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Abstract: As deep learning technology develops rapidly, dance action recognition, a crucial 
computer vision research direction, has been progressively applied in other disciplines. But 
classical action recognition techniques often fail in complicated contexts with various action 
categories and dynamically shifting backgrounds; dance action recognition for realistic topics 
faces many difficulties. This work thus suggests a dance action recognition model  
ACN-TL-DAR based on adaptive convolutional network and transfer learning (TL), which 
combines adaptive convolutional networks and TL to efficiently manage complicated dance 
action data. This work confirms the great performance of the ACN-TL-DAR model on several 
criteria by means of experimental evaluation on two datasets. The experimental results reveal that 
the model suggested in this work has strong robustness and efficient identification capacity in 
several contexts, thereby offering a fresh concept for the expansion of the field of realistic dance 
movement recognition. 
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learning; TL; temporal consistency; category balance. 
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1 Introduction 

Action recognition technology has been extensively applied 
in the domains of security monitoring, sports analysis, and 
intelligent interaction with the fast expansion of artificial 
intelligence and computer vision technologies. Usually, 
action recognition activities demand the system to precisely 
analyse and comprehend human action postures and their 
development (Kong and Fu, 2022). But in the particular 
choreography of dance movement identification, in addition 
to identifying fundamental movement postures and timing 
correlations, complicated elements like personal variations, 
diversity of dance forms, and backdrop environment 
changes have to be considered (Newell, 2020). Thus, dance 
movement recognition is not only a technical difficulty but 
also a wonderful test of the capacity of the algorithmic 
model to be used in the actual world. 

Realistic dance movement identification confronts more 
difficult difficulties than conventional dance movement 
identification. Realistic dances can have more varied dance 
forms, more challenging movement combinations, and more 
background changes; so, the system must have great 
generalising capacity and resilience. Shallow machine 

learning techniques such support vector machine (SVM), 
decision tree and random forest (RF), and manual feature 
extraction define traditional dance movement detection 
approaches. To get better classification results, SVM as an 
example must manually choose features and transfer them 
to a high-dimensional space (Borji et al., 2023). When faced 
with complex dance movements, this approach is 
susceptible to noise and background interference, which 
diminishes the accuracy of feature extraction and 
subsequently affects the model’s performance. Although RF 
and other integration techniques can enhance classification 
accuracy, they still rely on manually designed features and 
are prone to overfitting due to significant computational 
overhead when dealing with large-scale data. Furthermore, 
these conventional techniques typically cannot adequately 
depict the spatio-temporal link between actions, which leads 
to suboptimal performance in complicated situations or 
continuous actions. 

Deep learning models’ emergence in recent years has 
brought to notable advancement in dance movement 
identification. Thanks to their strong automatic feature 
learning capacity, convolutional neural networks (CNNs) 
have become among the most often utilised deep learning 
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architectures (Alzubaidi et al., 2021). Dance motions with 
temporal aspects are processed using recurrent neural 
networks (RNNs) including gated recurrent units (GRUs) 
and long short-term memory networks (LSTMs). 
Traditional deep learning models find it challenging to 
reach the intended outcomes in real-life subject matter, 
especially in the face of dynamic changes, complicated 
backgrounds and significant individual variances, even if 
these approaches work well in stationary or simplified 
settings (Panadeiro et al., 2021). 

Researchers have started investigating more adaptable 
and flexible deep learning techniques to help to address 
these challenges. As a developing technology, adaptive 
convolutional networks introduce a dynamic tuning 
mechanism to dynamically change the shape and size of the 
convolutional kernel depending on various input data, so 
enabling more precisely to capture spatio-temporal aspects 
in complicated operations (Li et al., 2022). Furthermore, 
extensively applied in computer vision activities is TL as a 
useful learning tool. In dance action recognition, TL solves 
the issue of inadequate data annotation in realistic subject 
dances, moves information from current large-scale relevant 
datasets, and increases the generalisation capacity of the 
model in new settings. The model can be trained on limited 
labelled data with TL and achieve greater performance in 
actual applications. 

With an aim to enhance the performance of the model in 
dance movements of realistic subjects, this work presents a 
dance movement recognition model based on adaptive 
convolutional networks and TL. More especially, this 
model’s inventiveness shows in the following features: 

1 The introduction of adaptive convolutional network: 
this work presents an adaptive convolutional network, 
which can dynamically change the size and form of the 
convolutional kernel to better fit the diversity and 
variability of complicated movements, hence enhancing 
the accuracy and resilience of movement detection. 

