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Abstract: With the rapid development of the internet of things (IoT), the 
proliferation of IoT devices has led to massive data generation and 
transmission. However, security issues, especially anomaly detection, have 
become a major challenge. Traditional anomaly detection methods often rely 
on rule-based techniques or conventional machine learning models, which face 
issues such as low accuracy and high computational costs when handling  
large-scale, high-dimensional IoT data. To address these challenges, this paper 
presents a novel IoT anomaly detection method based on deep learning and 
hierarchical architecture (DeepIoT-HAD). This approach combines deep 
autoencoders (AE) with a hierarchical architecture to efficiently process the 
diversity and complexity of IoT data, improving detection accuracy while 
reducing computational resource consumption. Experimental results show that 
DeepIoT-HAD outperforms traditional methods and existing deep learning 
models in terms of detection accuracy and computational efficiency across 
multiple benchmark datasets. 

Keywords: internet of things; IoT; anomaly detection; deep learning; DL; 
autoencoder; AE; layered architecture. 
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1 Introduction 

As internet of things (IoT) technology develops quickly, more and more devices are 
linked to the network producing enormous volumes of real-time data (Tien, 2017). Apart 
from providing daily convenience, IoT is extensively applied in numerous sectors like 
industrial, healthcare, and smart home (Alaa et al., 2017). But with the growing number 
of devices and the complexity of data, IoT systems’ security and stability problems have 
taken front stage (Allioui and Mourdi, 2023). Particularly in data transmission, device 
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control and management, aberrant behaviour in these areas sometimes seriously affects 
system regular operation. Consequently, in present study, the effective and precise 
identification of aberrant behaviour in IoT systems becomes a major concern. 

Regarding IoT anomaly detection, experts have put out several approaches and 
strategies to improve identification. Early research included conventional techniques 
based on statistical analysis including distance-based anomaly detection methods, 
clustering-based detection methods, and threshold-based detection approaches (Patcha 
and Park, 2007). These approaches have some success in some simple situations, but their 
limitations progressively show themselves due to the complexity and dynamics of IoT 
data, particularly when used on large-scale data and complicated contexts, where it is 
sometimes difficult to get the intended outcomes. 

As machine learning technology develops constantly, more and more research on 
anomaly detection employing machine learning models is directed (Ma et al., 2021). Task 
involving anomaly detection makes frequent use of machine learning techniques 
including random forests, decision trees, and support vector machines (SVMs) 
(Rodriguez-Galiano et al., 2015). Usually, these approaches are more suited to handle the 
high-dimensional data and nonlinear interactions. Nevertheless, especially in  
high-dimensional data, which still makes it challenging to ensure the performance and 
accuracy of the models, these conventional machine learning approaches still suffer from 
the issues of complicated feature engineering and time-consuming model training (Fan  
et al., 2019). 

Deep learning (DL) approaches have now emerged to be standard tools in the field of 
IoT anomaly detection (Ullah and Mahmoud, 2021). DL models with strong feature 
learning capacity have been extensively applied in anomaly detection activities including 
autoencoder (AE), convolutional neural network (CNN), and recurrent neural network 
(RNN) (Sewak et al., 2020). Nevertheless, the training and inference process of DL 
models typically requires a lot of computational resources and time; hence, the models 
are less interpretable, thus how to balance the performance and computational complexity 
of the models remains a major difficulty in present research. 

More and more studies based on layered architectures are investigating ways to 
enhance IoT anomaly detection system performance even more. With each level of 
layered architecture executing certain functional processing, the anomaly detection 
choreography can be split into several tiers. For instance, hierarchical processing of the 
phases of data collecting, pre-processing, feature extraction and anomaly detection helps 
to enable focused optimisation of every module (Habeeb et al., 2019). Given the variety 
of sensor data and real-time needs in the IoT environment, layered architecture can 
significantly raise the general accuracy and efficiency of the system. With an eye toward 
lowering computing complexity and real-time needs while guaranteeing detection 
accuracy, several research have started to try to mix DL with layered architectures. 

