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Abstract: With the extensive use of electronic components in contemporary 
industry, fault diagnosis technology is more important in preserving equipment 
operation and improving output. Conventional fault diagnosis techniques limit 
their application in complicated fault situations by means of cross-domain 
feature extraction, which suffers limitations. This work thus suggests an 
electronic component fault diagnosis model called Cross-DeepContrastNet, 
which combines cross-domain feature extraction with deep contrastive learning 
and uses a series of training strategies to effectively extract discriminative 
features from many sources and types of data and acquire accurate fault 
diagnosis. Cross-DeepContrastNet beats conventional techniques in several 
respects, according to different experimental findings. Finally, further paths of 
investigation are suggested to solve the constraints of the use of the model in 
actual industries. 
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1 Introduction 

1.1 Background of research 

Rapid progress of electronic technology makes electronic components indispensable in 
many types of equipment. Modern manufacturing, communication, medical and other 
sectors depend more and more on electronic components; thus, their absence could cause 
system failure, financial loss, or even safety hazards (Badri et al., 2018). Thus, accurate 
fault diagnostic technology is rather important to guarantee the stability of equipment 
operation, lower maintenance costs, and increase manufacturing efficiency. 
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Although successful in some fields, traditional electronic component fault diagnosis 
techniques mostly rely on expert experience, rule-based reasoning, and model-driven 
approaches, which, as system complexity increases, especially in large-scale, 
heterogeneous environments, present many challenges. Data-driven based approaches 
have progressively taken front stage in electronic component problem diagnostics in 
recent years as deep learning technology has emerged (Jieyang et al., 2023). By 
increasing the distance between similar samples and reducing the distance between 
dissimilar samples, deep contrastive learning which is an efficient feature learning 
methods showcases enormous potential in unsupervised learning and representation 
learning. For instance, the failure modes of electrical components may show distinct traits 
in different operating conditions, which makes traditional models unable to migrate 
between several domains to efficiently diagnose data from many sources. 

Though deep contrastive learning shows amazing performance on many tasks, the 
actual application of electronic component fault diagnosis still suffers with data transfer 
across domains. Usually influenced by a range of elements including environmental 
considerations, testing conditions, and usage history, the operational state of electronic 
components causes notable variations in the defect data acquired under various 
circumstances. In this discipline, a major challenge is now how to efficiently transfer and 
distribute features between several domains. 

This work proposes a cross-domain feature and deep contrastive learning-based fault 
diagnosis method for electronic components to enhance the fault diagnosis performance 
under various operational environments by means of a cross-domain feature learning 
framework and combining of the advantages of deep contrastive learning. This work 
intends to overcome the limitations of current methods and offer a more efficient and 
strong solution for electronic component problem diagnostics by properly migrating and 
fusing traits from cross-domain data. 

1.2 Research questions 

This work intends to solve various important problems in electrical component fault 
diagnosis, particularly in the framework of merging cross-domain feature learning with 
deep contrastive learning. First, data on electronic component failure usually come from 
various operating settings, equipment models and histories, which causes appreciable 
distributional variations between the data (Kamsu-Foguem et al., 2023). A fundamental 
difficulty in electronic component problem diagnosis is how to extract discriminative 
features from cross-domain data and move them between several domains. Thus, in order 
to overcome the feature mismatch problem between source and target domains, thereby 
enhancing the stability and accuracy of the diagnostic model in various working contexts, 
this work will investigate the cross-domain feature learning method. Second, as a  
self-supervised learning approach, deep contrastive learning has shown amazing 
outcomes in the fields of picture and voice and can efficiently mine the similarities and 
differences between samples. Still, in the field of electronic component fault diagnosis, 
how to automatically extract effective fault features from complex sensor data by deep 
contrastive learning and optimise the contrast loss function to improve the discriminative 
ability of the model. One of the main objectives of this work will be to apply deep 
contrastive learning with minimal labelled data to raise the accuracy and robustness of 
defect identification. 
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Furthermore, both deep contrastive learning and cross-domain feature learning have 
independent benefits; but one of the primary problems of this work is how to naturally 
merge these two and efficiently fuse and optimise them in electrical component fault 
diagnostics. One of the main difficulties of this work will be designing a cross-domain 
feature fusion method so that the model may exchange effective features over several 
domains and further improve the feature discrimination ability utilising deep contrastive 
learning. Under the context of collaborative optimisation, this paper will investigate how 
to raise the general performance of defect diagnosis models. Traditional fault diagnosis 
algorithms demonstrate low generalisation capacity when confronted with unknown fault 
types or highly variable test data since electronic component defects are varied and 
frequently influenced by ambient elements (Choudhary et al., 2022). This work will 
concentrate on how to increase the generalisation ability and robustness of the model so 
that it may sustain high accuracy and stability under many operating environments, 
equipment types, and fault modes, so ensuring the effectiveness of the proposed 
diagnostic method in practical applications. 

