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Abstract: Owing to the defects of semantic segmentation of deep convolution 
network and the confusion and multi-scale problems of landslides in remote 
sensing images, large-scale spatial separation convolution kernel and multiscale 
fusion semantic segmentation network is proposed. By using a large spatially 
separable convolution and channel attention mechanism on the encoder, the 
landslide image is extracted with large-scale information, which ensures the 
accurate extraction of landslide edge information; A skip connection is adopted 
between the encoder and the decoder to recover the context loss caused by the 
down sampling of the encoder; At the same time, the atrous spatial pyramid 
pooling (ASPP) module is applied to extract and fuse multi-scale features, so as 
to further improve the performance. The experimental results show that the 
segmentation effect of the proposed network on landslide dataset is better than 
FCN, SegNet, U-Net, DeeplabV3+ and other semantic segmentation methods, 
and it also verifies that the network has good landslide recognition ability in 
medium and high vegetation coverage areas. Experimental results demonstrate 
that the proposed network significantly outperforms existing semantic 
segmentation methods such as FCN, SegNet, U-Net, and DeepLabV3+ on 
landslide datasets, and exhibits strong landslide recognition capabilities in areas 
with medium to high vegetation coverage. 

Keywords: landslide; semantic segmentation; attention mechanism; deep 
learning; receptive field; atrous spatial pyramid pooling; ASPP. 
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Xiao Tan is an expert with a profound research background in chip technology, 
hardware security, and the Internet of Things. His career is focused on 
exploring and innovating advanced technological solutions, especially in the 
fields of microelectronics and information security. His research primarily 
involves developing more efficient methods for chip design and exploring  
new types of hardware security strategies, aimed at protecting data from 
unauthorised access and tampering. 

 

1 Introduction 

Landslides are natural disasters with global implications, causing significant damage each 
year to infrastructure, housing, forest ecosystems, and the lives and property of 
individuals (Aimaiti et al., 2019; Anusuya et al., 2023; Arsa et al., 2024; Casagli et al., 
2017; Chen, 2024). A landslide is typically defined as a large mass of rock, debris, or soil 
moving downward along a slope (Zhong et al., 2020), often triggered by external factors 
such as volcanic eruptions, rainfall, earthquakes, and other engineering loads (Cruden, 
1991; Guzzetti et al., 2012; Yun et al., 2022). In 2017 alone, Hunan Province experienced 
3,490 instances of various geological disasters, resulting in 33 fatalities, one missing 
person, 26 injuries, and direct economic losses amounting to 1.53 billion CNB. To 
accurately predict landslides and their impacts, large-scale regional landslide mapping 
and analysis are essential. 

Traditional landslide mapping methods (Afif et al., 2019) depend on manual visual 
interpretation (Rau et al., 2011; Tran et al., 2019; Wang et al., 2024; Pedrosa Soares, 
2022; García-Rodríguez et al., 2008; Mezaal et al., 2018; Van Den Eeckhaut et al., 2012; 
Lu et al., 2011), which are applied to images captured by drones. However, these 
approaches depend heavily on expert knowledge, require substantial sensor data for 
assistance, and demand iterative testing to determine parameters, resulting in a  
time-consuming and inefficient process. Furthermore, traditional methods require the 
exact location of a landslide to be known before drone-based imagery can be taken, 
making it impossible to map landslides occurring in remote, unmonitored areas. 