Aiming to overcome the issues of accuracy, efficiency, and computational resource 
consumption of anomaly detection in the IoT environment, we propose DeepIoT-HAD, 
an IoT anomaly detection approach combining DL and layered architecture, in this work. 
This work mostly makes two contributions: first, it addresses the following two aspects: 

1 Combining AE with multi-level hierarchical architecture to increase the detection 
accuracy and computational efficiency, a DL and hierarchical architecture-based 
anomaly detection framework for IoT is suggested. 
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2 Three experiments are planned and carried out to validate the performance of the 
proposed DeepIoT-HAD framework compared to conventional methods and other 
DL models, respectively, and the experimental results reveal that the framework has 
major advantages in terms of detection accuracy and response time. 

This work offers a quick and useful method for IoT anomaly identification with great 
possibility for pragmatic uses. 

2 Relevant technologies 

2.1 DL in IoT anomaly detection 

By automatically extracting deep features from raw data, DL avoids the difficulty of hand 
feature engineering and detects intricate patterns impossible with conventional 
approaches. 

Encoding and decoding the incoming data helps the AE to detect anomalies in the 
data (Chevrot et al., 2022). Assuming nx ∈  as the input, the autoencoder first transfers 
the data to the latent space via an encoder: 

( )θz f x=  (1) 

where θ is a model parameter; z is the latent space representation; fθ is the encoder 
function. The decoder then interprets the latent space representation z back into the 
original data space: 

ˆ ( )θx g z=  (2) 

where the decoder function is gθ and the reconstruction output of the self-encoder is ˆ.x  
While the reconstruction error of abnormal data will be bigger, which can effectively 
identify normal from abnormal data, if the input data is normal the reconstruction error is 
usually minor. One computes the reconstruction error as: 

( ) 2
2ˆ ˆ,L x x x x= −  (3) 

The data is said to be abnormal when the reconstruction error above a specific level. 
CNN can extract local characteristics via convolutional processes and fits data with 

spatial dependency (Chen et al., 2016). CNN’s fundamental architecture is one of a 
convolutional layer, a pooling layer, and a fully linked layer. Through convolution of a 
convolutional kernel W with an input data x, the convolutional layer generates a feature 
map y. After that, the convolutional kernel W generates a feature map y via convolution 
with the input data x: 

y W x b= ∗ +  (4) 

where b is the bias term; ∗ signifies the convolution operation. By means of several 
convolution kernels, the convolution process captures local features in the data; following 
down sampling by the pooling layer, the dimensionality of the features can be further 
lowered to capture more advanced abstract characteristics. 

Apart from CNN, RNN and their variant LSTM have major benefits for processing 
time-series data. RNN can capture temporal aspects in the time series by means of its 
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cyclic structure; many IoT data are time-dependent, including sensor data, network 
traffic, etc., and RNN may therefore reflect them (Liu et al., 2023). With an update 
formula as follows, LSTM –a type of enhanced RNN –can address gradient 
disappearance of the conventional RNN in the training of extended sequences: 

( )1,t t th f x h −=  (5) 

where ht is the hidden state at the present; xt is the LSTM’s current input; f is the 
activation function. Particularly crucial for time-series data in IoT, the LSTM regulates 
the information flow through memory gates, therefore enabling the model to properly 
capture long-term dependencies (Wu et al., 2021). 

LSTM may learn long-term dependencies in time-series data to capture abrupt shifts 
or aberrant patterns in network traffic or device statuses, therefore enabling anomaly 
detection in IoT. LSTM can thus efficiently find and highlight changes in sensor data that 
differ greatly from historical data as such. 