This work intends to present a unique electrical component fault detection approach 
based on cross-domain features and deep contrastive learning by tackling the above 
problems and to give significant technical support for related domains. 

1.3 Research contributions 

Aiming to solve the problems of conventional fault diagnosis techniques when 
confronted with cross-domain data and variable settings, in this work we offer an 
electronic component fault diagnosis model based on cross-domain characteristics and 
deep contrastive learning. More especially, this work mostly adds: 

1 Cross-domain feature fusion and joint optimisation strategy proposed: This work 
presents a cross-domain feature fusion and joint optimisation technique combining 
deep contrastive learning with cross-domain feature learning to improve the general 
defect diagnosis model performance via co-optimisation. The approach not only 
increases the model’s adaptability in several contexts but also considerably increases 
its diagnostic capacity in challenging situations. 

2 Innovative introduction of deep contrastive learning to optimise feature extraction: In 
this work, the deep contrastive learning method is used in the field of electrical 
component fault detection, which maximises the similarity and difference between 
samples by contrastive learning and automatically learns discriminative features 
without much annotated data. Optimising the contrast loss function increases the 
feature representation ability of the model, therefore strengthening its accuracy and 
resilience in defective diagnosis. 

3 Enhanced generalisation ability and robustness of diagnostic models: In this work, 
under unknown defects, various devices, and changing surroundings, the 
combination of cross-domain feature learning and deep contrastive learning 
considerably increases the generalisation capacity of the model. Strong robustness 
and accuracy in various real-world application scenarios are shown by the 
experimental findings of the proposed model, which exceeds conventional fault 
diagnosis techniques. 
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This work mostly proposes an electronic component fault diagnostic model combining 
cross-domain feature learning with deep contrastive learning, thereby creatively 
addressing the primary issues of cross-domain data migration, feature optimisation, and 
model fusion. This method gives theoretical support and technical approaches for 
intelligent fault diagnosis in real applications, so greatly improving the accuracy, 
robustness, and generalisation ability of fault detection. 

2 Relevant technologies 

2.1 Troubleshooting techniques for electronic components 

Electronic component fault diagnostic technology is the application of monitoring and 
analysis to determine whether an electronic component has a fault. Usually depending on 
manual experience and test equipment, traditional electronic component fault diagnosis 
techniques directly detect and analyse a flaw in the device to manually identify whether 
one exists. But this approach has several drawbacks, particularly in the context of 
complicated systems and hidden flaws; conventional diagnostic techniques are sometimes 
unable to timely and precisely identify the problem. Thus, with the fast expansion of 
information technology, diagnostic technology based on automation and intelligence has 
progressively taken the front stage in study and application. 

Electronic component defect detection today mostly consists of model-based,  
data-driven, signal processing-based approaches. By gathering and analysing the 
functioning signals of components, such voltage, current, power, and other 
characteristics, signal processing-based techniques ascertain whether a device is defective 
(Long et al., 2021). Simple implementation, strong real-time speed, and the capacity to 
somewhat detect clear failure signals define the benefits of this kind of approach. For 
some small, initial or hidden flaws, though, signal processing techniques’ diagnostic 
power is usually insufficient. 

