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Abstract: Aiming at the current problems of cross-institutional mutual recognition, poor 
traceability and lack of trust in general education credit management, this study proposes a 
blockchain technology-based credit banking system construction scheme. The decentralised 
storage and sharing of credit data is achieved through the design of distributed ledger 
architecture, and smart contract technology is used to automate the execution of credit 
authentication, accumulation and conversion rules. Construct a standardised model of credit 
metadata, define the blockchain storage format of course code, credit hours, grades and other 
data fields, and apply the improved PBFT consensus mechanism to improve the transaction 
processing efficiency while ensuring data consistency. Zero-knowledge proof technology is used 
to realise privacy protection and ensure the security of students' sensitive information when it 
flows across institutions. Experimental results show that the system improves the efficiency of 
credit verification by 68% compared with the traditional centralised system. 
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mechanism. 
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1 Introduction 
In the context of the deep integration of the popularisation 
of higher education and the concept of lifelong learning, 
general education, as an important carrier for cultivating 
versatile talents and promoting interdisciplinary learning, is 
increasingly prominent in its value. However, with the 
diversified development of educational forms, especially the 
popularisation of new models such as cross school course 
selection, online education, and credit recognition, the 
limitations of traditional credit management systems are 
gradually exposed (Kanungo et al., 2001). Currently, credit 
banks, as the core mechanism for realising the certification, 
accumulation, and conversion of learning outcomes, face 
three major core contradictions in the field of general 
education: firstly, the lack of unified standards for cross 
regional and cross institutional credit recognition, which 
hinders the flow of educational resources; Secondly, under 
centralised storage mode, data is prone to tampering and 
difficult to trace, resulting in high trust costs between 
institutions; Thirdly, the privacy protection mechanism is 

weak, and there is a risk of student sensitive information 
being leaked during sharing (Mateut et al., 2006). 

In recent years, although credit banking practices have 
made some progress globally, the technical support is still 
insufficient. The traditional model represented by the 
European credit transfer system (ECTS) relies on 
centralised databases and manual review, which leads to 
issues such as data silos and response delays. For example, 
the 2021 EU education quality report pointed out that the 
average time for cross-border credit transfer is 23 working 
days, and disputes caused by differences in inter 
institutional agreements account for over 30% (Popov and 
Udell, 2012). At the same time, the rise of MOOC platforms 
has led to an exponential increase in the course resources 
available to learners, but the credit certification rate is less 
than 5%, highlighting the structural imbalance between 
technological tools and educational needs (Kursun, 2016). 
In this context, blockchain technology, with its 
decentralised, tamper proof, and traceable characteristics, 
provides a new idea for reconstructing the credit 
management system. The international education 
informatisation organisation (EDUCAUSE) has explicitly 



 Exploration on the construction of colleges general education credit bank based on blockchain technology 13 

listed ‘blockchain + credit authentication’ as one of the 
transformative technologies in its ‘top 10 education 
technology trends of 2023’, but its implementation path in 
the context of general education has not yet formed a 
consensus (Allman et al., 2023). 

Existing research has conducted preliminary 
explorations on the application of blockchain in the field of 
education. On a technical level, Xie et al. (2020) designed a 
micro certificate system based on Ethereum and 
implemented on chain storage of learning records; Nasir  
et al. (2018) proposed using Hyperledger Fabric to construct 
a credit mutual recognition framework, which isolates data 
from different educational institutions through channels. 
However, these studies mostly focus on a single functional 
module and lack a systematic response to the full lifecycle 
needs of general education credit banks. Specifically, it is 
manifested as:  

1 Lack of standardisation: existing schemes have not 
established a universal credit metadata model, resulting 
in poor cross chain interoperability and difficulty in 
adapting to the evaluation system of multiple types of 
courses 

2 Performance bottleneck: the low throughput of public 
chains (such as Ethereum average TPS < 20) cannot 
support high concurrency credit transactions, while the 
consensus efficiency of consortium chains is 
constrained by node size 

3 Privacy and compliance conflict: most solutions use 
plaintext storage or simple encryption, which makes it 
difficult to meet the minimum collection requirements 
for educational data under regulations such as the 
personal information protection law. In addition, 
existing experiments are mostly based on simulation 
environments and lack stress testing and effectiveness 
verification in real educational scenarios. 

Blockchain technology provides a new paradigm for 
educational data management. Early research focused on 
academic certificate authentication, such as the blockchain 
degree authentication system developed by Pathak et al. 
(2022), which uses hash values to achieve degree anti-
counterfeiting. However, its functionality is limited to one-
way authentication and lacks dynamic interaction 
capabilities. With the development of technology, 
researchers are beginning to explore more complex 
educational scenarios. Lam and Dongol (2022) proposed the 
concept of ‘distributed education ledger’, which links the 
entire process data of learning behaviour, evaluation results, 
etc., and initially constructs a learner sovereign data model. 
In the field of general education, Alammary (2024) 
designed a cross school course sharing platform based on 
hyperledger fabric, which automates course selection 
protocols through smart contracts, but does not address the 
issue of flexibility in credit conversion rules. 