Usually based on back-propagation methods that compute the gradient of the loss 
function, the training of DL updates the model parameters. Cross-entropy loss is the 
widely used loss function in classification problems computed as: 

( ) ( ) ( )( )
1

ˆ ˆlog 1 log 1
N

CE i i i i
i

L y y y y
=

= − + − −  (6) 

where ˆiy  is the model’s prediction; yi is the actual label of the sample. Often adding a 
regularisation term, such L2 regularisation, helps one prevent overfitting: 

2

1

M

reg j
j

L λ θ
=

=   (7) 

where λ is a regularisation coefficient and θj is a model parameter. Through optimising 
the loss function, DL can progressively change the parameters to reduce the prediction 
error (Shrestha and Mahmood, 2019). 

DL has certain difficulties even if it offers great benefits in IoT anomaly detection. 
First of all, since anomaly data is often rare in IoT systems, the training of DL models 
often depends on a lot of labelled data. Second, the training process of DL models has a 
significant computing overhead. Furthermore influencing the efficacy of anomaly 
detection is the data imbalance issue perhaps biassing the model toward normal data 
prediction. 

2.2 Layered architecture 

Layerered architectures are extensively applied for data collecting, transmission, and 
processing in IoT systems (Mrabet et al., 2020). Particularly in cases of large-scale data, 
layered design serves primarily to increase the scalability, adaptability, and efficiency of 
the system. An IoT system usually consists of a perception layer, a network layer, and an 
application layer whereby each layer performs various functions and cooperatively 
completes tasks including data processing and anomaly detection (Erhan et al., 2021). 

First, raw data gathered by sensors is mostly dependent on the perception layer 
(Khattak et al., 2019). These data, which could be gathered by several kinds of sensors, 
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comprise environmental factors including temperature, humidity, air pressure, light 
intensity, etc.). Specify xraw as the data of the perception layer, so: 

( )rawx Sensor S=  (8) 

The sensing layer aims to pass gathered raw data to the network layer (Kobo et al., 2017). 
Some pre-processing tasks such data cleansing, noise reduction, normalisation, etc. could 
be carried out throughout this procedure. The perception layer might additionally 
compress the data to lower data redundancy and maximise transmission (Rehman et al., 
2016). Here, it is believed that following transmission, the data at the sensing layer 
undergoes xtrans, i.e., 

( )trans rawx Preprocess x=  (9) 

Data then moves for routing and aggregation into the network layer. Guaranteeing the 
security and efficiency of data flow inside the IoT system falls to the network layer. 
Devices including gateways, routers, hubs, etc. might all fit the network layer. As data 
moves across the network layer it can be encrypted, compressed, and encapsulated. 
Following through this layer, the data transforms into xnetwork, essentially: 

( )( )network transx Compress Encrypt x=  (10) 

The network layer mostly serves to guarantee stable transmission of data to the 
application layer (Lin et al., 2017). Some procedures, such data fusion or path 
optimisation of transmission, may be carried out as necessary during this process. 

Usually tasked with anomaly detection and fault diagnosis depending on the provided 
data, the application layer is in charge of the last data processing and decision making. 
The application layer of IoT systems processes and analyses the data using statistical 
techniques, DL, etc. Following first entry into the application layer, the data will be 
further handled in the anomaly detection task. At this point the application layer’s data 
processing flow is: 

( )processed networkx Model x=  (11) 

where Model indicates another analysis technique or a deep learning model. 
Furthermore, the data in IoT systems are often multidimensional, hence at the 

application level fusion processing of multi-sensor data is essential. By means of data 
fusion, the system may enhance anomaly detection accuracy and extract features from 
several angles. Assume the data gathered from several sensors are x1, x2, …, xm; these can 
be combined with xfuse by weighted averaging or another technique. 

1

m

fuse i i
i

x w x
=

=  (12) 

where wi is the weight of every sensor data. The fused data will be forwarded to the DL 
for chores including anomaly detection. 

Generally, IoT depends much on layered architecture. Decomposing data processing 
chores into several levels helps each layer to concentrate on its particular purpose, hence 
improving the scalability, adaptability, and fault tolerance of the system. Data from the 
sensing layer to the network layer and subsequently to the application layer is transmitted 
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and processed such that the system can effectively gather, transmit, and analyse data, 
therefore laying a strong basis for next uses like anomaly detection. 

