating range of 
the power generation unit. The upper and lower boundaries 
of thermal power output capacity are delineated in the 
manner set out below. 

( ) ( )min max
i i i iP H P H≤  (20) 

( ) ( )min max
i i i i iH P P H P≤ ≤  (21) 

where min ( )i iP H  constitutes the minimum threshold for the 
active power output capacity of the generator assembly; 

max ( )i iP H  functions as the maximum threshold for the 
active power output capacity of the generator assembly. 

5 Optimisation of operating algorithms in power 
system control based on multi-objective 
MAPSO method 

The multi-objective optimisation function established in the 
previous section reflects a fundamental difference between 
multi-objective and single-objective algorithms: rather than 
yielding a unique global optimal solution, the outcome 
transforms into a set of solutions. The optimisation results 
constitute a group of Pareto optimal solutions (Han et al., 
2023). Yet, in the offered MAPSO algorithm, the individual 
optimal solution and the global optimal solution are given 
equal weights, despite the fact that different search stages 
necessitate varying weight settings. This significant 
discrepancy leads to the algorithm’s failure to satisfy  
the search performance criteria at different stages. 
Consequently, the present paper puts forward a  
multi-objective optimisation algorithm, MOMAPSO, and 
applies it to power system control to determine the optimal 
solution which leads to the least fuel expenditure for power 
generation and the smallest amount of pollutant discharges 
as the objective function, thereby achieving overall 
operational optimisation. 

Currently, the main method for updating gbest in  
multi-objective PSO is to randomly select from an external 
archive that stores a predetermined number of  
Pareto-efficient solutions. Under this particular approach, 
each particle employs an uniform gbest parameter 
throughout every epoch step. In the event that gbest is 
identified as a local optimum, every particle will gravitate 
toward it, which will hamper the exploration of the solution 
space, i.e., getting stuck in a local optimum. 

External archiving technology is still used in 
MOMAPSO. However, gbest is not chosen arbitrarily from 
the comprehensive collection of the external archive. First, 
two extreme solutions were identified, corresponding to the 
minimal fuel expenditure associated with power generation 
and the minimum levels of pollutant gas discharges. 
Second, determine the crowding distance metric for every 
Pareto-optimal solution within the outer archive. Then, 
extract the top five Pareto – optimal solutions with the 
highest crowding distances and the two extreme solutions 
from the external archive. Meanwhile, aggregate them to 
form a new set of global optimal solutions for further 
processing. Finally, concerning every target particle, 
arbitrarily extract a solution from the novelly established set 
of global optimal solutions, and utilise this extracted 
solution as the optimal solution for the objective particle. 
This enhanced strategy diminishes the probability of gbest 
being equivalent to pbest, thereby guaranteeing that 
particles will not stay in a dormant state. 

With the escalation of the iteration count, the quantity of 
Pareto-optimal solutions within the external archive 
progressively rises. Once it surpasses the pre-specified 
value, certain solutions must be eliminated. In general, the 
slope is calculated as follows to delete redundant solutions. 
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where ki,i+1 represents the standardised gradient between the 
ith and (i+1)th Pareto-optimal solutions. ki–1,i+1 constitutes the 
standardised gradient between the (i–1)th and (i+1)th  
Pareto-optimal solutions. If ki,i+1 ≤ ki–1,i+1, delete the ith 
Pareto optimal solution. 

MOMAPSO is based on multi-objective technology, 
where particles in the population cooperate with each other 
to identify a collection of Pareto-optimal solutions with the 
best approximation, breadth, and uniformity. The power 
system control optimisation approach in light of the 
MOMAPSO method is as below. 

1 Derive the upper and lower bounds of the output data 
corresponding to each generator within a  
multi-generator power system, the coefficient data for 
the fuel consumption function, the coefficient data for 
the harmful gas emission function, the total system 
load, and the power generation cost data, and establish 
a mathematical optimisation model for power system 
control. 

2 Randomly initialise a population of N particles and 
their corresponding fitness values. For a multi-objective 
problem with N objectives, divide the population into N 
subpopulations, and initialise the speed, maximum 
iteration count, pbest and gbest of all particles, as well 
as Nmax for each subpopulation and the external archive 
set. 