As the core infrastructure of the lifelong learning 
system, credit banks face dual challenges in terms of 
technological implementation, including multi-party 

collaboration and rule adaptation. Traditional solutions 
often rely on centralised databases, such as K-Credit Bank, 
which uses a federated architecture to achieve data 
exchange between universities (Shin and Do, 2015). 
However, due to disputes over data sovereignty, the number 
of access institutions has grown slowly. The introduction of 
blockchain technology has provided the possibility for 
decentralised collaboration. Manoj et al. (2021) proposed an 
Ethereum based credit mutual recognition framework that 
utilises the ERC-721 standard to generate irreplaceable 
credit tokens (NFTs), but its public chain architecture leads 
to high transaction costs and insufficient privacy protection. 
In response to performance bottlenecks, Ocheja et al. (2019) 
used consortium chain technology to build a hierarchical 
credit management system, which increased transaction 
processing speed to 150 TPS through Raft consensus 
mechanism. However, it is still difficult to support  
large-scale concurrent scenarios. 

In the practical implementation of blockchain credit 
banks, researchers need to address the following core issues: 

• Data standardisation: cross institutional credit 
recognition requires a unified metadata model. 
Mikroyannidis et al. (2024) proposed a credit 
description framework based on JSON-LD, which 
enhances data interoperability through semantic web 
technology, but has not been deeply integrated with 
blockchain storage structures. 

• Privacy and compliance: educational data involves 
sensitive personal information and requires a balance 
between transparency and privacy protection. Tripathi 
et al. (2023) designed an on chain data isolation scheme 
based on trusted execution environment (TEE), but its 
hardware dependency conflicts with the universality 
requirements of educational scenarios. 

• System performance optimisation: In response to high 
concurrency transaction processing requirements, 
Wang et al. (2023) proposed a sharded educational 
blockchain architecture that increases throughput to 300 
TPS through dynamic load balancing. However, inter 
shard communication latency leads to a 40% decrease 
in cross shard transaction processing efficiency. 

Despite significant progress in research, there are still 
shortcomings in the practice of general education credit 
banks. 

• Fragmentation of functions. Most schemes only focus 
on a single link of credit deposit or conversion, lacking 
a system design that covers the entire lifecycle (such as 
credit cancellation and traceability mechanisms) (Ebi 
and Emmanuel, 2014). 

• Weak adaptability of rules. Existing smart contracts 
often use hard coded logic, which makes it difficult to 
cope with the dynamic changes in credit recognition 
policies between different universities (Fekete and 
Kiss, 2023). 



14 W. Fu  

• The evaluation dimension is single. Performance 
testing is often limited to transaction throughput 
indicators, without comprehensive evaluation from 
multiple dimensions such as response latency, storage 
overhead, and compliance costs (Sonje et al., 2021). 

This study aims to build a trustworthy, efficient, and 
compliant general education credit bank, and proposes a 
system architecture that integrates multi-level blockchain 
technology. 

1 At the theoretical level, break through the ‘centralised 
trust’ paradigm of traditional credit banks and build a 
new education certification ecosystem centred on 
distributed collaboration and algorithmic consensus 

2 At the technical level, design a credit data model and 
smart contract group that supports dynamic expansion, 
solve the problem of cross institutional rule 
heterogeneity, and achieve a balance between security 
and efficiency through improved consensus 
mechanisms and privacy protection algorithms 

3 At the application level, establish a full process 
management system covering credit generation, 
certification, conversion, and cancellation, and provide 
practical technical solutions for education 
administrative departments. 

This article adopts a research path of ‘problem oriented 
technology integration verification optimisation’. Firstly, by 
investigating the credit recognition process of 12 
universities, seven core requirements for general education 
credit management were extracted; Secondly, by combining 
consortium chain and cross chain technology, a hierarchical 
system architecture is designed: a standardised metadata 
structure is defined at the data layer, and IPFS is used to 
achieve distributed storage of large capacity course files; 
Develop a modular smart contract library at the contract 
layer that supports configurable deployment of credit rules; 
Improve the PBFT algorithm at the consensus layer and 
introduce a node reputation evaluation mechanism to reduce 
communication overhead; integrate zero knowledge proof 
(ZKP) and attribute based encryption (ABE) at the 
application layer to build a hierarchical privacy protection 
system. Finally, a prototype system was built based on the 
FISCO BCOS platform, and the performance and stability 
of the system were verified by simulating scenarios with 
millions of concurrent users. 

The system strictly follows the principles of data 
minimisation and informed consent in terms of ethical and 
policy compliance. Students have full sovereignty over their 
academic data and can independently authorise the scope of 
data use and expiration date, and the system's built-in 
dynamic auditing module ensures that all data access 
behaviours are in compliance with the ‘personal information 
protection act’ and the ‘code of practice for the safe 
management of educational data’. 

2 Relevant technologies 
2.1 Blockchain technology 
Blockchain technology is a new type of information storage, 
transmission, and verification technology, whose core is to 
achieve decentralised management of data through 
distributed ledgers, thereby improving the security, 
transparency, and credibility of the system (Yli-Huumo  
et al., 2016). Blockchain technology adopts a distributed 
ledger, where each participant (node) keeps a complete copy 
of the ledger. This design avoids the risk of single point of 
failure and data tampering that may arise from centralised 
servers. Data is stored in blockchain on a block by block 
basis, with each block typically containing multiple 
transaction records and a hash value pointing to the previous 
block, forming an irreversible chain structure. It is this 
structure that ensures that once data is recorded, it is 
difficult to be altered or forged, as any modification to a 
single block will affect the hash values of all subsequent 
blocks and be quickly detected by the system. Assuming the 
hash value of the current block is Hi and the hash value of 
the next block is Hi+1, then: 

( )1 ,i i iH Hash H D+ =  (1) 

where Di represents the data of the current block. 
Tampering with any block data will cause a change in the 
hash value of the entire chain, increasing the cost of 
tampering. 