3 IoT anomaly detection system framework 

This IoT anomaly detection system’s structure comprises essentially in five modules: 
data gathering module, data transmission module, deep learning detection module, 
application layer module, and evaluation and optimisation module. As illustrated in 
Figure 1, these modules cooperate to finish the whole process from data collecting to 
anomaly detection to final decision making and assess and maximise the performance of 
the system. The specifics are as follows: 

Figure 1 IoT anomaly detection system (see online version for colours) 
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3.1 Data acquisition module 

The primary process in the module on data acquisition is gathering data from IoT devices 
and first processing of it. Data normalisation is common to guarantee that data from 
several sensors are handled at the same scale. The formula for standardising is: 

norm
X μX
σ
−=  (13) 

where X is the original data; µ is the mean; σ is the data’s standard deviation; Xnorm is the 
normalised data. 
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One often occurring issue in data collecting is noise. Weighted average allows the 
data to be smoothed therefore removing the noise. The weighted average formula is: 

0

0

ˆ
N

i t ii
t N

ii

w X
X

w

−=

=

= 


 (14) 

where ˆ tX  is the smoothed data; Xt–i is the original data at instant t – i; wi is the weighting 
factor; N is the window size. 

Linear interpolation might lastly help to fill missing values in the missing data 
problem. The interpolation recipe is: 

( ) ( )
( )

next prev prev
fill prev

next prev

X X t t
X X

t t
− ⋅ −

= +
−

 (15) 

where Xfill is the data following interpolation and filling; Xprev and Xnext are the data before 
and after the missing values; tprev and tnext are the relevant timestamps; t is the timestamp 
of the current missing value. 

3.2 Data transmission module 

First of importance in the data transmission module should be data transmission security 
and efficiency. Data reduction is achieved for this reason using Huffman coding’s 
compression technique. Its computation is: 

( ) ( )2
1

lo) g(
n

i i
i

H X p x p x
=

= −  (16) 

where H(X) is the entropy of the source data X; p(xi) is the data element xi’s probability; n 
is the total count of data items. 

Usually, an encryption technique helps to guarantee that the data is not altered during 
transit. One often used symmetric encryption method is AES, whose encryption process 
may be expressed as: 

( ),C E K P=  (17) 

where K is the key; C is the encrypted data; E is the encryption technique; P is the 
original data. 

Using a TCP/IP-based transmission control method helps to guarantee that data is not 
lost during transfer and to get effective transmission. Usually, a sliding window protocol 
is utilised for this aim to regulate the data flow using a formula: 

maxmin , availableRW W
RTT

 =  
 

 (18) 

where W is the sliding window size; Wmax is the maximum window size; Ravailable is the 
accessible bandwidth; RTT is the round trip delay. 
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3.3 DL detection module 

DL detection module is really important in IoT anomaly detection system. In this 
framework, AE is applied as a DL method for anomaly identification. Based on 
unsupervised learning, self-encoder is a network architecture able to learn the normal 
features of the data, compress the input data into a low-dimensional space, and detect the 
anomalies in the data by reconstruction error. 

There are two sections to AE: encoder and decoder. Whereas the decoder rebuilds the 
low-dimensional representation Z back to the original space to obtain the reconstruction 
result ˆ ,X  the encoder translates the input data X to a low-dimensional space 
representation Z. One may determine the reconstruction error with the following formula: 

2

1

1 ˆ
N

AE i i
i

L X X
N =

= −  (19) 

where Xi is the ith sample; ˆ iX  is its reconstruction result; N is the total number of 
samples; LAE is the reconstruction error, therefore indicating the variation between the 
input and rebuilt data. 