2 Effective application of TL: this work uses the TL 
technique to migrate current information from  
large-scale datasets, therefore improving the 
recognition capacity of the model in small-sample 
tasks, particularly in the application of the particular 
domain of dance motions. 

3 Multi-dimensional metrics for comprehensively 
evaluating model performance: three important metrics 
are proposed in this work in the trials to assess the 
performance of the ACN-TL-DAR model from several 
angles. This creative assessment approach not only 
shows the whole performance of the model but also 
offers a clear road for next development and 
optimisation. 

4 In-depth analysis of ablation experiments: this work 
methodically investigates the particular contributions of 
the adaptive convolutional network and the TL module 
to the model performance via ablation experiments. 
This thorough investigation shows the synergy among 

the modules, which clarifies the fundamental 
mechanism of the model and offers a foundation for 
next model optimisation. 

2 Adaptive convolution network 
By use of a convolutional kernel adaptation mechanism to 
precisely capture spatio-temporal information in images, 
adaptive convolutional networks are able to dynamically 
change convolutional operations over various input data. 
Conventional CNNs employ fixed size and shape 
convolutional kernels, which causes the model to often find 
it difficult to effectively extract features given complex and 
varied inputs (Liu et al., 2021a). Multiple convolutional 
layers, a ReLU activation layer, a pooling layer, a fully 
connected layer, and an output layer define a typical CNN 
architecture shown in Figure 1. 

Figure 1 Typical CNN architecture 
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CNN generates features by means of several convolutional 
layers and ReLU activation layers, as depicted in Figure 1; 
typically, a ReLU layer follows each of these layers to boost 
nonlinearities. Reducing the spatial dimensionality of the 
feature map by means of the pooling layer helps to improve 
the generalisation of the model by lowering the computation 
required. Extracted features are mapped to the output space 
using the fully connected layer; at last, the output layer 
generates the final prediction. One can characterise the 
convolution procedure of a standard CNN as follows: 

Y X K b= ∗ +  (1) 

where X is the input data; K is a set convolutional kernel; b 
is a bias term; Y is the output feature map. The CNN cannot 
dynamically change the convolution kernel depending on 
different inputs since the convolution kernel shares 
parameters throughout the input data, so less accurate 
extraction of complex features may result. 

Adaptive convolutional networks dynamically create 
convolutional kernels by include a generator network, 
therefore solving this problem (Zhang et al., 2021). 
Specifically, the adaptive convolutional network 
dynamically creates the convolutional kernel Kgen using a 
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generator network driven on the input data X. The 
convolution operation can so be stated as: 

genY X K b= ∗ +  (2) 

Under this architecture, the convolutional kernel Kgen is 
influenced by the features of the input data. Consequently, 
each time different data is input, the convolutional kernel 
can alter its form and parameters based on the data, thereby 
enhancing flexibility and accuracy in feature extraction. 

By weighting various areas of the input data, researchers 
have developed an attention mechanism to improve the 
focus of adaptive convolutional networks on significant 
features, hence augmenting their performance (Li et al., 
2020). In particular, the attention weight matrix A weights 
various points of the input data such that the network can 
concentrate on those areas most critical to the final output. 
One can expand the convolution operation and represent it 
as: 

,
1 1

[ ],
H W

i j gen
i j

Y A X i j K b
= =

= ⋅ +∗  (3) 

where Ai,j is the attentional weight of every point in the 
input data; H and W are the height and width of the input 
image accordingly. By means of this weighting method, the 
network enhances the processing capacity for challenging 
jobs and better extracts features with great correlation. 

The adaptive convolutional network maximises the 
creation of convolutional kernels during the training process 
by use of a multi-task learning paradigm. The total loss 
function can be stated assuming that the loss of the auxiliary 
task is Laux and the loss of the main work is Lmain as: 

total main auxL L λL= +  (4) 

where the weights of the auxiliary and main task losses are 
balanced using a hyperparameter λ. Through the main job, 
the network is able to train efficient convolutional kernels 
by optimising this loss function; moreover, it can offer 
beneficial direction through the auxiliary tasks to enhance 
the general performance. 

Furthermore, often included to avoid overfitting and 
enhance the generalisation capacity of the network is a 
regularisation term. Assuming Lreg as the regularisation 
term, the last loss function is: 

final total regL L γL= +  (5) 

where the regularity weight coefficient is γ. By use of 
regularisation, the network learns the convolutional kernel 
while preserving appropriate generalisation performance 
and thereby preventing overfitting of the training data (Liu 
et al., 2021b). 