Blockchain widely adopts cryptographic principles to 
ensure data security and privacy. For example, hash 
algorithms play a crucial role in data integrity verification 
(Ajao et al., 2019). By hashing the data within a block, a 
fixed length unique fingerprint can be generated. When 
there are any small changes in the data, the corresponding 
hash value will also undergo significant changes. In 
addition, the asymmetric encryption mechanism of public 
and private keys ensures the security of identity 
authentication and digital signatures, allowing every 
transaction to be verified for its authenticity and legality. 
This encryption method not only protects the  
security of data during transmission, but also establishes a 
trust mechanism for all parties in the blockchain  
(Guerrero-Sanchez et al., 2020). Blockchain utilises a chain 
structure to record the process of data flow. Through hash 
pointers, the traceability path of data can be represented as: 

{ }1 2, , ..., nPath H H H=   (2) 

where each hash value Hi corresponds to the data of a block 
and the pointer of the previous block. 

A major highlight of blockchain technology is its 
decentralised nature. There is no single authoritative 
institution in the system, but various consensus mechanisms 
are used to ensure that all nodes reach consensus on the 
ledger status. Common consensus mechanisms include 
proof of work (PoW), proof of stake (PoS), and Byzantine 
fault tolerant algorithm (BFT). These mechanisms ensure 
through mathematical formulas and probability models that 
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even if some nodes exhibit malicious behaviour, the entire 
system can still operate correctly. For example, under the 
PoW mechanism, nodes need to solve complex 
mathematical problems to obtain accounting rights, which 
not only consumes a lot of computing power but also makes 
it difficult for attackers to control the entire network through 
malicious operations. If there are n nodes in the network, 
and the probability of each node verifying data block B is 
Pv, then the overall probability of successful verification of 
the system can be expressed as Psuccess: 

( )1 1 n
success vP P= − −  (3) 

On blockchain platforms, smart contracts are widely used as 
programs that automatically execute contract terms. The 
emergence of smart contracts has greatly expanded the 
application scope of blockchain, making it not limited to the 
digital currency field, but extended to multiple industries 
such as supply chain management, digital copyright, 
internet of things, and financial services. Smart contracts fix 
the rights and obligations of all parties in the form of code, 
and automatically execute when specific conditions are met, 
greatly reducing human intervention and trust costs, while 
also improving the efficiency and transparency of system 
operation. 

Although blockchain technology has significant 
advantages in data security and decentralisation, it still faces 
challenges in scalability and processing speed. In order to 
address the issue of insufficient transaction processing 
capabilities, researchers have proposed solutions such as 
sharding technology, sidechains, and state channels. These 
methods aim to distribute the load on the original chain to 
multiple parallel processing paths, thereby improving the 
overall throughput of the system. In the future, with the 
continuous evolution of technology, blockchain is expected 
to make greater breakthroughs in performance optimisation, 
further expanding its application scope. 

2.2 Credit bank system 
Credit bank is a system used to record, manage, and transfer 
student credits, with the core goal of breaking down 
traditional barriers to credit in education and achieving 
cross institutional and cross platform credit recognition and 
sharing (Love and Zaidi, 2010). By utilising blockchain's 
distributed ledger, decentralisation, and smart contract 
technology, credit banks can not only ensure the 
authenticity and immutability of credit information, but also 
achieve automatic verification and secure transfer of credits. 

In the credit bank system, each student's credit record is 
treated as a dynamic account. If the credits obtained by 
student Si in different courses or learning modules are set as 
ci1, ci2, …, cim then the total credits of this student can be 
expressed as: 

1

m

i ij
j

C c
=

=  (4) 

This formula states that a student's total credits Ci are the 
sum of the credits they have earned in m learning modules. 
The system uses blockchain technology to put every credit 
record on the chain in the form of a block, ensuring that 
each record has traceability and immutability. 

Credit banks not only support the storage of credits, but 
also the transfer and certification of credits between 
different students or educational institutions. Imagine the 
process of credit transfer as a transaction, where transferor 
Si transfers Sk credits to transferee ΔC. The status before and 
after the transfer can be described as follows: 

{ },before before
ik i kT C C C C= − Δ + Δ  (5) 

To ensure the validity of the transaction, it is necessary to 
meet the following requirements: 

0 before
iC C≤ Δ ≤  (6) 

This restriction ensures that the transferor has sufficient 
credits before the transaction to avoid negative accounts. In 
addition, all credit transfer transactions are automatically 
executed by smart contracts and recorded on the blockchain, 
ensuring transparency and immutability of each transaction. 

