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Abstract: With the rapid development of the internet of things (IoT), the
proliferation of IoT devices has led to massive data generation and
transmission. However, security issues, especially anomaly detection, have
become a major challenge. Traditional anomaly detection methods often rely
on rule-based techniques or conventional machine learning models, which face
issues such as low accuracy and high computational costs when handling
large-scale, high-dimensional IoT data. To address these challenges, this paper
presents a novel IoT anomaly detection method based on deep learning and
hierarchical architecture (DeeploT-HAD). This approach combines deep
autoencoders (AE) with a hierarchical architecture to efficiently process the
diversity and complexity of IoT data, improving detection accuracy while
reducing computational resource consumption. Experimental results show that
DeeploT-HAD outperforms traditional methods and existing deep learning
models in terms of detection accuracy and computational efficiency across
multiple benchmark datasets.
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1 Introduction

As internet of things (IoT) technology develops quickly, more and more devices are
linked to the network producing enormous volumes of real-time data (Tien, 2017). Apart
from providing daily convenience, IoT is extensively applied in numerous sectors like
industrial, healthcare, and smart home (Alaa et al., 2017). But with the growing number
of devices and the complexity of data, [oT systems’ security and stability problems have
taken front stage (Allioui and Mourdi, 2023). Particularly in data transmission, device
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control and management, aberrant behaviour in these areas sometimes seriously affects
system regular operation. Consequently, in present study, the effective and precise
identification of aberrant behaviour in IoT systems becomes a major concern.

Regarding IoT anomaly detection, experts have put out several approaches and
strategies to improve identification. Early research included conventional techniques
based on statistical analysis including distance-based anomaly detection methods,
clustering-based detection methods, and threshold-based detection approaches (Patcha
and Park, 2007). These approaches have some success in some simple situations, but their
limitations progressively show themselves due to the complexity and dynamics of IoT
data, particularly when used on large-scale data and complicated contexts, where it is
sometimes difficult to get the intended outcomes.

As machine learning technology develops constantly, more and more research on
anomaly detection employing machine learning models is directed (Ma et al., 2021). Task
involving anomaly detection makes frequent use of machine learning techniques
including random forests, decision trees, and support vector machines (SVMs)
(Rodriguez-Galiano et al., 2015). Usually, these approaches are more suited to handle the
high-dimensional data and nonlinear interactions. Nevertheless, especially in
high-dimensional data, which still makes it challenging to ensure the performance and
accuracy of the models, these conventional machine learning approaches still suffer from
the issues of complicated feature engineering and time-consuming model training (Fan
etal., 2019).

Deep learning (DL) approaches have now emerged to be standard tools in the field of
IoT anomaly detection (Ullah and Mahmoud, 2021). DL models with strong feature
learning capacity have been extensively applied in anomaly detection activities including
autoencoder (AE), convolutional neural network (CNN), and recurrent neural network
(RNN) (Sewak et al., 2020). Nevertheless, the training and inference process of DL
models typically requires a lot of computational resources and time; hence, the models
are less interpretable, thus how to balance the performance and computational complexity
of the models remains a major difficulty in present research.

More and more studies based on layered architectures are investigating ways to
enhance IoT anomaly detection system performance even more. With each level of
layered architecture executing certain functional processing, the anomaly detection
choreography can be split into several tiers. For instance, hierarchical processing of the
phases of data collecting, pre-processing, feature extraction and anomaly detection helps
to enable focused optimisation of every module (Habeeb et al., 2019). Given the variety
of sensor data and real-time needs in the IoT environment, layered architecture can
significantly raise the general accuracy and efficiency of the system. With an eye toward
lowering computing complexity and real-time needs while guaranteeing detection
accuracy, several research have started to try to mix DL with layered architectures.

Aiming to overcome the issues of accuracy, efficiency, and computational resource
consumption of anomaly detection in the loT environment, we propose DeeploT-HAD,
an loT anomaly detection approach combining DL and layered architecture, in this work.
This work mostly makes two contributions: first, it addresses the following two aspects:

1  Combining AE with multi-level hierarchical architecture to increase the detection
accuracy and computational efficiency, a DL and hierarchical architecture-based
anomaly detection framework for IoT is suggested.
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2 Three experiments are planned and carried out to validate the performance of the
proposed DeeploT-HAD framework compared to conventional methods and other
DL models, respectively, and the experimental results reveal that the framework has
major advantages in terms of detection accuracy and response time.