By use of the foregoing process, the adaptive 
convolutional network dynamically modulates the 
convolutional kernel on various input data, thereby 
enhancing the accuracy of feature extraction and displaying 
more flexibility in challenging tasks. 

3 Transfer learning 
By using the knowledge acquired in source tasks, TL is a 
technique to enable target task learn more efficiently. 
Conventional machine learning approaches hold that the 
target task and the source task are the same and that the 
training and test data originate from the same distribution 
(Dargan et al., 2020). In actual applications, however, the 
target task is often different from the source task and the 
target task data is usually smaller than TL might help to 
enhance the learning effect of the target task. 

See Figure 2 for the fundamental TL framework: the 
models or information gained from the source task is 
transferred to the target task. 

Figure 2 The TL framework (see online version for colours) 

Output layer Output layerOutput is very close

The parameters are 
very close

Initialisation

Input layer Input layer

Source data 
(image sets)

Target 
data

 

The source and target tasks can be shown as respectively if 
the dataset of the source task is Dsource and the dataset of the 
target task is Dtarget: 

{ },source source sourceD X Y=  (6) 

{ },target target targetD X Y=  (7) 

The objective of the source and target tasks is to attain the 
best prediction by learning a model Mtarget suited to the 
target task where X marks the input data and Y marks the 
labels. Usually, TL finds the target task model Mtarget by 
means of fine-tuning the source task model Msource; this 
method can be shown as: 

( )arg min , ;target target target
θ

M L X Y θ=  (8) 

where L is the loss function of the target task; θ is a target 
task model parameter. Pre-training the model on the source 
task followed by fine-tuning it on the target task helps to 
attain higher performance on the target task. 

Effective migration relies on accurately measuring the 
knowledge difference between target and source tasks. A 
commonly used method to assess the distributional 
difference between source and target activities is maximum 
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mean discrepancy (MMD). MMD calculates the 
distributional difference between the target task data and the 
source task data using the following formula: 

( )

( ) ( )
2

( ) (

2

)

11

,

11

source target

m
i

source target
j

j

n

in

MMD D D

X X
m= =

−= φ φ
 (9) 

where n and m are the number of samples in the source and 
target task datasets respectively and φ(·) is a feature 
mapping function transferring the input data to a  
high-dimensional space. Effective migration depends on 
reducing the MMD such that the distribution of the source 
and target activities differs less (Wang et al., 2022). 

The usually employed method in the TL process is  
fine-tuning. Fine-tuning is to minimise the loss function of 
the target task model based on the source task model hence 
optimising the parameters of the target task model (Ding  
et al., 2023). The aim of the fine-tuning procedure can be 
stated as assuming the loss function of the target task is 
Ltarget and the model parameter of the target task is θ: 

( )arg min , ;target target target
θ

θ L X Y θ∗ =  (10) 

By means of fine-tuning, the network can be maximised 
depending on the data of the target task, therefore enhancing 
the performance of the target task. 

Using the shared feature learning method allows TL to 
also improve migration. Assuming the shared feature 
network is fshared, the overall loss of the source and target 
jobs can be stated as: 

total source targetL L L= +  (11) 

where Lsource and Ltarget are respectively the loss functions of 
the target and source jobs. By reducing the losses of both 
activities concurrently, shared feature learning accelerates 
the learning of the target task and enhances its performance 
(Chen et al., 2021). 

Sometimes TL must change the weights of the target 
and source jobs to more balance the contributions of each. 
Assuming α for the weight of the source task and β for the 
weight of the target task, the overall loss may be stated as: 

final source targetL L L= +α β  (12) 

Changing the values of α and β helps to balance the effects 
of the source and target activities thereby maximising the 
migration process. 

TL’s basic concept is to borrow information from the 
source task so improving the learning effect of the target 
activity. Especially in cases of insufficient data for the 
target task, TL offers great benefits by pre-training on the 
source task, reducing the distributional disparities between 
tasks, fine-tuning the model, and sharing features, therefore 
improving the performance of the target job. 

4 Dance movement recognition model for 
realistic themes 

In this study, we propose a realistic dance action recognition 
model based on adaptive convolutional network and TL, 
i.e., ACN-TL-DAR. Aiming to increase the adaptability and 
accuracy of complicated scenarios in the task of dance 
action identification, the model integrates adaptive 
convolutional networks with TL approaches, see Figure 3. 
The following will go into great length on the design and 
execution of every module. 