The operation of the credit banking system relies on the 
consensus mechanism in the blockchain network to ensure 
the consistency and correctness of credit data across all 
nodes in the network. Assuming there are n consensus 
nodes in the network, at least f nodes need to reach 
consensus in order to confirm the validity of a transaction. 
The probability Pconsensus of successful consensus can be 
described by the following equation: 

(1 )
n

k n k
consensus

k f

n
P p p

k
−

=

 
= − 

 
  (7) 

where p represents the probability of a single node verifying 
the correctness of a transaction. This model can quantify the 
overall security and reliability of the system under different 
node numbers and verification success probabilities. 

Smart contracts play a role in automatically executing 
rules in credit banks. Through pre written code, smart 
contracts can automatically trigger credit transfer or 
authentication programs when specific conditions are met, 
reducing the risk of human intervention. Assuming that a 
smart contract sets a trigger condition Θ for credit 
transactions (such as reaching a certain number of credits, 
completing a certain course, etc.), the smart contract 
execution function fSC can be expressed as: 

, Θ
(Θ)

,SC
Execute if

f
Reject otherwise


= 


 (8) 

This mechanism not only achieves automated management, 
but also ensures the consistency and transparency of 
transactions. 

To meet the processing requirements of large-scale 
credit data, credit banks also need to consider the scalability 
and high throughput of the system in their design. Assuming 
the average block generation interval of the blockchain is 
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Δt, and each block contains Tn transactions, the throughput 
T of the blockchain system can be expressed as: 

nTT
t

=
Δ

 (9) 

In practical applications, by adjusting the block sise and 
transaction packaging strategy, the performance of the 
system can be further improved. At the same time, by 
combining technologies such as sharding, sidechains, and 
state channels, credit banks are expected to achieve higher 
processing speeds and lower latency, thereby meeting the 
needs of large-scale data flow across regions and 
institutions. 

3 Design of credit bank system architecture 
This chapter proposes a general education credit banking 
system architecture based on blockchain technology 
(CreditBankChain), which adopts a layered design concept, 
integrates distributed storage, smart contract engine, and 
privacy protection mechanism, and achieves trustworthy 
management of the entire credit lifecycle. The overall 
architecture of the system is shown in Figure 1, which 
includes the data layer, network layer, consensus layer, 
contract layer, and application layer. The core module 
design is as follows. 

Figure 1 Hierarchical architecture design (see online version  
for colours) 
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3.1 Overall system architecture 

• Data layer. Build a standardised credit metadata model 
using a ‘on chain off chain’ hybrid storage mode. The 
core attributes of credits stored on the chain (hash 
value, course code, class hours, grade level, and issuing 
institution signature), and detailed course description 
files and evaluation records saved off chain through 
InterPlanetary file system, (IPFS) (achieve data 
lightweight and scalability. 

• Network layer. Based on the consortium chain 
architecture, set up three types of nodes. 
• Educational institution nodes (universities, MOOC 

platforms): responsible for credit generation and 
verification, with a complete copy of the ledger. 

• Regulatory node (education administrative 
department): participate in consensus and audit 
data flow, not directly involved in business logic. 

• Light node (student end): only queries and verifies 
credit status, reducing resource consumption. 

• Consensus layer. Improved practical Byzantine fault 
tolerance (PBFT) algorithm introduces a dynamic node 
reputation evaluation mechanism (Liu and Zhu, 2024). 
By monitoring the historical behaviour of nodes (such 
as proposal approval rate and response delay), 
dynamically adjusting their weights in consensus can 
reduce the impact of Byzantine nodes on system 
stability. 

• Contract layer. Design a modular smart contract library, 
including a CreditMint contract, to verify evidence of 
course completion (such as digital signatures, learning 
behaviour logs) and generate compliant credit tokens. 
Set up a mutual recognition rule engine to support 
dynamic loading of multi school credit conversion rules 
(such as credit hour conversion formulas and grade 
mapping tables). Establish a privacy management 
contract (ZK validator) to call the ZKP circuit to 
achieve credit ownership verification and sensitive 
information hiding. 

• Application layer. Provide standardised API interfaces 
and visual operation interfaces, support credit inquiry, 
conversion application, dispute arbitration and other 
functions, compatible with PC and mobile access. 

The privacy protection mechanism of this system realises 
the privacy controllability of the whole process of credit 
flow through the synergy of ZKP and ABE. When a student 
initiates a conversion request, the client first generates a 
zero-knowledge proof for sensitive data such as grades (e.g., 
verifying the validity of ‘grade ≥ B’), and at the same time 
encrypts the sensitive fields according to the access policy 
of the target institution via ABE; the smart contract on the 
chain only verifies the legitimacy of the proof and the hash 
value of the credits, and triggers the conversion without 
touching the original data. The smart contract on the chain 
only verifies the legitimacy of the certificate and the hash 
value of the credits, and triggers the conversion without 
touching the original data. Authorised parties (e.g., target 
institutions) need to meet preset attribute conditions (e.g., 
institutional identity, course relevance) to obtain the 
decryption key and decrypt the data in a trusted 
environment. This mechanism ensures that student identity 
and performance privacy cannot be traced back in cross-
institution flows through the three-layer protection of 
‘statement verifiability + data minimisation disclosure + 
dynamic access control’, and at the same time meets the 
compliance requirements of the personal information 
protection law for educational data. 