This work offers a quick and useful method for IoT anomaly identification with great
possibility for pragmatic uses.

2 Relevant technologies

2.1 DL in IoT anomaly detection

By automatically extracting deep features from raw data, DL avoids the difficulty of hand
feature engineering and detects intricate patterns impossible with conventional
approaches.

Encoding and decoding the incoming data helps the AE to detect anomalies in the
data (Chevrot et al., 2022). Assuming x€ R” as the input, the autoencoder first transfers
the data to the latent space via an encoder:

z= fp(x) (1

where 6 is a model parameter; z is the latent space representation; fy is the encoder
function. The decoder then interprets the latent space representation z back into the
original data space:

F=gy(2) (2)

where the decoder function is gy and the reconstruction output of the self-encoder is x.
While the reconstruction error of abnormal data will be bigger, which can effectively
identify normal from abnormal data, if the input data is normal the reconstruction error is
usually minor. One computes the reconstruction error as:

L(x, 2)=lx—3l 3)

The data is said to be abnormal when the reconstruction error above a specific level.

CNN can extract local characteristics via convolutional processes and fits data with
spatial dependency (Chen et al., 2016). CNN’s fundamental architecture is one of a
convolutional layer, a pooling layer, and a fully linked layer. Through convolution of a
convolutional kernel W with an input data x, the convolutional layer generates a feature
map y. After that, the convolutional kernel W generates a feature map y via convolution
with the input data x:

y=W*x+b “

where b is the bias term; * signifies the convolution operation. By means of several
convolution kernels, the convolution process captures local features in the data; following
down sampling by the pooling layer, the dimensionality of the features can be further
lowered to capture more advanced abstract characteristics.

Apart from CNN, RNN and their variant LSTM have major benefits for processing
time-series data. RNN can capture temporal aspects in the time series by means of its
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cyclic structure; many IoT data are time-dependent, including sensor data, network
traffic, etc., and RNN may therefore reflect them (Liu et al., 2023). With an update
formula as follows, LSTM -a type of enhanced RNN -—can address gradient
disappearance of the conventional RNN in the training of extended sequences:

hy :f(xt> ht—l) 5)

where 7, is the hidden state at the present; x; is the LSTM’s current input; f is the
activation function. Particularly crucial for time-series data in IoT, the LSTM regulates
the information flow through memory gates, therefore enabling the model to properly
capture long-term dependencies (Wu et al., 2021).

LSTM may learn long-term dependencies in time-series data to capture abrupt shifts
or aberrant patterns in network traffic or device statuses, therefore enabling anomaly
detection in [oT. LSTM can thus efficiently find and highlight changes in sensor data that
differ greatly from historical data as such.

Usually based on back-propagation methods that compute the gradient of the loss
function, the training of DL updates the model parameters. Cross-entropy loss is the
widely used loss function in classification problems computed as:

Leg z_ﬁ:(%‘ log(j/l-)+(1—y,-)10g(1—f/i)) ©

i=l1

where J; is the model’s prediction; y; is the actual label of the sample. Often adding a
regularisation term, such L2 regularisation, helps one prevent overfitting:

M
L =3) 0} ™
j=1

where 4 is a regularisation coefficient and 6, is a model parameter. Through optimising
the loss function, DL can progressively change the parameters to reduce the prediction
error (Shrestha and Mahmood, 2019).

DL has certain difficulties even if it offers great benefits in IoT anomaly detection.
First of all, since anomaly data is often rare in IoT systems, the training of DL models
often depends on a lot of labelled data. Second, the training process of DL models has a
significant computing overhead. Furthermore influencing the efficacy of anomaly
detection is the data imbalance issue perhaps biassing the model toward normal data
prediction.