 

Figure 3 Structure of the ACN-TL-DAR model (see online version for colours) 
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4.1 Data preprocessing module 
Data quality and processing are critical for model 
performance in the dance movement detection problem, 
particularly in real-life situations when the data sometimes 
includes noise, background interference, and various camera 
angles. Thus, the module of data preparation must guarantee 
that the data is consistent and clear and increase the variety 
to strengthen the model. 

By means of picture denoising and normalisation 
processes, the module of data preparation enhances the data 
quality. Gaussian blur is one of the denosing methods 
applied in video frame data (Channoufi et al., 2018). 
Denoised image I′ can be derived via convolution operation 
with a Gaussian kernel K assuming the input picture is I. 
Using a Gaussian fuzzy filter helps one to denoise the 
image: 

I I K′ = ∗  (13) 

where * is the convolution operation; K is a predetermined 
Gaussian kernel meant to smooth the image. Denoising 
helps the model to significantly lower the noise interference 
on next feature extraction. 

Second, the model also has to normalise all photos or 
video frames to unite the scale of the input data. 
Normalisation of photographs compresses the pixel values 
into the range [0, 1], therefore preventing learning 
discrepancies resulting from variations in brightness or 
contrast between images (Andersson et al., 2020). The 
normalised pixel value p′(x, y) can be stated assuming that 
the pixel value of a picture is p(x, y). 

)( ) ,, (p x y μp x y
σ

−′ =  (14) 

where p(x, y) is the value of pixel point (x, y) in the image, 
µ and σ are the mean and standard deviation of the image 
accordingly. The model can consistently manage image data 
with varying illumination and contrast during the training 
phase by means of this normalisation operation. 

4.2 Feature extraction module 
The generating procedure of the convolutional kernel in an 
adaptive convolutional network is dynamic instead of  
pre-fixed. To better accommodate various dance 
movements, the network learns the characteristics of the 
input data and automatically adjusts the structure of the 
convolutional kernel. The generating process of the adaptive 
convolution kernel W can be stated assuming x as the input 
data: 

( )W F x=  (15) 

where F(x) constructs a convolutional kernel adaptatively 
depending on the input data x. Learning the properties of the 
input data helps this function dynamically create the 
convolution kernel so that it may be freely changed 
depending on the dancing movements (Ferreira et al., 2021). 
The adaptive convolutional network convolves the input 

data with the adaptive convolution kernel across the 
convolution operation to produce the feature map y: 

1
i i

N

i

xy W
=

= ∗  (16) 

where Wi is the ith adaptive convolution kernel; ∗ is the 
convolution operation; xi is the ith local region of the input 
data; y is the extracted feature map; N is the total number of 
local regions of the input data. 

Using a multilayer convolutional structure which lets the 
model extract features from low to high level layer by layer, 
the adaptive convolutional network also helps to improve 
the feature extracting capacity. Every layer’s convolution 
kernel is dynamically changed in line with the output of the 
one before it. Assuming yl as the lth layer’s output, one may 
define the convolution operation of this layer as: 

1
1

l

j j
l

M

l
j

y W y
−

=

= ∗  (17) 

where j
lW  is the jth adaptive convolution kernel of the lth 

layer; 
1l

jy
−

 is the jth feature map of the (l – 1)th layer; yl is the 
feature map of the lth layer; M is the number of convolution 
kernels of the lth layer. 

By means of this multi-layer adaptive convolution 
mechanism, the adaptive convolution network can 
efficiently extract spatio-temporal characteristics of the 
dance motions from various scales and levels, so improving 
the recognition capacity of the model for complex dance 
movements. 

4.3 Transfer learning module 
Following feature extraction from the adaptive 
convolutional network, TL is applied to improve the model 
even more in dance movement identification. The lack of 
dance movement data allows TL to migrate the information 
acquired in the source domain to the target task, hence 
enhancing the generalising capacity of the model (Zhou et 
al., 2023). 

Under the TL framework, the adaptive convolutional 
network learns generic features by training on the source 
domain data assuming source domain model is MS and 
target domain model is MT. TL moves these characteristics 
then to the target domain. The model of the source domain 
generates: 

( )S S Sf x y=  (18) 

where xS is the source domain’s input data; fS(·) is the model 
trained in the source domain; yS is the source domain’s 
labels. By means of TL, the target domain model is tailored 
to inherit the convolutional layer weights of the source 
domain and implements particular modifications to the 
target task. The model output of the target domain can be 
stated assuming xT as the data of the target domain as: 

( ) ( ) ( )ΔT T S S Tf x f x f x= +  (19) 
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where Δf(xT) is the component tuned on the target domain; 
xT is the input of the target domain; fT(·) is the output of the 
target domain model. In this sense, TL can not only speed 
up the training process of the target task but also enhance 
the recognition accuracy of the model using less target 
domain data. 