As satellite remote sensing technology becomes increasingly widespread (Marco  
et al., 2014), remote sensing images provide a comprehensive monitoring capability for 
landslides across various regions, addressing the limitations of drone-based technologies 
(Zhang et al., 2015). When reliable labelled information is available, machine  
learning-based landslide detection methods can effectively avoid manual parameter 
adjustments and reduce dependence on expert experience. Several machine learning 
models, such as random forest, support vector machines (SVMs), decision trees, and  
k-Means clustering (Zhang et al., 2014; Ma and Mei, 2021; Lucieer et al., 2014; Afif  
et al., 2019), have been successfully applied to landslide detection with promising results. 
Van Den Eeckhautand Kerletrained a SVM on remote sensing images of landslides in 
areas with dense vegetation backgrounds, and further combined it with LiDAR data to 
calculate the landslide extent. The landslide extraction accuracy reached 70% (Song and 
Jiao, 2012). Chen Wenlong and others performed principal component transformation on 
pre-and post-landslide images, and used features such as the NDVI and (Ding et al., 
2022) slope to remove non-landslide objects from the change detection results (Chen  
et al., 2020). 
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The variability of surface features in landslides makes it difficult to design suitable 
features for segmenting landslides in remote sensing images. In particular, certain 
methods depend significantly on expert knowledge, and feature engineering can be 
resource-intensive. Additionally, remote sensing images cover vast areas, often 
containing complex background objects, and the landslide regions typically lack distinct 
spectral, spatial, or temporal features that can be easily differentiated from other objects 
(Liu et al., 2008; Yi et al., 2014; Wang et al., 2024). Furthermore, the variability of 
surface features due to geological, geomorphological, hydrological, and climatic factors 
significantly hinders the use of machine learning techniques in landslide delineation. 

In the field of landslide mapping using remote sensing images, a novel attention 
module was proposed in, which generates a three-dimensional channel attention feature 
map to derive a comprehensive spatial channel attention map that maintains global 
consistency. Experimental results show that integrating this attention module into deep 
convolutional neural networks significantly enhances landslide detection performance. In, 
a deep convolutional neural network model called ResU-Net was proposed. Compared to 
the traditional U-Net model, ResU-Net demonstrated better performance in distinguishing 
landslides along barren floodplains and non-cultivated terraces in valleys. 

The DeepLab series utilises the encoder with ASPP modules to extract features at 
different scales. However, due to the presence of pooling layers, these methods suffer 
from significant loss of boundary information of the segmented objects, which is 
compensated for by the decoder to restore sharp object boundaries. In the encoder 
section, common feature extraction structures like VGG, ResNet50, and ResNet101 are 
typically used. These structures employ small convolution kernels stacked in layers to 
achieve a larger receptive field, combined with max-pooling down-sampling to 
progressively extract deeper features. Although these common feature extraction 
structures perform well for general image features, they fail to fully address the specific 
needs of semantic segmentation and the unique characteristics of landslide remote 
sensing images. 

Firstly, semantic segmentation is a dense prediction task, requiring the prediction of 
every pixel in the image. In deep convolutional networks, the receptive field is the section 
of the input image that affects the corresponding pixel in the output feature map at each 
layer. For each output pixel, information outside its receptive field in the input image 
does not influence its value. Only when the receptive field covers the entire image can the 
network utilise global information for accurate pixel prediction. Additionally, the encoder 
in image segmentation is mainly responsible for extracting low-level features of the 
image, such as boundary information and texture features, which are crucial for precise 
delineation of landslide boundaries, as shown in Figure 1. 

In remote sensing images, there are many objects with features very similar to 
landslides. Landslides, being exposed soil, share characteristics with objects such as 
farmland, hillside depressions, and country roads. During the early stages of feature 
extraction, small convolution kernels result in a smaller receptive field for the 
convolutional neural network, which fails to capture global information from the 
landslide areas in the input image. As a result, the network relies on local features and 
mistakenly classifies background objects that resemble landslides as landslide patches, 
leading to missegmentation. Furthermore, with the addition of more convolutional layers 
in the encoder, the network progressively extracts higher-level semantic features but may 
overlook boundary information of the landslide. If the encoder fails to extract boundary 
information using a sufficiently large receptive field in the early layers, the difficulty in 
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extracting boundaries increases in later layers, ultimately leading to incomplete landslide 
boundaries during prediction. 

Figure 1 Remote sensing image of a landslide like object (see online version for colours) 

 

Another issue in encoder-decoder semantic segmentation networks is that continuous 
max-pooling operations or increased convolution strides reduce the resolution of feature 
maps. This reduction removes less important features, enabling deep convolutional 
networks to learn more abstract feature representations while maintaining computational 
efficiency. However, the downside is that this down-sampling process causes the loss of 
some boundary and localisation information, making it difficult for the decoder to 
retrieve spatial details during up-sampling, which hampers the network’s ability to 
accurately segment the landslide boundaries. 