2.2 Layered architecture

Layerered architectures are extensively applied for data collecting, transmission, and
processing in [oT systems (Mrabet et al., 2020). Particularly in cases of large-scale data,
layered design serves primarily to increase the scalability, adaptability, and efficiency of
the system. An IoT system usually consists of a perception layer, a network layer, and an
application layer whereby each layer performs various functions and cooperatively
completes tasks including data processing and anomaly detection (Erhan et al., 2021).
First, raw data gathered by sensors is mostly dependent on the perception layer
(Khattak et al., 2019). These data, which could be gathered by several kinds of sensors,
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comprise environmental factors including temperature, humidity, air pressure, light
intensity, etc.). Specify x4, as the data of the perception layer, so:

Xaw = Sensor(S) ®)

The sensing layer aims to pass gathered raw data to the network layer (Kobo et al., 2017).
Some pre-processing tasks such data cleansing, noise reduction, normalisation, etc. could
be carried out throughout this procedure. The perception layer might additionally
compress the data to lower data redundancy and maximise transmission (Rehman et al.,
2016). Here, it is believed that following transmission, the data at the sensing layer
undergoes Xans, 1-€.,

Xyrans = Preprocess (Xyay ) )

Data then moves for routing and aggregation into the network layer. Guaranteeing the
security and efficiency of data flow inside the IoT system falls to the network layer.
Devices including gateways, routers, hubs, etc. might all fit the network layer. As data
moves across the network layer it can be encrypted, compressed, and encapsulated.
Following through this layer, the data transforms into Xesvort, €ssentially:

Xpetork = Compress (Encrypt (Xyans )) (10)

The network layer mostly serves to guarantee stable transmission of data to the
application layer (Lin et al., 2017). Some procedures, such data fusion or path
optimisation of transmission, may be carried out as necessary during this process.

Usually tasked with anomaly detection and fault diagnosis depending on the provided
data, the application layer is in charge of the last data processing and decision making.
The application layer of IoT systems processes and analyses the data using statistical
techniques, DL, etc. Following first entry into the application layer, the data will be
further handled in the anomaly detection task. At this point the application layer’s data
processing flow is:

Xprocessed = Model (xnervuork ) (1 1)

where Model indicates another analysis technique or a deep learning model.

Furthermore, the data in IoT systems are often multidimensional, hence at the
application level fusion processing of multi-sensor data is essential. By means of data
fusion, the system may enhance anomaly detection accuracy and extract features from
several angles. Assume the data gathered from several sensors are xi, x2, ..., X»; these can
be combined with xj, by weighted averaging or another technique.

Xfise = D Wi (12)
i=1

where w; is the weight of every sensor data. The fused data will be forwarded to the DL
for chores including anomaly detection.

Generally, IoT depends much on layered architecture. Decomposing data processing
chores into several levels helps each layer to concentrate on its particular purpose, hence
improving the scalability, adaptability, and fault tolerance of the system. Data from the
sensing layer to the network layer and subsequently to the application layer is transmitted
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and processed such that the system can effectively gather, transmit, and analyse data,
therefore laying a strong basis for next uses like anomaly detection.

3 IoT anomaly detection system framework

This IoT anomaly detection system’s structure comprises essentially in five modules:
data gathering module, data transmission module, deep learning detection module,
application layer module, and evaluation and optimisation module. As illustrated in
Figure 1, these modules cooperate to finish the whole process from data collecting to
anomaly detection to final decision making and assess and maximise the performance of
the system. The specifics are as follows:

Figure 1 IoT anomaly detection system (see online version for colours)
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3.1 Data acquisition module

The primary process in the module on data acquisition is gathering data from [oT devices
and first processing of it. Data normalisation is common to guarantee that data from
several sensors are handled at the same scale. The formula for standardising is:

(13)
o

where X is the original data; u is the mean; o is the data’s standard deviation; X0 is the
normalised data.
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One often occurring issue in data collecting is noise. Weighted average allows the
data to be smoothed therefore removing the noise. The weighted average formula is:

N
A 0 WX,
X == (14)
Wi
i=0

where X, is the smoothed data; X, ; is the original data at instant ¢ — i; w; is the weighting
factor; N is the window size.

Linear interpolation might lastly help to fill missing values in the missing data

problem. The interpolation recipe is:

(Xnext - Xprev ) : (t _tprev)
(tnext - tprev )

Xﬁll :Xprev+ (15)

where X is the data following interpolation and filling; Xy, and X, are the data before
and after the missing values; ., and .. are the relevant timestamps; ¢ is the timestamp
of the current missing value.

3.2 Data transmission module

First of importance in the data transmission module should be data transmission security
and efficiency. Data reduction is achieved for this reason using Huffman coding’s
compression technique. Its computation is:

H(X)==>"p(x)log, p(x) (16)

i=1

where H(X) is the entropy of the source data X; p(x;) is the data element x;’s probability; n
is the total count of data items.