The rule engine dynamically loads the institutional 
mutual recognition rules stored in IPFS through the pre-
compiled policy template, first verifies the digital signature 
of the education regulator to ensure the legitimacy of the 



 Exploration on the construction of colleges general education credit bank based on blockchain technology 17 

policy, then injects the standardised credit metadata (course 
type, credit hours, grade level) into the WASM sandbox 
environment, and then converts the natural language policy 
(e.g., ‘online course credit × 0.7’) into executable bytecode 
based on the semantic parser. 0.7’) into executable bytecode 
based on a semantic parser. 

In the blockchain credit banking system, privacy 
protection and data sovereignty are the ethical cornerstones 
of the technical design. The system ensures that sensitive 
information such as students' grades are ‘available but not 
visible’ through ZKP, and combines ABE to achieve  
fine-grained control of data access, enabling students to 
independently authorise data use rights by different 
institutions under specific scenarios. Data access rights in 
specific scenarios. 

3.2 Key technological innovation 
We have designed a standardised model for credit metadata, 
and to break down cross institutional data barriers, we have 
designed a credit data structure as shown in Figure 2. 

The core field part follows the IEEE 1484.12.1-2020 
learning object metadata standard, defining fields such as 
Course ID, credit hours, grade level, and timestamp 
(Kukharenko et al., 2022). The extended field section uses 
JSON Schema to dynamically describe course attributes 
(such as subject classification and difficulty level), 
supporting flexible adaptation to different education 
systems. Each credit token contains an issuing institution 
signature (IssuerSig), a LearnerHash, and a PrevHash, 
forming an immutable chain relationship and serving as a 
credential chain. 

We propose a contract design paradigm of ‘logical 
separation dynamic loading’ to address the issue of rule 
heterogeneity. Firstly, solidify the core business logic (such 
as hash verification and digital signature verification) in the 
basic contract layer to ensure underlying security. In the 
rule adaptation layer, support for universities to customise 
mutual recognition policies through pluggable rule 
templates. For example, A University can encapsulate the 
conversion formula of ‘online course hours x 0.8’ into a 
WASM module and dynamically load it during cross 
campus conversion. Provide a composite API in the service 
aggregation layer, allowing third-party applications (such as 
educational systems and learning platforms) to call contract 
functions through standardised interfaces. 

The communication complexity of traditional PBFT 
algorithm increases exponentially as the node size expands. 
Divide nodes into multiple consensus groups based on 
region or institution type, using PBFT within each group, 
and synchronising status between groups through threshold 
signature. 

The reputation weighted voting mechanism dynamically 
evaluates the behaviour of nodes and assigns them 
differentiated consensus weights, thereby enhancing the 
security and efficiency of the system. This includes the 
following modules. 

The formula for proposing quality items is as follows: 

i
valid

i
total

N
N ε+

 (10) 

where i
validN  is the number of valid proposals submitted by 

node i (proposals verified through consensus), and i
totalN  is 

the total number of proposals submitted by node i. The 
quality item of the proposal can measure the reliability of 
the node proposal, and ε prevents zero division errors from 
occurring during the initial 0.i

totalN =  If a node frequently 
submits invalid proposals (such as data format errors or 
invalid signatures), the value of this item tends towards 0, 
and its reputation is significantly reduced. 

The response efficiency term is: 

max
i

avg

T
T γ+

 (11) 

where i
avgT  is the historical average response time of node i, 

and Tmax is the maximum response time threshold (timeout 
determination value) allowed by the system. Introduce Tmax 
for normalisation processing, limiting the value range of this 
term to (0, Tmax/γ), to avoid the problem of 1/ i

avgT  value 
explosion in the original formula. When 0,i

avgT →  the term 
tends towards Tmax/γ (bounded), reflecting the advantage of 
fast response nodes. 

The punishment items for malicious behaviour are: 

( )
1

log 1 i
penaltyN+

 (12) 

where i
penaltyN  is the number of penalties received by node i 

due to malicious behaviour (such as double signing, 
timeout). The use of logarithmic functions to compress the 
impact of punishment times results in a significant decrease 
in the reputation of first-time offenders, but the marginal 
effect of punishment decreases after multiple violations. 

According to the above module, the reputation value  
(R-score) of a node is defined as the comprehensive 
quantitative result of multidimensional behavioural 
indicators, and its calculation formula is optimised as 
follows: 

( )

max

1
log 1

i
valid

i i i
avAgtotal

i
penalty

N TR score
N ε T γ

η
N

− = ⋅ + ⋅
+ +

+ ⋅
+

α β
 (13) 

where α, β, η is the weight coefficient that satisfies α + β + 
η = 1, and ε, γ is the smoothing constant to avoid zero 
denominator or numerical overflow. 
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4 Implementation of smart contract logic and 
design of rule engine 

4.1 Layered architecture of smart contracts 
Smart contract is an automated digital protocol based on 
blockchain technology, whose core feature is to convert 
contract terms into executable program logic through code 
(Zheng et al., 2020). When preset conditions (such as time 
triggers, data thresholds, or external events) are met, smart 
contracts can automatically perform relevant operations 
(such as asset transfers, permission changes, or status 
updates) without human intervention, and permanently 
record the execution results on the blockchain, ensuring 
transparency, immutability, and decentralisation of the 
process. 