Through optimising this reconstruction error, AE learns the usual pattern of the data. 
Sample with high reconstruction error can be regarded as anomalous data for anomaly 
identification. By means of a reconstruction error threshold θ, one can ascertain if the 
data is aberrant or not, therefore enabling more precisely detection of aberrant data. 
Should the reconstruction error surpass this threshold, the data is deemed aberrant: 

1 if 
ˆ

0 if 
( )
( )

AE

AE

L X θ
y

L X θ
>

=  ≤
 (20) 

where LAE(X) is the reconstruction error of the current input sample X, where ŷ  is the 
prediction result; 1 denotes aberrant, 0 denotes normal. 

This method allows the deep learning model to handle different unlabelled data and 
efficiently identify aberrant events from the data streams of IoT devices with high 
adaptability. 

3.4 Application layer module 

The core of the IoT anomaly detection system and in charge of additional decision 
making and processing depending on deep learning model output is the application layer 
module. The application layer module of the IoT environment uses a rule-based  
decision-making framework to properly manage aberrant occurrences. Under such a 
system, a rule engine uses historical data, device status and current environmental 
elements in addition to anomaly detection results as inputs to reach a final conclusion. 

When a sensor data anomaly is found, for instance, the application layer responds in 
line with several anomaly kinds. A basic decision function can be built assuming yt is the 
prediction outcome of DL at instant t (1 denotes abnormal, 0 implies normal). 

( )1decision ty y= =  
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where ( 1)ty =  is an indicator function and yt = 1 indicates that the data is found to be 
anomalous and ydecision is 1, indicating that anomalous processing is necessary; if yt = 0 
the system does not respond and ydecision is 0. 

To further make more precise decisions, the application layer also must combine 
anomaly information from other data sources. To lower some chance mistakes, the 
system may have to weight and average the anomalous information from several devices 
when it detects anomalies from many devices. The weighted decision output can be stated 
as yi, the anomaly prediction result of the ith device, assuming that yi is the outcome of 
weight wi: 

1

1

N
i ii

fusion N
ii

w y
y

w
=

=

= 


 (22) 

where N is the overall number of devices; wi is the weight of device i; yfusion is the 
decision output following weighted fusion. 

These decision outcomes also enable the application layer module to initiate other 
responses, e.g., alert generation, device parameter adjustment, fault automatically repair, 
etc., so improving the adaptability and resilience of the system. In some complicated 
situations, the application layer can additionally aggregate previous data for pattern 
recognition and trend prediction, therefore anticipating and responding to possible 
anomaly risks in advance. 

This framework can efficiently improve the response speed and processing capability 
to abnormal events by combining the anomaly detection of the deep learning model, so 
guaranteeing the continuous and stable running of the system. 

3.5 Evaluation of the optimisation module 

Monitoring and optimising DL to guarantee the accuracy and efficiency of the IoT 
anomaly detection system falls to the evaluation and optimisation module. The module 
functions mostly through the following actions: 

Metrics including accuracy, precision, and recall first help to assess the model 
performance. Assuming ŷ  as the model output and y as the true label, the formula 
determines accuracy: 

( )
1

ˆ
Accuracy

N
i ii

y y

N
=

=
=  

 (23) 

Meanwhile, precision and recall can be defined separately: 

Precision TP
TP FP

=
+

 (24) 

Recall TP
TP FN

=
+

 (25) 
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where TP, FP and FN stand for true positives, false positives and false negatives 
accordingly. Combining the F1 values allowed one to assess memory and accuracy with 
equation: 

Precision Recall1 2
Precision Recall

F ⋅= ⋅
+

 (26) 

These optimisation techniques guarantee that the evaluation optimisation module delivers 
regular performance reports to enable system managers monitor model health and 
guarantees effective anomaly identification over the long run. 