Usually, an encryption technique helps to guarantee that the data is not altered during
transit. One often used symmetric encryption method is AES, whose encryption process
may be expressed as:

C=E(K,P) (17)

where K is the key; C is the encrypted data; E is the encryption technique; P is the
original data.

Using a TCP/IP-based transmission control method helps to guarantee that data is not
lost during transfer and to get effective transmission. Usually, a sliding window protocol
is utilised for this aim to regulate the data flow using a formula:

W:min(Wmax,M) (18)
RTT

where W is the sliding window size; Wiax is the maximum window size; Ravailabie 1S the
accessible bandwidth; RTT is the round trip delay.
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3.3 DL detection module

DL detection module is really important in IoT anomaly detection system. In this
framework, AE is applied as a DL method for anomaly identification. Based on
unsupervised learning, self-encoder is a network architecture able to learn the normal
features of the data, compress the input data into a low-dimensional space, and detect the
anomalies in the data by reconstruction error.

There are two sections to AE: encoder and decoder. Whereas the decoder rebuilds the
low-dimensional representation Z back to the original space to obtain the reconstruction

result X, the encoder translates the input data X to a low-dimensional space
representation Z. One may determine the reconstruction error with the following formula:

1 < .
Lyg =N;"Xi -X;

2

19)

where X; is the i sample; X; is its reconstruction result; N is the total number of
samples; LAE is the reconstruction error, therefore indicating the variation between the
input and rebuilt data.

Through optimising this reconstruction error, AE learns the usual pattern of the data.
Sample with high reconstruction error can be regarded as anomalous data for anomaly
identification. By means of a reconstruction error threshold #, one can ascertain if the
data is aberrant or not, therefore enabling more precisely detection of aberrant data.
Should the reconstruction error surpass this threshold, the data is deemed aberrant:

A_{l lfLAE(X)>9

0 ifLye(X)<6 (20)

where L4£(X) is the reconstruction error of the current input sample X, where j is the

prediction result; 1 denotes aberrant, 0 denotes normal.

This method allows the deep learning model to handle different unlabelled data and
efficiently identify aberrant events from the data streams of IoT devices with high
adaptability.

3.4 Application layer module

The core of the IoT anomaly detection system and in charge of additional decision
making and processing depending on deep learning model output is the application layer
module. The application layer module of the IoT environment uses a rule-based
decision-making framework to properly manage aberrant occurrences. Under such a
system, a rule engine uses historical data, device status and current environmental
elements in addition to anomaly detection results as inputs to reach a final conclusion.

When a sensor data anomaly is found, for instance, the application layer responds in
line with several anomaly kinds. A basic decision function can be built assuming y; is the
prediction outcome of DL at instant # (1 denotes abnormal, 0 implies normal).

Vdecision = ]I(yt = 1)
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where I(y, =1) is an indicator function and y, = 1 indicates that the data is found to be

anomalous and ygecision 18 1, indicating that anomalous processing is necessary; if y; = 0
the system does not respond and yecision 18 0.

To further make more precise decisions, the application layer also must combine
anomaly information from other data sources. To lower some chance mistakes, the
system may have to weight and average the anomalous information from several devices
when it detects anomalies from many devices. The weighted decision output can be stated
as y;, the anomaly prediction result of the i device, assuming that y; is the outcome of
weight wi:

Y fusion = + (22)

where N is the overall number of devices; w; is the weight of device 7; Vysion 1S the
decision output following weighted fusion.

These decision outcomes also enable the application layer module to initiate other
responses, e.g., alert generation, device parameter adjustment, fault automatically repair,
etc., so improving the adaptability and resilience of the system. In some complicated
situations, the application layer can additionally aggregate previous data for pattern
recognition and trend prediction, therefore anticipating and responding to possible
anomaly risks in advance.

This framework can efficiently improve the response speed and processing capability
to abnormal events by combining the anomaly detection of the deep learning model, so
guaranteeing the continuous and stable running of the system.