4.4 Action recognition module 
Action recognition is fundamentally about extracting and 
categorising the characteristics of every input frame using 
the model. Assuming that the input video frame is xt, 
following processing by adaptive convolutional network, 
where t is the number of the frame and ft is the feature 
representation of the frame picture. The model’s last result 
is a categorisation one that shows the frame image falls into 
a certain dance movement category. Every frame’s 
classification can be stated with the following equation: 

( )ˆ softmaxt ty W f b= ⋅ +  (20) 

where W is the weight matrix of the classification layer; b is 
the bias term; softmax(·) is the activation function applied 
to translate model output into a probability distribution 
showing the expected probability of every category. 

Using a time series modelling technique, the movement 
recognition model captures the dynamics of dance motions 
in the time dimension (Switonski et al., 2019). Temporal 
dependency between frames is modelled in this module 
using LSTM. The model changes the current hidden state ht 
depending on the hidden state ht–1 at the previous moment 
and the current input xt assuming that the hidden state at the 
current moment is ht. One can articulate this process by 
means of the following equation: 

( )1tanht h t x t hh W h W x b−= ⋅ + ⋅ +  (21) 

where bh is the bias term; tanh(·) is the activation function; 
Wh and Wx are weight matrices with regard to the hidden 
state and input features respectively. Maximising the 
probability values of the output categories helps the 
movement recognition model to precisely identify the dance 
movement categories depending on spatial characteristics 
and time series. 

Combining TL and adaptive convolutional networks 
helps the model in the dance movement detection challenge 
to migrate knowledge between several dance forms with 
efficiency. For instance, the generalised movement 
properties of ballet data are applied to street or folk dances 
using TL, hence enhancing the generalisation capacity and 
accuracy of the model. 

4.5 Optimisation and fine-tuning module 
One can maximise the accuracy of the pre-trained  
ACN-TL-DAR model by adjusting its parameters in dance 
motion recognition. Fine-tuning aims to modify some 
network parameters such that they fit the new purpose. 

Following model training, the module on optimisation 
and fine-tuning helps the model to perform on particular 

tasks. A gradient descent method with an update rule helps 
to optimise the fine-tuning process: 

1 ( )t t θ finetuneθ θ η L θ+ = − ∇  (22) 

where ∇θLfinetune(θ) is the gradient of the loss function; θt is 
a model parameter; η is the learning rate. 

A reduced learning rate is utilised during the fine-tuning 
process to prevent damaging the knowledge of the  
pre-trained model, therefore allowing the model to reach 
ideal performance on the goal task (Shi and Lipani, 2023). 

4.6 Evaluation and feedback module 
The evaluation and feedback module is applied to verify the 
performance of the model in dance movement recognition 
following training and optimisation. Three main criteria 
help to guide the evaluation. 

The ratio of correct recognition by the model on all 
movement categories with the following formula defines 
movement classification accuracy: 

( )
1

ˆ
N

i ii
y y

Action classification accuracy
N

=
=

=  
 (23) 

where N is the overall sample count; yi is the actual label; 
ˆiy  is the label the model forecasts. On several action 

categories, this statistic can show the general model 
performance. 

With this method, one can determine timing consistency 
by verifying if the model can sustain consistency across 
consecutive video frames and appropriately identify 
intricate action variations (Sheng et al., 2021): 

( )
1

1
1

1 ˆ ˆTemporal consistency
1

N

t t
t

y y
N

−

+
=

= =
−    (24) 

where N is the total number of frames; ˆty  and 1ˆty +  
correspondingly indicate the prediction categories of 
consecutive frames. Especially the transition and 
smoothness of the motions, this evaluation criterion shows 
the stability of the model throughout consecutive time 
intervals. 