To address the aforementioned limitations in deep convolutional network-based 
semantic segmentation and the challenges of landslide segmentation in remote sensing 
images, this paper proposes a multi-scale fusion semantic segmentation network based on 
large-scale spatially separable convolution kernels for landslide patch recognition. The 
main innovation of the network lies in the design of a large convolution kernel module 
with an attention mechanism, which uses larger spatially separable convolutions and 
channel attention mechanisms to consider large-scale information during feature 
extraction. This ensures a sufficiently large receptive field in the early layers without 
significantly increasing computational cost. The use of large convolution kernels enables 
the network to effectively identify landslide-related features early in the feature 
extraction process. Furthermore, by employing channel attention, the network captures 
global information from the input feature map and automatically selects typical landslide 
features. Additionally, to capture multi-scale information, the network incorporates skip 
connections and the ASPP module. 
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Unlike existing segmentation models, our proposed network uniquely integrates 
large-scale spatially separable convolutions and channel attention mechanisms.  
While DeepLabV3+ relies on standard convolutions with ASPP for multi-scale fusion, 
our model explicitly addresses boundary confusion by leveraging large kernels (e.g.,  
15 × 15) in early encoder layers, ensuring a large receptive field to capture global 
landslide features. Additionally, the channel attention mechanism dynamically selects 
boundary-sensitive features, overcoming the limitations of traditional stacked small 
kernels in ResU-Net. 

2 Network architecture 

As illustrated in Figure 2, the network is divided into two components: the encoder and 
the decoder. The encoder consists of five layers (E1, E2, E3, E4, E5), with each layer 
employing a convolutional neural network architecture to extract features from the image. 
Each convolutional layer includes a convolution operation, batch normalisation, and a 
ReLU activation function. Between the convolutional layers in the encoder, max pooling 
is applied for down-sampling, with a stride parameter set to 2. E1 and E2, the first two 
layers of the encoder, are composed of large convolution kernels with attention 
mechanisms. The channel attention mechanism compresses the spatial information of the 
feature map and performs squeezing and scaling of the channels to determine the 
importance of each feature channel, allowing for the extraction of more useful features 
based on their importance, thereby ensuring the correct selection of features. 

Figure 2 Overall framework of the network (see online version for colours) 

 

E3 and E4 are standard convolutional layers, with convolution kernel sizes consistent 
with those of the VGG-16 network. Notably, the last layer of the encoder adds an ASPP 
module to the conventional convolutional structure. 

Table 1 details the layer-wise architecture of the proposed multi-scale fusion network. 
The encoder (E1–E5) progressively extracts features using large-scale separable 
convolutions (LKAM module) and standard convolutions. Specifically, E1 and E2 
employ 15 × 15 kernels (stride = 2) to capture global landslide boundary information at 
early stages. The decoder (D1–D4) recovers spatial details via deconvolution and skip 
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connections. The ASPP module fuses multi-scale features using dilated convolutions 
(rates = 6, 12, 18). This table provides comprehensive parameters (input/output shapes, 
kernel sizes, strides) to ensure reproducibility and clarify the design rationale. 
Table 1 ASPP module: dilated convolution parameters 

Layer Type Input size Output size Kernel/stride/dilation 
E1 LKAM 512 × 512 × 3 256 × 256 × 64 15 × 15, stride = 2, dilation = 1 
E2 LKAM 256 × 256 × 64 128 × 128 × 128 15 × 15, stride = 2, dilation = 1 
E3 Conv 128 × 128 × 128 64 × 64 × 256 3 × 3, stride = 2, dilation = 1 
E4 Conv 64 × 64 × 256 32 × 32 × 512 3 × 3, stride = 2, dilation = 1 
ASPP ASPP 32 × 32 × 512 32 × 32 × 1024 Multi-scale rates (6, 12, 18) 

The ASPP module is designed to detect convolutional features at multiple scales and to 
encode global contextual information through image-level features, thereby improving 
performance, as shown in Figure 3. This module generates feature maps with different 
receptive fields through convolutions and pooling operations with varying dilation rates, 
then concatenates the feature maps along the channel dimension and performs 
convolution to fuse multi-scale features. This enables the network to capture both object 
and relevant contextual information across multiple scales, effectively enlarging the 
receptive field. 