3.5 Evaluation of the optimisation module

Monitoring and optimising DL to guarantee the accuracy and efficiency of the IoT
anomaly detection system falls to the evaluation and optimisation module. The module
functions mostly through the following actions:

Metrics including accuracy, precision, and recall first help to assess the model
performance. Assuming p as the model output and y as the true label, the formula

determines accuracy:

ZN 1(3 =)

Accuracy = == 23
y N (23)
Meanwhile, precision and recall can be defined separately:
Precision = _r 24)
TP+ FP
Recall = _Ir 25)

TP+ FN
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where TP, FP and FN stand for true positives, false positives and false negatives
accordingly. Combining the F1 values allowed one to assess memory and accuracy with
equation:

Fl=>. Precision - Recall

— (26)
Precision + Recall

These optimisation techniques guarantee that the evaluation optimisation module delivers
regular performance reports to enable system managers monitor model health and
guarantees effective anomaly identification over the long run.

4 Experimental results and analyses

4.1 Datasets

This work uses publicly accessible IoT Network Intrusion Dataset (IoT-NIDS) dataset on
Kaggle to test the efficacy of the suggested loT anomaly detecting approach. Suitable for
anomaly detection activities, this dataset comprises IoT device traffic data for several
cyber attack kinds. Table 1 exhibits the main characteristics of the dataset:

Table 1 TIoT-NIDS information

Feature Description Data type
Packet size Size of each packet Numeric
Timestamp Timestamp of the packet Numeric
Source IP Source IP address of the packet Categorical
Destination IP Destination IP address of the packet Categorical
Protocol type Network protocol used (e.g., TCP, UDP) Categorical
Packet type Type of packet (e.g., request, response) Categorical
Label Data label (normal or attack) Categorical (0 or 1)

The collection includes network traffic from several IoT devices tagged with both normal
and several kinds of attack events. Data pretreatment for the trials consists in elimination
of missing values, numerical feature normalisation, and uniquely hot coding of
classification features. The dataset was eventually split into a test set to assess the
model’s performance and a training set utilised for model development.

Particularly for various attack kinds in IoT environment, the dataset is fit for
assessing the performance of the anomaly detection technique suggested in this research.

4.2 Experimental procedure

The experimental setup comprised of the same dataset for comparison, a hardware
configuration of a computer with 16 GB of RAM and an NVIDIA GPU, a Python
language software environment, LSTM model training using TensorFlow/Keras
framework, and SVM training using the Scikit-learn library.

Comparative research between DL models and conventional techniques forms the
first experiment. This work aims to validate the performance of the [oT anomaly
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detection method based on DL and layered architecture, i.e., DeeploT-HAD, compared
with other traditional methods and DL, including Gaussian mixture models (GMMs),
LSTMs, CNNs, etc., in order to evaluate the advantages of this framework in IoT data
anomaly detection. Figure 2 displays the experimental outcomes.

Figure 2 Performance evaluation of DeeploT-HAD and comparison with other models
(see online version for colours)
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DeeploT-HAD shows good performance in all the assessment metrics from the
experimental data, particularly in terms of accuracy, recall, and F1 score, which are much
higher than those of other conventional techniques and D. DeeploT-HAD’s accuracy of
0.95 is notably greater than that of LSTM (0.89), CNN (0.90), and GMM (0.86),
therefore indicating that DeeploT-HAD is able to more correctly categorise normal and
aberrant data. DeeploT-HAD’s recall of 0.92 is likewise much higher than LSTM (0.85),
CNN (0.87), and GMM (0.81), implying that the technique is more suited to detect
aberrant data and more able to catch most of the anomalies. With a 0.97 accuracy level
far greater than that of the other models, almost all of the data indicate are actual
anomalies with a minimal false alarm rate when anomalies are found. At last,
DeeploT-HAD has an F1 score of 0.94, which is likewise better than other models,
particularly GMM (0.85), so demonstrating the advantage of the framework in balancing
the accuracy and recall of anomaly detection.

Overall, the experimental results reveal that DeeploT-HAD has great performance in
IoT anomaly detection, particularly in terms of recall and accuracy, thereby supporting
the efficacy of the method in managing challenging data and high-dimensional anomaly
detection chores.
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Comparative experiments between single-layer and multi-layer layered architecture
constitute the second one. This work aims to validate, particularly in terms of detection
accuracy, computational complexity, and reaction time, the benefits of multilevel layered
architecture in IoT anomaly detection system. We will thus compare single-tier
architecture and multi-layer layered architecture for training independently and assess
their effectiveness on certain assessment criteria. Figure 3 displays the experimental
findings.