Furthermore, computed in dance datasets with 
significant sample imbalances is a category balance 
assessment of the model (Thabtah et al., 2020). This statistic 
ensures that, given the volume of data, the model’s 
predictions balance between categories and prevents some 
categories from being biased in favour of the model. 
Computing the weighted accuracy of every category will 
help one to gauge this: 

1

1

Precision
Category balance

C
i ii

C
ii

w

w
=

=

×
= 


 (25) 

where Precisioni is the movement’s accuracy in category i; 
C is the number of movement categories; wi is the 
category’s sample weight. 
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These evaluation criteria allow a thorough assessment of 
the performance of the model in the dance movement 
identification challenge, therefore offering vital input for 
later model enhancement. 

In order to fully evaluate the performance of the model, 
we also recorded the training time, memory consumption, 
and feasibility of real-time deployment. During the training 
phase, the model completes training on a server equipped 
with NVIDIA RTX 3090 GPUs with a total training time of 
48 hours. In terms of memory consumption, the model 
consumes about 16 GB of GPU memory on average during 
training. For real-time deployment, we tested the inference 
time of the model on a single GPU with an average 
inference time of 30 ms per frame, which indicates that the 
model is capable of real-time processing and suitable for 
deployment in real applications. 

The data preprocessing module refines input data; the 
feature extraction module uses adaptive convolutional 
networks to extract spatio-temporal features; the transfer 
learning module borrows knowledge from the source task; 
the action recognition module classifies features; and the 
model optimisation and fine-tuning module improves 
accuracy. 

5 Experimental results and analyses 
5.1 Datasets 
Two typical datasets, UCF101 and CMU MoCap, were used 
for this work in order to validate the efficiency of the  
ACN-TL-DAR model. These two datasets not only cover 
dance motions but also include various kinds of complex 
movements suited for validation of the model in the 
recognition of dance movements of realistic subjects. 

During the data collection process, we followed strict 
ethical guidelines to ensure that all participants provided 
explicit informed consent. To protect the privacy of 
participants, we anonymised all motion capture data, 
removing any information that could identify individuals. In 
addition, we paid particular attention to cultural sensitivity 
in the use of the data to ensure that the data was not used in 
a way that would cause harm or discomfort to any cultural 
group. Through these measures, we ensured ethical handling 
of the data and protection of participants’ rights and 
interests. 

Table 1 shows the details of both datasets. 
There are 101 movement categories in the UCF101 

dataset, spanning modern dance, street dance, etc. among 
other dance movements. Tasks involving video-based 
motion recognition fit it. 

There are a lot of dance movement capture data in the 
CMU MoCap dataset, which is especially fit for  
high-precision dance movement identification tasks; fine 
human motion capture data in the dataset is mostly used for 
movement analysis and posture estimate. 

These two datasets offer different action data for this 
work, so richly supporting model training at both video and 
motion capture levels, respectively, so verifying the 
performance of the model in complicated dance action 
recognition. 

To ensure the quality and consistency of the data, we 
adopted the following annotation strategy: the annotation of 
all dance movements was done by a professional dance 
instructor and a data annotation team. The annotation team 
first analysed the videos frame by frame, identified the start 
and end points of each dance movement, and annotated 
them into the corresponding movement categories. To 
ensure the accuracy of the annotation, the results of each 
video are reviewed and proofread by at least two experts. In 
the case of disagreement between experts, it will be 
resolved by discussion and reference to more video frames. 

In the frame extraction process, we use a key frame 
extraction method based on optical flow. Optical flow 
method can detect the motion information of objects in the 
video, which helps us to identify frames that contain 
important action changes. By calculating the optical flow 
differences between neighbouring frames, we select those 
frames with significant motion changes as key frames to 
reduce redundancy and improve processing efficiency. 

The preprocessing process includes steps such as image 
denoising and normalisation. Image denoising uses 
Gaussian blurring algorithm to smooth out the noise in the 
image by convolution operation. The normalisation process 
compresses the pixel values of the image into the range [0, 
1] to ensure consistency and quality of the input data. With 
these preprocessing steps, the model can handle image data 
under different lighting and contrast conditions more 
consistently. 

5.2 Comparison of dance movement recognition 
effects 

Two experiments aiming at assessing the ACN-TL-DAR 
model’s performance are carried out in this work. 
Experiment 1 is a comparison experiment, in which the 
performance of the model is assessed on several criteria by 
means of other often used action recognition models. 
Experiment 2 is an ablation experiment, in which important 
modules are removed from the model to evaluate the 
contribution of every module on the performance. These 
two tests complement one another and jointly assist to 
assess the performance of the ACN-TL-DAR model. 
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Table 1 Information on UCF101 and CMU MoCap 

Dataset name Type Number of action categories Sample size Action types 

UCF101 Video dataset 101 13,320 Includes dance actions 
CMU MoCap Motion capture dataset Not explicitly defined Not explicitly defined Dance, human motion 

 
Using a cross-valuation technique to guarantee the 
dependability of the experimental data, experiment 1 
intends to evaluate the performance of the ACN-TL-DAR 
model against existing fused deep learning models. The 
ACN-TL-DAR suggested in this work is model 1; other 
models for experimental comparison consist: 

• CNN + RNN is model 2: CNN extracts spatial features 
and RNN captures temporal information, so fitting for 
simulating continuous actions by combining the 
benefits of CNN and RNN. 