Figure 3 ASPP module (see online version for colours) 

 

The decoder, after receiving the deep features from the encoder, is responsible for 
restoring the features to the original input size, compensating for the loss of information 
due to down-sampling in the encoder. The decoder consists of four layers (D4, D3, D2, 
D1), each utilising a deconvolution operation to up-sample the feature maps, with a stride 
of 2, restoring the image resolution. Additionally, the decoder enhances the feature 
representation for landslide segmentation by fusing shallow and deep features. To this 
end, skip connections are employed between each layer of the encoder and decoder, 
linking the encoder’s output to the decoder’s input. This multi-scale feature fusion 
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(MSFF) helps to compensate for the loss of positional and boundary information during 
both down-sampling and up-sampling processes. 

3 Large convolution kernels with attention mechanism 

This section offers an in-depth explanation of the large convolution kernel module with 
an attention mechanism used in the encoder layers E1 and E2. As shown in Figure 4, the 
module consists of spatially convolution layers with separable filters and a mechanism 
for channel attention. In the overall encoder network structure, convolutional layers along 
with channel attention mechanisms serially three times to form a feature extraction 
module, which serves as one layer of the encoder. This design ensures that landslide 
features are extracted from remote sensing images with a large receptive field while 
avoiding excessive computational load. 

Figure 4 Large kernel convolution module with attention mechanism (see online version  
for colours) 

 

3.1 Large-scale spatially separable convolutions 

As mentioned in the introduction, conventional image feature extraction networks 
typically stack multiple small convolution kernels to increase the receptive field. 
However, when the receptive field is too small in the early stages of the network, it 
becomes difficult to effectively capture boundary information, leading to confusion 
between background elements and landslide features, which affects segmentation 
accuracy. On the other hand, excessively large convolution kernels significantly increase 
the computational load, thus reducing the network’s operational efficiency. Therefore, as 
shown in Figure 5, to ensure a sufficiently large receptive field in the early stages without 
imposing a heavy computational burden, our proposed network employs two parallel 
stacked large-scale spatially separable convolution modules. Spatially separable 
convolutions achieve the same feature extraction results as traditional convolutions but 
with only a fraction of the parameters. The reduction in parameters is more pronounced 
as the kernel size increases, while the difference in parameters is less significant when the 
kernel size is smaller. 

 



   

 

   

   
 

   

   

 

   

    Research on the application of large-scale convolution kernels 29    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 5 Spatially separable convolutional layer (see online version for colours) 

 

Following each spatially separable convolution, batch normalisation and ReLU activation 
are performed, forming a complete convolution layer. Let Fin denote the input feature, 
and the output feature of the 1 × k + k × 1 convolution layer can be expressed as: 

( )( )01 1 1k k inF Conv Conv F=  (1) 

Among them, Convk1 and Conv1k represent the convolutions of 1 × k and k × 1 
respectively, each convolution is then followed by a batch normalisation layer and a 
ReLU activation function. 

The feature Fok output by the k × 1 + 1 × k convolutional layer can be represented as: 

( )( )1 1ok k k inF Conv Conv F=  (2) 

The complete convolutional layer output Foc can be expressed as: 

+oc ol okF F F=  (3) 

3.2 Channel attention mechanism 

After each spatially separable convolution, we use a channel attention mechanism to 
reduce feature redundancy and enhance the relationship between feature channels, as 
shown in Figure 6. This mechanism aids the convolutional neural network in extracting 
boundary information for landslides, distinguishing them from similar background 
features. 

Figure 6 Channel attention mechanism (see online version for colours) 

 

To begin, we apply adaptive average pooling along the channel dimension to compress 
the input feature map, where C represents the number of channels, and H & W represent 
the height and width. This allows the network to capture global information from the 
feature map. Next, two convolution operations are used to squeeze and scale the feature 
channels, determining their importance. First, a convolution reduces the number of 
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channels, followed by a ReLU activation to discard irrelevant features. Then, another 
convolution restores the feature map’s original dimensions. 