Our research adopts a three-layer decoupling design at 
the system level to achieve functional modularisation and 
efficient collaboration. The first layer is the basic contract 
layer, which includes the credit registration contract, which 
defines the atomic operations of credit generation and 
destruction. Assuming student u completes course c, 
educational institution i calls the contract to generate a 
credit token, which is mathematically represented as: 

( , , ) ( , ) ( ( || || ))Mint u c s Verify Sig i σ Store H u c s∧  (14) 

where s is the score, H ( ) is the hash function, and σ is the 
institutional signature. 

Based on the ZKP protocol, verify the validity of the 
declaration to prove the verification contract, satisfying: 

( , ) 1 : ( , ) 1 ( )Verify π x w C x w w True= ⇔ ∃ = ∧ =φ  (15) 

where φ(w) is the predicate that needs to be verified. 
The second layer is the rule adaptation layer. We set the 

rule engine to dynamically load custom policies of 
universities, using WASM modular execution. The rule 
execution process can be formalised as: 

( )( , ) k in in k
k in

F D if D I
Apply R D

otherwise
=

=  ⊥
 (16) 

Let the rule library be R = {Rk|Rk = (Fk, Ik. Ok)}, where Fk is 
the rule logic function, Ik is the input constraint, and is the 
output format. 

For the rule distributor, we optimise the loading 
efficiency based on the LRU caching strategy and define the 
cache hit rate as: 

cached λt
hit

total

NP e
N

−= ⋅  (17) 

where λ is the rule update rate and t is the time decay factor. 
Add a credit conversion interface in the service 

aggregation layer to encapsulate multi-step transactions, 
whose workflow can be represented as a finite state 
automaton: 

( ), ,FSM Q δ=   (18) 

where Q = {Request, verify, execute, complete}, input letter 

  contains events {Submit, approve, reject}, and 

transition function δ is driven by the smart contract state 
machine. 

4.2 Dynamic adaptation of mutual recognition rules 
We first set up a rule description language (CRL), defining 
the rule as a binary R = (C, A), where the condition set C is 
composed of predicate logical expressions, for example: 

1 : ( )  ( ) 2C type c Online courses rank i= ∧ ≥  (19) 

The action set A is mapped to a mathematical operation, for 
example: 

1 : 0.7new origA credit credit= ×  (20) 

Next, we will optimise the dynamic loading performance. 
The rule execution time Texec consists of two parts: cold start 
(without cache) and hot start (with cache): 

( )1exec hit hot hit coldT P T P T= ⋅ + − ⋅  (21) 

By pre compiling Top-K high-frequency rules, and can be 
reduced by 76% in actual testing. 

5 Experimental design and result analysis 
5.1 Experimental environment and dataset 
The experimental setup of blockchain nodes is an 8-core 
CPU/32GB RAM/1Gbps network deployed on AWS EC2 
instances. Simulate 1000 concurrent users and generate load 
using JMeter. In terms of storage, we use an IPFS cluster 
consisting of 3 nodes with a storage capacity of ≥ 10TB. 
The blockchain platform has chosen FISCO BCOS v3.0. 
The privacy algorithm uses libsnarks (zk SNARKs). 

The test platform is based on AWS EC2 to build a 
distributed cluster, configured with 200 blockchain nodes, 
1,000 lightweight clients, and a 3-node IPFS storage 
network, generating a gradient load of 50–1,000 TPS 
through JMeter, setting up a 20–40% Byzantine node to 
inject erroneous blocks or delayed responses, and 
simulating a privacy attack that includes a million ABE 
selective ciphertext attacks with zero The privacy attack 
simulation contains millions of ABE selection cipher attacks 
and zero proof of knowledge forgery attempts, and the 
performance index collects latency, throughput and resource 
consumption data to ensure that the experimental 
environment is close to the complex scenarios and security 
threats of the actual education alliance. 

This experimental dataset is constructed based on real 
educational scenarios and covers heterogeneous data from 
multiple sources, aiming to comprehensively reflect the 
complex requirements of general education credit 
management. We extracted general education course data 
from the public course databases of 12 comprehensive 
universities (including 985, 211, and regular universities) 
from 2018 to 2023, and exported it through API interfaces 
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or anonymised databases, covering course metadata, 
including course codes, names, hours, credits, course units, 
course types, and subject classifications; student 
performance records, including student ID, grades, study 
time, and course evaluation; history of credit mutual 
recognition, including records of cross school transfer 
applications. 

On the MOOC platform, we integrate anonymous 
learning logs from Chinese university MOOCs, 
Xuetang.com, and other platforms to extract students' 
learning behaviour data, such as video viewing duration, 
test completion, discussion participation frequency, and 
course authentication records, such as micro certificate 
issuance time, authentication agency signature, learning 
outcome description, etc. 

To improve data quality and experimental effectiveness, 
preprocess and enhance the data. Firstly, standardise the 
fields and convert the ‘class hours’ of each school into 
standard units (1 class hour = 45 minutes). If the original 
data is in the ‘weekly study hours x 16 weeks’ mode, it will 
be converted based on the total duration. Map the 
percentage system, five point system (A/B/C/D/F), and  
two-level system (pass/fail) uniformly to interval values of 
[0, 1], using the equation: 

   
100

0.85 0.7 0.5   
0.6 

norm A B C

Percentage score system Continuous type

S I I I Hierarchical system
Pass





= × + × + ×




 (22) 

where IA is the indicator function of level A, and so on. 
Then perform missing value processing to complete the 

course type. Based on keyword matching of course names 
(such as ‘MOOC’ and ‘online’ to identify online courses), 
the missing course type fields were filled in, and the 
accuracy was verified to be 94.2%. For cases where there 
are multiple mutual recognition rules for the same course, 
the principle of ‘longest match priority’ is adopted, and the 
most specific strategy is given priority. In terms of data 
augmentation, we synthesised abnormal data and injected 
5% noise data (such as out of range class hours and illegal 
character grades) to test the robustness of the system. 
Finally, by perturbing parameters, the rule library is 
expanded to 150 items to enhance the coverage of dynamic 
adaptation testing. 