4 Experimental results and analyses 

4.1 Datasets 

This work uses publicly accessible IoT Network Intrusion Dataset (IoT-NIDS) dataset on 
Kaggle to test the efficacy of the suggested IoT anomaly detecting approach. Suitable for 
anomaly detection activities, this dataset comprises IoT device traffic data for several 
cyber attack kinds. Table 1 exhibits the main characteristics of the dataset: 
Table 1 IoT-NIDS information 

Feature Description Data type 
Packet size Size of each packet Numeric 
Timestamp Timestamp of the packet Numeric 
Source IP Source IP address of the packet Categorical 
Destination IP Destination IP address of the packet Categorical 
Protocol type Network protocol used (e.g., TCP, UDP) Categorical 
Packet type Type of packet (e.g., request, response) Categorical 
Label Data label (normal or attack) Categorical (0 or 1) 

The collection includes network traffic from several IoT devices tagged with both normal 
and several kinds of attack events. Data pretreatment for the trials consists in elimination 
of missing values, numerical feature normalisation, and uniquely hot coding of 
classification features. The dataset was eventually split into a test set to assess the 
model’s performance and a training set utilised for model development. 

Particularly for various attack kinds in IoT environment, the dataset is fit for 
assessing the performance of the anomaly detection technique suggested in this research. 

4.2 Experimental procedure 

The experimental setup comprised of the same dataset for comparison, a hardware 
configuration of a computer with 16 GB of RAM and an NVIDIA GPU, a Python 
language software environment, LSTM model training using TensorFlow/Keras 
framework, and SVM training using the Scikit-learn library. 

Comparative research between DL models and conventional techniques forms the 
first experiment. This work aims to validate the performance of the IoT anomaly 
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detection method based on DL and layered architecture, i.e., DeepIoT-HAD, compared 
with other traditional methods and DL, including Gaussian mixture models (GMMs), 
LSTMs, CNNs, etc., in order to evaluate the advantages of this framework in IoT data 
anomaly detection. Figure 2 displays the experimental outcomes. 

Figure 2 Performance evaluation of DeepIoT-HAD and comparison with other models  
(see online version for colours) 
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DeepIoT-HAD shows good performance in all the assessment metrics from the 
experimental data, particularly in terms of accuracy, recall, and F1 score, which are much 
higher than those of other conventional techniques and D. DeepIoT-HAD’s accuracy of 
0.95 is notably greater than that of LSTM (0.89), CNN (0.90), and GMM (0.86), 
therefore indicating that DeepIoT-HAD is able to more correctly categorise normal and 
aberrant data. DeepIoT-HAD’s recall of 0.92 is likewise much higher than LSTM (0.85), 
CNN (0.87), and GMM (0.81), implying that the technique is more suited to detect 
aberrant data and more able to catch most of the anomalies. With a 0.97 accuracy level 
far greater than that of the other models, almost all of the data indicate are actual 
anomalies with a minimal false alarm rate when anomalies are found. At last,  
DeepIoT-HAD has an F1 score of 0.94, which is likewise better than other models, 
particularly GMM (0.85), so demonstrating the advantage of the framework in balancing 
the accuracy and recall of anomaly detection. 

Overall, the experimental results reveal that DeepIoT-HAD has great performance in 
IoT anomaly detection, particularly in terms of recall and accuracy, thereby supporting 
the efficacy of the method in managing challenging data and high-dimensional anomaly 
detection chores. 
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Comparative experiments between single-layer and multi-layer layered architecture 
constitute the second one. This work aims to validate, particularly in terms of detection 
accuracy, computational complexity, and reaction time, the benefits of multilevel layered 
architecture in IoT anomaly detection system. We will thus compare single-tier 
architecture and multi-layer layered architecture for training independently and assess 
their effectiveness on certain assessment criteria. Figure 3 displays the experimental 
findings. 

Figure 3 Comparison of performance between single-layer and DeepIoT-HAD (see online 
version for colours) 

Single Layer DeepIoT-HAD
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In terms of accuracy, response time, and computing resource consumption, the 
comparison experiments reveal that the multilevel layered architecture (DeepIoT-HAD) 
shows appreciable benefits over the single-layer architecture. DeepIoT-HAD surpasses 
the 88.9% of the single-layer design with a detection accuracy of 92.5%, which is more 
accurate. DeepIoT-HAD responds 125 seconds to process every piece of data, while 
single-layer architecture responds 135 seconds. DeepIoT-HAD still demonstrates 
improved response time, especially when processing big-scale datasets, even if the two 
differ in not much terms; the advantage of layered architecture is more clear.  
DeepIoT-HAD shows the capacity of the layered architecture in optimising 
computational resource consumption by using less memory than the single-layer 
architecture, 240 MB rather than 256 MB. 