The output feature map For is given by: 

( )( )( )( )1 1ar r r acF Conv ReLU Conv Avg F=  (4) 

where Conv1r represent the convolution operations for squeezing and scaling, and Avg 
represents the adaptive average pooling layer. The Sigmoid function generates 
importance weights for each feature channel, which are then multiplied element-wise 
with the input feature map to enhance its positional information. To prevent gradient 
vanishing, a residual connection is made between the input and output feature maps: 

( )+out tn oc orF F F Sigmoid F= ⊗  (5) 

4 Experiments and analysis 

4.1 Dataset description 

In this study, the proposed MSFF network was evaluated using a remote sensing image 
dataset provided by the Photogrammetry and Computer Vision Group at Wuhan 
University. The dataset (Marco et al., 2014) was meticulously outlined by geologists 
from the National Key Laboratory of Geohazard Prevention and Geological Environment 
Protection, who identified the boundaries of each landslide. A total of 770 landslides 
were annotated from satellite images, with additional verification conducted through field 
surveys. Selected remote sensing images and corresponding labels from the dataset are 
displayed in Figure 7. The dataset comprises high-resolution (0.5 m/pixel) satellite 
images from Gaofen-2 (GF-2) and Sentinel-2, covering the Bijie region in China. Images 
were annotated by geologists from the National Key Laboratory of Geohazard 
Prevention, with 60% of landslides located in medium-to-high vegetation areas (NDVI > 
0.4). 

Figure 7 Original images and their corresponding labels (see online version for colours) 

 

Due to the limited amount of data, random augmentations such as random angle 
rotations, to enhance the diversity of the training data, horizontal and vertical translations 
were applied during the data loading process. In the experiments, 700 images were used 
for training, while the remaining 70 images served for testing. 
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4.2 Evaluation metrics 

In this study, we use recall, precision, IOU, and F1 score as evaluation metrics. Among 
them, the F1 score is a commonly used composite metric that strikes a balance between 
recall and precision. IOU is an essential metric for assessing the performance of semantic 
segmentation, as it accurately reflects the precision of the segmentation. The definitions 
are as follows: 

+
TPRecall

TP FN
=  (6) 

+ +
TPIOU

FP FN TP
=  (7) 

+
TPPrecision

TP FP
=  (8) 

2
+

Precision RecallPrecision
Precision Recall
× ×=  (9) 

In here, TP refers to accurately identified as landslides. 

4.3 Implementation details 

We implemented the proposed remote sensing landslide semantic segmentation network 
using Pytorch. During the network training process, we trained all models from scratch 
with randomly initialised parameters. Since this is a binary classification problem, we 
utilised the binary cross-entropy loss function. The parameters for the large convolution 
kernel module with the attention mechanism were configured as follows: kernel size  
k = 15 and dilation rate r = 8. The Adam optimiser was employed for training, with the 
weight decay set to 1e–6, batch size to 32, and initial learning rate set to 1e–4. Learning 
rate decay was managed using PyTorch’s ReduceLROnPlateau method, which reduces 
the learning rate by a factor of 0.1 whenever the loss (Afif et al., 2019) stops decreasing, 
aiming to improve network performance. A total of 150 epochs were trained. 

For model selection, we first employed an early stopping strategy to train the model 
ten times, resulting in ten different models. The models were then evaluated on the test 
set, and the values in the experimental results table represent the average performance of 
these ten models on that set. The final result images are based on the model that most 
closely matched the average performance metrics. 

4.4 Comparative experiments 

We conducted comparative experiments using the remote sensing landslide dataset 
collected from the Bijie area in China by Wuhan University, evaluating the proposed 
MSFF network against classic networks such as FCN, U-Net, SegNet, and DeepLabV3+. 
Additionally, to assess the impact of network depth, we replaced the feature extraction 
backbone with ResNet50 and ResNet101, using the same encoder structure and skip 
connections as the proposed network. The evaluation results are shown in Table 2. 
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Table 2 Comparison of experimental results 

Network Recall (%) Accuracy (%) F1 score (%) IoU (%) 
U-Net 86.06 87.08 86.57 77.27 
SegNet 88.63 85.15 87.00 77.07 
FCN 85.10 88.68 86.84 76.84 
ResNet50(backbone) 87.90 86.95 87.49 77.68 
ResNet101(backbone) 86.65 89.23 87.92 78.44 
DeepLabV3+ 87.20 89.43 88.42 79.29 
Proposed 88.87 89.62 89.24 80.24 