3 Update the velocity of all particles in the population 
using equation (6). Compute the target of the novel 
particles’ fitness values, determine whether they can 
dominate the non-dominated solutions in the external 
archive, and if so, generate a reward learning factor; 
otherwise, generate a penalty learning factor. Update 
pbest, gbest, and Nmax separately. 

4 Update the external archive set, determine whether the 
external archive size exceeds the population size, and if 
so, use the crowding distance to update the external 
archive. Increase the number of iterations and ascertain 
whether the termination requirement of the algorithm is 
fulfilled. If so, proceed to step (5); otherwise, proceed 
to step (3). 

5 Output the Pareto optimal frontier. Use the determined 
final solution as instructions and send them through the 
automatic power generation control device to the 
automatic control and regulation devices of the relevant 
power plants or units to achieve control of the power 
generation capacity of the units, the algorithm ends. 

6 Experimental results and analyses 
This study validates the feasibility of the NSMFO-BERT 
optimisation method using the IEEE 118-bus power system. 
All experiments were conducted in MATLAB 2024a on a 
computer equipped with an AMD R7-8845HS 3.8GHz CPU 
and 32.0GB RAM. The decision variable in this research is 
the electrical power output from generating units, including 
thermal power, wind power, photovoltaic power, nuclear 
power, biomass power, tidal power, pumped storage power, 
and virtual power generation units. The coefficients 
pertaining to power generation cost and carbon emission are 
derived from relevant references (Güven and Samy, 2022). 
In the experiment, the maximum amount of epochs was 200, 
the population size was 100, and the learning rate was 0.01. 
The experimental parameters are set as shown in Table 1. 

Table 1 Experimental parameter setting 

Parameters 
Number 

of 
iterations 

Number of 
populations 

Learning 
rate 

Learning 
factor 

Inertia 
weight 

Value 200 100 0.01 0.5 0.5 

MOMAPSO was compared with five heuristic optimisation 
algorithms, namely GA, ACO, PSO, ABC, and WOA. The 
convergence curves of various approaches are shown in 
Figure 4. As can be seen from Figure 4, the convergence 
speed of GA is significantly lower than that of the other five 
algorithms, while MOMAPSO can converge to an optimal 
target value within a short iteration time. This is because 
MOMAPSO finds particles that are farther away from the 
current particle position but have similar fitness values by 
calculating the fitness distance ratio. This increases 
population diversity while effectively avoiding getting stuck 
in local optima. 

Figure 4 Convergence curves for different algorithms  
(see online version for colours) 
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Figure 5 Pareto curve for 03:00-04:00 (see online version  
for colours) 
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Figure 6 Pareto curve for 21:00-22:00 (see online version  
for colours) 
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This paper compares the proposed MOMAPSO method 
with the MCMOGA, MKWSO, and MTNPSO methods 
through experimental comparisons. The Pareto curves of 
different methods at 3:00–4:00 and 21:00–22:00 are shown 
in Figure 5 and Figure 6 respectively. The Pareto curves for 
these two time periods represent the overall optimisation 
results for the entire day. As shown in Figure 5, the Pareto 
curve obtained by MOMAPSO is generally located to the 
lower left of the curves obtained by other methods, 
indicating that the power generation costs and carbon 
emissions obtained by MOMAPSO are lower than those 
obtained by other comparison algorithms. This means that, 
with the same number of iterations, MOMAPSO can 
achieve lower power generation costs and carbon emissions, 
demonstrating its strong exploration capabilities and ability 
to effectively discover solution spaces that other algorithms 
have failed to explore. Figure 6 shows that MOMAPSO 
achieves significantly lower carbon emissions than other 
algorithms under the same power generation cost 
conditions. This indicates that MOMAPSO performs well in 
optimising carbon emission targets and can provide more 
environmentally beneficial solutions. 

The optimisation results of different methods are 
compared in Table 2. For the optimal extreme value 
solution of power generation fuel costs, MOMAPSO 
obtained a value of $27,675.9198/h, with related pollutant 
gas emissions of 24.0591 t/h. In contrast to the remaining 
three algorithms, the fuel cost for power generation was 
reduced by at least $294.6863/h, and the related pollutant 
gas emissions were reduced by at least 0.0101 t/h. This also 
demonstrates that the MOMAPSO algorithm has strong 
search capabilities in finding extreme solutions for fuel cost 
and pollutant gas emissions. In addition, the runtime of the 
proposed algorithm is 10.69 ms, which is 2.38 ms, 2.15 ms, 
and 2.07 ms lower than MCMOGA, MKWSO, and 
MTNPSO, respectively, further demonstrating that the 
optimised algorithm has high runtime efficiency. 