Figure 3 Comparison of performance between single-layer and DeeploT-HAD (see online
version for colours)
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In terms of accuracy, response time, and computing resource consumption, the
comparison experiments reveal that the multilevel layered architecture (DeeploT-HAD)
shows appreciable benefits over the single-layer architecture. DeeploT-HAD surpasses
the 88.9% of the single-layer design with a detection accuracy of 92.5%, which is more
accurate. DeeploT-HAD responds 125 seconds to process every piece of data, while
single-layer architecture responds 135 seconds. DeeploT-HAD still demonstrates
improved response time, especially when processing big-scale datasets, even if the two
differ in not much terms; the advantage of layered architecture is more clear.
DeeploT-HAD shows the capacity of the layered architecture in optimising
computational resource consumption by using less memory than the single-layer
architecture, 240 MB rather than 256 MB.

The third experiment is the model optimisation and data enhancement one. This
experiment aims to investigate how methods of data augmentation and model
optimisation could help to raise IoT anomaly detection performance. We assess the
influence of several data enhancement techniques (e.g., SMote, data resampling, etc.) on
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model performance by combining them with optimisation strategies like regularisation
and learning rate adjustment and so increase the diversity of training data.

In this experiment, we first compare the datasets using data enhancement with those
without data enhancement, and train alternative models depending on this in combination
with optimisation strategies such regularisation and learning rate modification. We want
to confirm the efficiency of data augmentation and optimisation strategies in raising
anomaly detection performance by means of comparison of the experimental outcomes.
Figure 4 shows the experimental outcomes.

Figure 4 Comparison of performance with without data augmentation and optimisation in
DeeploT-HAD (see online version for colours)
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The trials reveal that boosting the performance of the DeeploT-HAD model depends
much on data enhancement (SMote) and model optimisation (e.g., regularisation). The
accuracy, recall, and F1 value all rise during SMote data enhancement; the enhancement
performance is particularly notable in recall and F1 value. This suggests that improving
data helps the model to identify several kinds of abnormalities with efficiency.
Regularisation helps to solve the overfitting issue of the model and raises general
performance with an accuracy of 95.2%. With accuracy, recall, and F1 values of 96.3%,
94.0%, and 95.1%, respectively, the model displays the best results when both SMote
and regularisation are applied, so proving the power of DeeploT-HAD with the mix of
data enhancement and optimisation techniques.
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Particularly in practical applications, where enhancement and optimisation means are
of great relevance, the results of this experiment show that methods of data enhancement
and model optimisation not only improve the detection accuracy of the model but also
essentially increase its ability to generalise to anomalous data.

Taken together, DeeploT-HAD not only innovates in the model structure and
improves the accuracy and efficiency of anomaly detection through a multi-level layered
architecture, but also combines the data enhancing and model optimising techniques to
make the system more robust and efficient in handling the task of anomaly detection in
complex [oT environments.

5 Conclusions

In this work, we offer DeeploT-HAD, an IoT anomaly detection technique grounded on
DL and layered architecture. We essentially increase the accuracy and computational
efficiency of the anomaly detection system in the loT environment by creatively merging
layered architecture with DL. This work not only provides effective detection of
abnormal activities of [oT devices but also considers the real-time and scalability of the
system to guarantee good performance in large-scale data transmission and complex
situations.

Still, there are certain limits to this study. First of all, the utilised dataset is somewhat
basic; hence, it is advisable to consider in the future more complicated and varied IoT
datasets to test the performance of the model even further. Second, although the layered
design works better in this study, how to choose the suitable layers and model parameters
depending on the particular case when applied in practice still has to be investigated
more. Furthermore, especially for applications in large-scale IoT contexts, future
optimisation still revolves on the computational complexity and resource consumption of
the model.

Future studies can delve further in the following spheres:

1 further improve the layered architecture’s design to fit the data transmission and
processing needs in more pragmatic settings

2 add more sophisticated DL as graph neural networks (GNN) and transformer to
increase model generalisation and detection even more

3 edge computing along with distributed computing can be investigated to solve the
contradiction between resource use and real-time in IoT systems.

Finally, DeeploT-HAD offers a realistic and effective way for IoT anomaly detection
with great possibility for development prospects and useful applications.
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