As shown in Table 2, the classic semantic segmentation networks U-Net, SegNet, and 
FCN did not perform well on the landslide dataset. However, after replacing the feature 
extraction backbone with deeper networks like ResNet50 and ResNet101, the 
performance improved in terms of precision, F1_score, and IOU, outperforming the first 
three networks. Additionally, DeepLabV3+, when using ResNet101 as the backbone and 
incorporating the ASPP module, showed further improvements in IOU, Precision, and 
F1_score. In comparison, our proposed network, with similar depth and framework as the 
previous networks, achieved the best results across all four metrics, demonstrating its 
effectiveness for landslide segmentation in remote sensing images. 

We conducted ablation experiments to evaluate the contribution of each module: 

• Baseline (w/o LKAM and ASPP): IoU = 75.2%, F1 = 84.1% 

• Baseline + LKAM: IoU = 78.3% (+3.1%), F1 = 87.4% 

• Baseline + ASPP: IoU = 77.8% (+2.6%), F1 = 86.9% 

• Full model (proposed): IoU = 80.2%, F1 = 89.2% 

Results demonstrate that the large kernel and attention module (LKAM) contributes most 
to boundary accuracy, while ASPP enhances multi-scale fusion. To further validate our 
model’s competitiveness, we compared it with state-of-the-art transformer-based models 
(Swin-Unet, Segmenter) on the same dataset. While Swin-Unet achieved an IoU of 
79.8% and F1 = 88.7%, our model surpassed it with IoU = 80.2% and F1 = 89.2%, 
indicating that the proposed large-kernel CNN architecture remains effective against 
transformer-based methods in landslide segmentation tasks, especially in preserving 
boundary details. 

To further assess the efficacy of the large convolution kernel module combined with 
an attention mechanism, we replaced the feature extraction backbone in our network and 
in DeepLabV3+ (which had similar performance to ours in Table 1). The experimental 
results are shown in Table 3. 

As seen in Table 3, after changing the feature extraction backbone, our network 
outperformed DeepLabV3+ in terms of four metrics. Using the VGG-16 backbone, our 
network improved recall, precision, IOU, and F1_score by 0.69%, 2.97%, 1.84%, and 
2.73%, respectively. With the ResNet101 backbone, the improvements were 0.55%, 
2.63%, 1.62%, and 1.96%, respectively. Interestingly, when switching to the deeper 
ResNet101, our network did not show a significant improvement as seen with 
DeepLabV3+, because our large convolution kernel module with the attention 
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mechanism had already alleviated the issue of insufficient network receptive field, thus 
validating the effectiveness of our proposed module. 
Table 3 Comparison of different feature extraction backbones 

Network Feature extraction 
backbone Recall (%) Accuracy 

(%) 
F1 score 

(%) IoU (%) 

DeepLabV3+ VGG-16 88.18 86.65 87.40 77.51 
DeepLabV3+ ResNet101 87.20 89.43 88.42 79.29 
Proposed VGG-16 88.87 89.62 89.24 80.24 
Proposed ResNet101 87.75 92.06 89.85 81.25 

To visually evaluate the performance of the proposed network, we conducted a 
visualisation of the segmentation results from the comparative networks in the 
experiments, as shown in Figure 8. In the first row of Figure 8, the landslide boundaries 
in the remote sensing image are complex, making boundary delineation challenging. 
None of the comparative networks were able to accurately delineate the landslide 
boundaries, whereas the proposed network successfully segmented the boundaries. 
Although all comparative networks use encoder-decoder structures with skip connections, 
their feature extraction structure is based on stacking small convolution kernels, which 
further validates the role of the attention mechanism in feature extraction. The large 
convolution kernels with attention mechanisms help to extract complete landslide 
boundary information before performing multiple downsamplings, thereby assisting the 
network in accurately delineating the landslide boundaries. 

In the second, fourth, and fifth rows of Figure 8, there are objects in the remote 
sensing images that resemble landslides. While the comparative networks also perform 
well, they still exhibit some confusion, incorrectly classifying non-landslide areas as 
landslides. In contrast, our network accurately identified and segmented the landslides, 
further confirming the importance of having a large receptive field in the encoder stage. 
In the third and sixth rows of Figure 8, for relatively simple remote sensing images, the 
proposed network outperformed the comparative networks, achieving better segmentation 
results, reducing missegmentation, and providing more accurate boundary delineation. 