• Model 3 is CNN plus TL: using TL, pre-training CNN 
(e.g., ResNet) extracts features and used to dance 
movement detection, so improving the performance of 
small datasets particularly in cases of inadequate data 
(Pramono et al., 2021). 

• Appropriate for many dancing moves, model 4 is  
ACN + CNN: integrating adaptive convolutional 
network with CNN, adaptive convolutional network 
dynamically changes the convolution kernel to improve 
the feature extracting. 

• Good in capturing long-term dependencies and 
overcomes the issue of long-term and short-term 
dependencies of typical RNNs, model 5 is TCN: 
temporal convolutional networks describe time series 
through convolutional layers. 

• Appropriate for video classification and action 
identification problems, model 6 is 3D-CNN: expands 
conventional CNN to simultaneously extract  
spatio-temporal data via 3D convolution (Guo et al., 
2019). 

• Combining LSTM and CNN, model 7 is LSTM + 
CNN, LSTM processes temporal input and CNN 
extracts spatial data to enhance the accuracy of 
multimodal action detection. 

In order to ensure the quality and reliability of the data, we 
have adopted a rigorous labelling validation and generation 
process. The labelling of all dance movements is done by a 
professional dance instructor and an experienced data 
labelling team. The annotation team first analyses the video 
frame by frame, identifies the start and end points of each 
dance movement, and labels them into the corresponding 
movement categories. To ensure the accuracy of the 
annotation, the results of each video are reviewed and 
proofread by at least two experts. In case of disagreement 
between experts, it will be resolved through discussion and 
reference to more video frames to ensure that the final 
annotation results are accurate. 

For data enhancement, we use random cropping, random 
rotation, colour adjustment and time dithering to increase 
the diversity and robustness of the data. Random cropping 
can simulate different viewing angles and shooting ranges; 
random rotation has an angle range of [–10°, 10°] to 
simulate different shooting angles; colour adjustment 
simulates different lighting conditions by randomly 
adjusting the brightness, contrast and saturation of the 
image; and temporal dithering slightly randomises the 
temporal order of the video frames to increase the diversity 
of the temporal dimension. 

In terms of data cleaning, we took measures to remove 
noise, remove outliers, remove inconsistent labelling and 
remove duplicate data. Gaussian blurring algorithm is used 
to remove noise from the images to ensure image clarity; 
frames with motion blur are removed by calculating optical 
flow differences to ensure the quality of each frame; video 
clips that are inconsistently labelled or contain a lot of noise 
are removed to improve the overall quality of the data; and 
duplicates or highly similar clips are removed by calculating 
similarity of the video clips to reduce data redundancy. 

Through these data enhancement and cleaning steps, we 
ensure the high quality and reliability of the dataset, 
providing a solid foundation for model training and 
validation. 

Figure 4 displays the experimental findings. 
The ACN-TL-DAR model beats like models on both 

datasets. On the UCF101 data, ACN-TL-DAR boasts 93.2% 
movement classification accuracy, 91.5% temporal 
consistency, and 90.8% category balance. These results 
show that the suggested method precisely and consistently 
identifies complicated dancing movements and is suitable to 
solve inter-category balancing. While their time consistency 
and category balance are poor, 3D-CNN and CNN+RNN 
have acceptable classification accuracy. 

Results of experiments on the CMU MoCap dataset 
validate the advantages of ACN-TL-DAR. Its action 
categorisation accuracy is 95.1%. In timing consistency 
(93.4%) and category balance (92.7%), ACN-TL-DAR is 
strong and flexible. These findings suggest that the 
suggested model might effectively handle distributional 
imbalance between categories and better represent dance 
motion temporal characteristics. 