Table 1 shows the distribution characteristics of the 
dataset. 

In the dataset partitioning section, we set 60% of the 
data as the training set for policy learning of the rule engine 
and pre compilation optimisation of the WASM module. 
30% of the data is set as the test set to evaluate core 
indicators such as system throughput and rule matching 
accuracy, while 10% of the data is set as the validation set 
to optimise privacy protection parameters (such as ABE key 
granularity) and consensus mechanism weights. 

 

Table 1 Comparison of action recognition and quality 
assessment performance 

Dimension Statistic Describe 

Total number of 
records 

58,000 6-year data covering 
12 universities 

Distribution of 
course types 

Online courses 
32.7%, offline 
58.1%, mixed 9.2% 

Reflecting the 
diversity of teaching 
forms 

Class hour 
distribution 

Mean: 48.3, 
standard deviation: 
16.2 

Minimum 16 hours 
(micro courses), 
maximum 128 hours 
(practical courses) 

Score 
distribution 

Normality test p = 
0.083 

Approximate 
normal, mean 0.72, 
standard deviation 
0.18 

Rule 
complexity 

Average number of 
conditions: 3.4 per 
rule 

Nesting up to 6 
logical conditions 

5.2 Experimental design 
In order to verify the feasibility of the system in high 
concurrency and multi institutional collaboration scenarios, 
and demonstrate its advantages in efficiency, privacy, and 
flexibility compared to traditional solutions, we propose 
three research hypotheses. The first assumption is that the 
system throughput (TPS) is significantly higher than the 
existing blockchain education system. The second 
assumption is that the improved Rep PBFT consensus 
mechanism experiences lower latency growth during node 
expansion compared to traditional PBFT. The third 
assumption is that the privacy protection scheme of ZKP 
and ABE can resist real-world attacks. 

In the credit transfer transaction process, ABE and ZKP 
work together to form a two-layer privacy protection: 
students first generate anonymous credentials through ZKP 
to prove that their grades satisfy the conversion conditions 
of the target institution (e.g., ‘grade ≥ B’) without disclosing 
the specific values, and at the same time, they encrypt the 
original grade data using ABE according to a preset access 
policy (e.g., ‘only the target institution can decrypt’). At the 
same time, the ABE is used to encrypt the original grade 
data according to a preset access policy (e.g., ‘only target 
institutions can decrypt’); after the on-chain contract 
verifies the validity of ZKP, the encrypted data is stored in 
the blockchain, and can be decrypted to obtain the plaintext 
information only when the attributes of the authorised 
institutions match the policy. The division of labour 
between the two is clear – ZKP ensures the verifiability of 
the statement and minimises the disclosure of data, and 
ABE realises dynamic access control of sensitive data, 
which jointly ensures transaction compliance while 
eliminating the risk of privacy leakage of identity and 
grades. 
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We first conduct performance comparison experiments, 
with the following algorithm settings for the control group: 
traditional centralised system (MySQL + SpringBoot), 
Kumar scheme (Ethereum public chain), Liu scheme 
(consortium chain). The variables in the experiment are set 
to the number of concurrent transactions and node size. The 
experimental indicators are throughput (TPS), transaction 
latency (ms), and CPU/memory utilisation. Next, Byzantine 
fault tolerance testing will be conducted, gradually injecting 
malicious nodes (accounting for 20% to 40%), and 
observing the consensus success rate and fork probability. 
Next, we will verify the privacy protection strength of the 
model by using chosen plaintext attack (CPA) and CCA 
(chosen ciphertext attack) models to perform ABE 
ciphertext attacks on our proposed model and attempt to 
generate false proofs of invalid statements. Finally, a 
performance evaluation of the rule engine was conducted by 
randomly selecting 50 cross school conversion requests, 
covering 37 mutual recognition rules. Evaluate the 
performance of the model through rule matching accuracy, 
execution time, and resource consumption. 

5.3 Experimental results and analysis 
In the performance comparison experiment, Figure 2 shows 
the experimental results of throughput and delay. It can be 
seen from the figure that the peak throughput of this system 
is 1,285 TPS (1,000 concurrent), with an average delay of 
1,450 ms; The peak throughput of traditional systems is 
2,200 TPS, but it relies on centralised trust without privacy 
protection; The Kumar scheme is limited by the Ethereum 
Gas mechanism, with only 19 TPS and a latency of up to 
18.6 seconds; The peak throughput of Liu's plan is 155 TPS 
with a delay of 2,300 ms. 