Overall, when faced with large variations in surface features and confusing objects, 
the proposed multi-scale fusion semantic segmentation network with large-scale spatially 
separable convolution kernels achieves superior segmentation of landslide boundaries. 
Compared to other methods, it more clearly distinguishes objects similar to landslides, 
reduces false positives, and performs well in challenging cases, particularly in terms of 
detail and boundary accuracy. Other generic semantic segmentation networks fail to 
consider the unique characteristics of landslide images, leading to false negatives, false 
positives, and unclear boundaries, which support our discussion in the introduction. 

Regarding the applicability of the method, as shown in the fourth, fifth, and sixth 
rows of Figure 8, when identifying landslides in areas with high vegetation coverage, the 
landslide features in the dataset are clearly distinguishable from other features. The 
network accurately segments the boundaries of landslides of different sizes. However, in 
low-coverage areas (as seen in the 1st, 2nd, and 3rd rows of Figure 8), while the proposed 
network identifies most landslides, some landslides are confused with non-landslide areas 
or not detected. Compared to the comparative networks, the proposed network shows 
significant improvements in false positives and false negatives. Nevertheless, 
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performance in low-vegetation areas still has room for improvement, and future work 
could involve incorporating terrain data to further enhance landslide recognition. 

Figure 8 Comparison of network segmentation effects (see online version for colours) 

Origin Label Proposed U-Net SegNet DeepLabV3+ ResNet50 ResNet101 FCN  

As shown in the table, the proposed model consistently outperforms others in IoU and F1 
scores, especially in cases with complex boundaries (case 1). 
Table 4 Model performance comparison on IoU and F1 scores 

Case Model IoU (%) F1 (%) 
1 Proposed 82.1 89.5 
1 DeepLabV3+ 79.3 88.4 
2 Proposed 80.7 89.1 
2 Swin-Unet 79.8 88.7 

During landslide recognition in the Bijie area, there were instances of false negatives and 
false positives in some images. The main reason for this is the influence of remote 
sensing image acquisition conditions, which led to issues such as abnormal brightness, 
blurriness, and shadows. These conditions caused changes in the spectral and shape 
features of the landslides, resulting in incorrect recognition by the network. Additionally, 
some landslides are historical, with spectral features similar to the surrounding 
environment, as shown in the figure. This made the landslide features less distinct, 
making it difficult for the network to accurately segment the boundaries, although some 
recognition was still achieved. In a few cases, the landslide did not show obvious 
disintegration, and the spectral and texture features inside the landslide were similar to 
those of the surrounding environment, further complicating the segmentation. The 
recognition results for various scenarios are shown in Figure 9. 
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Figure 9 Error recognition result (see online version for colours) 

 
Origin Label Prediction  

5 Conclusions 

In the encoder feature extraction stage of semantic segmentation, traditional feature 
extraction structures often have small receptive fields in the early stages, causing 
convolutional neural networks to fail in capturing accurate boundary information and 
extracting non-landslide features. This leads to boundary confusion and missegmentation 
in remote sensing image landslide segmentation. Additionally, the decoder struggles to 
restore spatial information lost during down-sampling in the encoder through  
up-sampling. To address these issues, we proposed a remote sensing landslide image 
semantic segmentation network using large-scale spatially separable convolution kernels. 

The proposed network employs a large convolution kernel module with an attention 
mechanism in the encoder, using large-scale spatially separable convolutions and channel 
attention to capture extract information from the image, ensuring accurate landslide 
feature extraction. Furthermore, skip connections are employed to efficiently combine 
low-level and high-level features. The network also incorporates the ASPP module to 
detect key objects and relevant image details across different scales, thereby recovering 
both positional and boundary information. Extensive tests reveal that the proposed 
network outperforms current semantic segmentation models in landslide segmentation for 
remote sensing images. Specifically, with the same feature extraction backbone, the 
proposed network shows improvements of 0.69%, 2.97%, 1.84%, and 2.73% in recall, 
precision, IOU, and F1_score, respectively, compared to DeepLabV3+. 
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