The third experiment is the model optimisation and data enhancement one. This 
experiment aims to investigate how methods of data augmentation and model 
optimisation could help to raise IoT anomaly detection performance. We assess the 
influence of several data enhancement techniques (e.g., SMote, data resampling, etc.) on 
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model performance by combining them with optimisation strategies like regularisation 
and learning rate adjustment and so increase the diversity of training data. 

In this experiment, we first compare the datasets using data enhancement with those 
without data enhancement, and train alternative models depending on this in combination 
with optimisation strategies such regularisation and learning rate modification. We want 
to confirm the efficiency of data augmentation and optimisation strategies in raising 
anomaly detection performance by means of comparison of the experimental outcomes. 
Figure 4 shows the experimental outcomes. 

Figure 4 Comparison of performance with without data augmentation and optimisation in 
DeepIoT-HAD (see online version for colours) 
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The trials reveal that boosting the performance of the DeepIoT-HAD model depends 
much on data enhancement (SMote) and model optimisation (e.g., regularisation). The 
accuracy, recall, and F1 value all rise during SMote data enhancement; the enhancement 
performance is particularly notable in recall and F1 value. This suggests that improving 
data helps the model to identify several kinds of abnormalities with efficiency. 
Regularisation helps to solve the overfitting issue of the model and raises general 
performance with an accuracy of 95.2%. With accuracy, recall, and F1 values of 96.3%, 
94.0%, and 95.1%, respectively, the model displays the best results when  both SMote 
and regularisation are applied, so proving the power of DeepIoT-HAD with the mix of 
data enhancement and optimisation techniques. 
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Particularly in practical applications, where enhancement and optimisation means are 
of great relevance, the results of this experiment show that methods of data enhancement 
and model optimisation not only improve the detection accuracy of the model but also 
essentially increase its ability to generalise to anomalous data. 

Taken together, DeepIoT-HAD not only innovates in the model structure and 
improves the accuracy and efficiency of anomaly detection through a multi-level layered 
architecture, but also combines the data enhancing and model optimising techniques to 
make the system more robust and efficient in handling the task of anomaly detection in 
complex IoT environments. 

5 Conclusions 

In this work, we offer DeepIoT-HAD, an IoT anomaly detection technique grounded on 
DL and layered architecture. We essentially increase the accuracy and computational 
efficiency of the anomaly detection system in the IoT environment by creatively merging 
layered architecture with DL. This work not only provides effective detection of 
abnormal activities of IoT devices but also considers the real-time and scalability of the 
system to guarantee good performance in large-scale data transmission and complex 
situations. 

Still, there are certain limits to this study. First of all, the utilised dataset is somewhat 
basic; hence, it is advisable to consider in the future more complicated and varied IoT 
datasets to test the performance of the model even further. Second, although the layered 
design works better in this study, how to choose the suitable layers and model parameters 
depending on the particular case when applied in practice still has to be investigated 
more. Furthermore, especially for applications in large-scale IoT contexts, future 
optimisation still revolves on the computational complexity and resource consumption of 
the model. 

Future studies can delve further in the following spheres: 

1 further improve the layered architecture’s design to fit the data transmission and 
processing needs in more pragmatic settings 

2 add more sophisticated DL as graph neural networks (GNN) and transformer to 
increase model generalisation and detection even more 

3 edge computing along with distributed computing can be investigated to solve the 
contradiction between resource use and real-time in IoT systems. 

Finally, DeepIoT-HAD offers a realistic and effective way for IoT anomaly detection 
with great possibility for development prospects and useful applications. 
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