Table 2 Optimisation results of different algorithms 

Optimisation goal Target MCMOGA MKWSO MTNPSO MOMAPSO 

Optimal power 
generation costs 

Fuel cost 28,974.4235 28,110.8411 27,970.6061 27,675.9198 
Emission 25.0259 24.2348 24.1646 24.0591 

Emission 
optimisation 

Fuel cost 34,425.3596 34,228.7138 34,251.5266 34,070.1483 
Emission 2.3861 2.3759 2.3763 2.3658 

Running time 13.07 12.84 12.76 13.69 

Table 3 Outcome of IGD indicators and Wilcoxon rank-sum test 

Algorithm Mean value Standard deviation Maximum Minimum value Significance test 

MCMOGA 23.5529 2.3657 27.2274 17.5276 – 
MKWSO 23.2547 2.6793 25.7296 17.7695 – 
MTNPSO 21.2561 2.6258 24.1359 17.0238 – 
MOMAPSO 16.3219 1.7331 18.6495 12.9942  
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Upon conducting 100 separate and unbiased trials, the 
arithmetic mean and the measure of dispersion denoted by 
the standard deviation of the inverted generational distance 
(IGD) were obtained. In addition, this paper adopted the 
widely recognised Wilcoxon rank-sum test was employed to 
scrutinise the outcomes, with a predetermined significance 
threshold set at 0.05, where ‘+’, ‘–’, and ‘≈’ imply that the 
comparison approach exhibits a markedly superior 
performance compared to MOMAPSO, the comparison 
approach under study performs considerably less effectively 
than MOMAPSO, and the comparison approach exhibits no 
statistically significant difference in comparison with 
MOMAPSO, respectively. The outcome of the IGD index 
and Wilcoxon rank-sum test are shown in Table 2. The IGD 
indices associated with MOMAPSO are uniformly lower 
than those pertaining to MCMOGA, MKWSO, and 
MTNPSO algorithms, implying that MOMAPSO 
significantly outperforms the other three algorithms with 
respect to the aspects of diversity and convergence. The test 
outcome indicates that the MOMAPSO algorithm 
demonstrates excellent operational performance in power 
system control. 

6 Conclusions 
With the rapid development of the global economy, 
environmental pollution and energy shortages have become 
increasingly serious issues. The growing number of power 
generation units being linked to the power grid has posed 
significant challenges for optimising the operation of power 
generation units. For this purpose, this paper optimises the 
control operation algorithm of power systems based on an 
improved PSO algorithm. First, to address the issue of slow 
convergence speed in PSO, the MAPSO algorithm is 
proposed. Based on a reward mechanism, the inertial weight 
and learning factor are optimised through a strategy of 
changing the reward mechanism, which is adapted during 
the iteration process to accelerate convergence speed. 
Second, establish a multi-objective function for the power 
generation costs and pollutant emissions of the generator 
set, and propose constraints for example system power 
balance constraints, heat balance constraints, and output 
capacity restrictions for these objective functions. Finally, 
MOMAPSO was proposed by integrating external archiving 
technology and applied to power system control to solve the 
optimal solution with lower power generation costs and 
fewer pollutant emissions as the target function, thereby 
achieving overall operational optimisation. Simulation 
results indicate that the proposed approach achieves a power 
generation cost of $27,675.9198/h and pollutant emissions 
of 24.0591 t/h. In comparison to alternative algorithms, the 
offered approach can achieve a higher-quality operation 
scheme with lower power generation costs and fewer 
pollutant emissions. 

This paper only focuses on control optimisation on the 
power generation side and does not consider demand 
response. Demand response can improve the resource 
utilisation of system control through load reduction or 

transfer adjustments. Therefore, further research is needed 
on how to utilise demand response mechanisms to enable 
interaction between the power system and the demand side. 
Also in this paper, deployment challenges (e.g., regulatory 
frameworks, system data privacy) as well as environmental 
and economic tradeoffs in real systems will be thoroughly 
investigated to further enhance the operational performance 
of the model. 
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