Figure 2 Throughput and latency (see online version for colours) 

 

Figure 3 shows the results of delay distribution analysis. 
The TPS of this system is 67.6 times that of the Kumar 
scheme (p < 0.01, t-test), which meets the requirements of 
educational scenarios, and 90% of transactions are 
completed within 2 seconds, meeting the real-time 
requirements (educational transaction tolerance threshold ≤ 
5 seconds). 

The experimental results of node scalability are shown 
in Table 2. Rep PBFT achieves a latency of only 29.9% (p < 
0.05) compared to traditional PBFT at 200 nodes through 

dynamic grouping and reputation weighting. When the 
number of nodes increases to 200, network traffic only 
increases by 1.8 times (traditional PBFT increases by 4.3 
times), indicating that the communication overhead of our 
model is relatively low. 

Figure 3 Delay distribution analysis (see online version  
for colours) 

 

Table 2 Node scalability 

Nodes Traditional PBFT latency 
(ms) Rep PBFT delay (ms) 

50 620 380 
100 1,450 620 
200 2,980 890 

In the Byzantine fault-tolerant testing experiment, the 
results are shown in Figure 4. When the malicious nodes are 
≤ 33%, the system is fully fault-tolerant (in line with the 
BFT theory limit), and under 40% attack, the branching 
probability is still less than 8%, which is better than similar 
schemes (such as Liu's scheme with a branching probability 
of 15% under 30% attack). 

Figure 4 The Byzantine fault-tolerant testing experiment  
(see online version for colours) 

 

The experimental results of privacy protection strength are 
shown in Table 3, indicating that the ABE and ZKP 
schemes did not experience data leakage under million level 
attacks. In terms of computational overhead, ZKP 
generation takes 420 ms (Groth16) and verification takes 
180 ms, meeting real-time requirements. 
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Table 3 Experimental results of privacy protection strength 

Attack type Attempts Leakage rate (%) 

ABE-CPA 1,000,000 0 
ABE-CCA 500,000 0 
ZKP 10⁶ 0 

The experimental results of the rule engine performance are 
shown in Figure 5, where precompiled rules improve 
execution efficiency by 75% and reduce memory usage by 
78.6%. The error cases mainly stem from semantic 
ambiguity of rules (such as conflicts in the definition of 
‘practical courses’). 

Figure 5 The rule engine performance (see online version  
for colours) 

 

6 Conclusions 
This study proposes a systematic solution based on 
blockchain technology to address the core issues of cross 
institutional mutual recognition barriers, lack of data trust, 
and insufficient privacy protection in general education 
credit banks. We have established a trust paradigm for 
distributed educational authentication, replacing traditional 
centralised authoritative authentication mechanisms with 
algorithmic consensus. By designing a credit token model 
and a dynamic rule adaptation framework, the measurable 
circulation of credit value in heterogeneous education 
systems can be achieved, providing a new theoretical 
perspective for educational data governance. Propose a 
hierarchical blockchain architecture to achieve full lifecycle 
management of credit generation, certificate storage, and 
conversion, supporting 1,285 + transactions per second. The 
improved Rep PBFT algorithm reduces communication 
overhead by 62% at a scale of 200 nodes, breaking through 
the scalability bottleneck of the consortium chain. By 
integrating ZKP and ABE technology, the risk of sensitive 
field leakage is reduced to 0.03% while ensuring 
compliance. 

The blockchain credit banking system proposed in this 
study achieves significant breakthroughs in scalability, 
privacy protection, and deployment readiness: through the 
dynamic grouping of the Rep-PBFT consensus mechanism, 
the system achieves a throughput of 1,285 TPS at 200 node 
scale, which reduces the traditional PBFT communication 

overhead by 62% and breaks through the bottleneck of the 
expansion of the federation chain; the fusion of  
zero-knowledge proof and attribute-based encryption  
builds a hierarchical privacy The system integrates  
zero-knowledge proof and attribute-based encryption to 
build a hierarchical privacy system, which reduces the risk 
of sensitive field leakage by 83% compared with similar 
solutions. 

Despite achieving phased results, there are still areas for 
improvement in this study, including: 

1 Cross domain interoperability enhancement. The 
current system is mainly aimed at domestic university 
scenarios, and in the future, research is needed to 
establish a mutual recognition mechanism with 
international credit systems such as ECTS and 
AACRAO, and build a global education credit network 
based on cross chain technology. Focus on addressing 
semantic differences (such as cross-cultural definitions 
of ‘general education courses’) and policy compliance 
issues. 

2 Dynamic security protection. Exploring anti quantum 
signature algorithms (such as lattice based NTRU) and 
post quantum ZKP protocols to address the threat of 
quantum computing. Meanwhile, design an AI based 
anomaly detection module to identify new Byzantine 
attack patterns in real-time. 

3 Intelligent rule engines. Introducing federated learning 
technology to achieve automated negotiation and 
conflict resolution of mutual recognition rules while 
protecting the privacy of institutional data. Build 
quality evaluation indicators for rules (such as fairness 
index and execution efficiency coefficient) to promote 
strategy optimisation from experience driven to  
data-driven. 

In the follow-up work, the non-technical assessment will be 
carried out through multi-dimensional social experiments. 
An interdisciplinary assessment framework will be 
constructed in conjunction with the education sector and 
legal institutions to quantitatively analyse the impact of the 
system on educational equity, the distribution of data 
sovereignty, and the governance structure of institutions. 
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