On both datasets, ACN-TL-DAR excels particularly in 
dance movement detection. This shows the success of 
combining adaptive convolutional networks with TL as well 
as the efficiency and feasibility of the model in challenging 
dynamic settings. Particularly in pragmatic applications, 
these comparative tests verify the movement recognition 
capacity of ACN-TL-DAR. 
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Figure 4 Results of the comparison of dance movement recognition effects (see online version for colours) 

 

Figure 5 Results of the comparison of dance movement recognition performance (see online version for colours) 
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5.3 Effect of different modules on recognition 

performance 
This experiment will examine the change in model 
performance by subjecting the ACN-TL-DAR model to a 
sequential ablation deleting the adaptive convolutional 
network and TL sections accordingly. This allows one to 
estimate and evaluate the contributions of the adaptive 
convolutional network and the TL in line with the whole 
model (ACN-TL-DAR). 

Eliminating the adaptive convolutional network: 
maintaining the TL component unaltered, replace the 
adaptive convolutional network with a standard CNN. 

Eliminating TL: CNNs feature extraction and the entire 
model is trained from scratch without utilising TL. 

Keep the TL module and adaptive convolutional 
network for last performance assessment. 

Figure 5 shows the experimental outcomes. 
Especially in the three indexes of action classification 

accuracy, temporal consistency and category balance, which 
are all better than that of the model after removing the 
adaptive convolutional network and TL, the ACN-TL-DAR 
full model shows optimal performance from the 
experimental results on both UCF101 and CMU MoCap 
datasets. Specifically, the entire model obtains an action 
classification accuracy of 93.2% on the UCF101 dataset, 
whereas the model with the removal of adaptive 
convolutional network has a loss in accuracy of roughly 
4.8%; and the model with the removal of TL has a decrease 
in accuracy of roughly 7.5%. This performance difference 
implies that adaptive convolutional networks and TL can 
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efficiently increase feature extraction and model 
generalisation as well as model accuracy, particularly with 
regard to difficult dancing motions. 

The movement classification accuracy of the whole 
ACN-TL-DAR model is 95.1%, which is 5.3% and 7.5% 
higher than that of the model with the removal of adaptive 
convolutional network (89.8%), and the model with the 
removal of TL (87.6%), respectively using the CMU 
MoCap dataset. Furthermore, displaying notable benefits in 
temporal consistency and category balance is the whole 
model. Further underlining the relevance of the adaptive 
convolutional network and TL in enhancing the model in 
terms of timing processing and category balance, their 
removal reduced the timing consistency and category 
balance of the model. 

The findings of the ablation studies confirm the efficacy 
of the ACN-TL-DAR model, particularly concerning 
temporal characteristics and category imbalance. The 
incorporation of adaptive convolutional networks and TL 
significantly enhances the model’s overall performance. 
This underscores the potential of integrating deep learning 
techniques with TL for identifying dance movements in 
realistic subjects, thereby addressing the variety and 
challenges present in complex environments. 

6 Conclusions 
This work presents an adaptive convolutional network and 
TL-based dance action recognition model ACN-TL-DAR 
for realistic subjects, together assessed on UCF101 and 
CMU MoCap datasets. Comparative and ablation studies 
confirm the major benefits of the model in terms of action 
categorisation accuracy, temporal consistency and category 
balance. Particularly in the complicated dance movement 
detection test, the ACN-TL-DAR model shows great 
resilience and accuracy, therefore confirming the value of 
adaptive convolutional networks and TLs in this field. 

Despite the impressive performance of the model 
proposed in this work across various tests, there are still 
significant limitations. Firstly, the training procedure of the 
model relies heavily on a substantial amount of labelled 
data, which is particularly difficult to obtain, especially 
when it comes to realistic dancing data. Secondly, the model 
may not perform as expected in certain specific scenarios, 
particularly when there are fewer movement categories or 
an unequal distribution of categories, due to feature 
variances present in different datasets. Additionally, when 
training on large-scale datasets, there is a need for more 
efficient computational resources and optimisation 
techniques. Therefore, there remains an opportunity to 
enhance the model in terms of computational complexity 
and training time. 

Future lines of study can concentrate on the following: 
first, investigating semi-supervised or unsupervised learning 
methods based on a limited amount of labelled data to lower 
the dependability on labelled data (Qi and Luo, 2020); 
second, combining multimodal data (e.g., video, audio, and 
motion-capture data) to further improve the generalisation 

ability and recognition accuracy; finally, optimising the 
model’s computational efficiency can be considered to 
develop more efficient algorithms to adapt to the training 
needs of large-scale datasets. These developments should 
help to increase the practical relevance of realistic dance 
movement recognition technology and support higher level 
of research in this domain. 
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