Conversely, model-based fault diagnosis techniques use the deviation between a 
mathematical model of an electronic component and perform fault diagnosis by means of 
this process. Although these techniques usually depend on the operating rules and 
historical data of the equipment, the complexity and variety of the equipment make it 
quite challenging to build a correct mathematical model. Furthermore, model-based 
approaches could have significant mistakes when the equipment’s running environment 
changes (Badihi et al., 2022). 

Data-driven fault detection systems based on data have progressively taken the stage 
in recent years as big data and artificial intelligence technologies develop. Using 
sophisticated algorithms including machine learning and deep learning and gathering a 
lot of historical data from the operation of the equipment allows one to automatically 
extract important aspects from the data to detect failure mechanisms and generate 
forecasts. Particularly in multi-dimensional and multi-variable data, this kind of method 
has great benefits and can adjust to more complicated failure scenarios (Lin et al., 2021). 
Though the training and optimisation phase of the model involves high computer 
resources, this also necessitates that the quality and quantity of data must be suitably 
adequate. 

Modern data-driven methods still have several difficulties even although they have 
made great progress in raising the accuracy and efficiency of defect diagnosis. For 
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instance, how to ensure the robustness of the model under various operating conditions, 
how to handle the accurate identification of multiple fault modes, and how to perform 
effective fault diagnosis with insufficiently labelled data or poor data quality. These are 
still hot issues that must be constantly investigated in this field. 

2.2 Cross-domain learning and feature transfer 

Particularly when the destination domain has limited or incompletely labelled data,  
cross-domain learning and feature transfer methods are generally employed to solve the 
distributional variations between the source and target domains. The performance of the 
model in the target domain can be raised by transferring the knowledge or features gained 
in the source domain. Particularly in machine learning and deep learning, this method is 
extensively applied, especially when handling various work settings, tools, or devices. 

Cross-domain learning’s fundamental challenge is how to move beneficial 
characteristics between the source and destination domains. Though in actuality the 
source and target domains often have distinct data distribution, traditional learning 
approaches presume that the data distribution of the source and target domains is the 
same. This leads to unsuccessful models in the target domain. By methods of feature 
transfer and model migration, cross-domain learning approaches reduce the distributional 
discrepancies between several domains, therefore enabling learning in the target domain 
to be more effective. 

A fundamental component of cross-domain learning, feature transfer moves the 
features of the source domain to assist the learning of the target domain (Gao et al., 
2018). We wish to translate the features of the source domain to the feature space of the 
target domain by learning a mapping function f assuming Xs as the features of the source 
domain data and Xt as the features of the target domain data. This helps the model to 
attain improved performance on the target domain. 

Minimising the variance in feature distribution between the target and source domains 
is a typical benchmark (Kouw and Loog, 2019). Common formula is the mean difference 
to gauge this variation: 

( ) ( ) ( )( ) ( )

1 1

1 1MMD ,
s tn n

i j
s t s t

s ti j

X X f x f x
n n= =

= −   (1) 

where ( )i
sx  and ( )j

tx  are samples in the source and target domains respectively; f(x) is the 
mapping function; ns and nt are the respective numbers of samples in the source and 
target domains. By computing the difference between the mapped feature means of the 
source and destination domains, the formula assesses their similarity; so, reducing this 
difference will help to attain effective feature transfer. 

In addition to being feature level transfer, cross-domain learning can optimise at the 
deeper model level. Deep learning-based cross-domain learning approaches have lately 
allowed models to automatically learn the shared features across the source and target 
domains and optimise on the target domain by end-to-end training. Particularly in 
challenging and unpredictable data situations, this method can significantly raise the 
performance of cross-domain learning. 

Cross-domain learning and feature transfer methods still present some difficulties 
even if they have made great advancement possible in many applications. Hot problems 
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in present research are how to efficiently capture the common features between the 
source and target domains, prevent overfitting the data in the target domain, and increase 
the computing efficiency of the model (Xu et al., 2025). 

2.3 Deep contrastive learning 

Deep contrastive learning compares sample similarities and contrasts to learn data 
representations. The basic concept is to build pairs of positive and negative samples that 
push the representations of dissimilar samples farther away and bring the representations 
of similar ones closer together, hence obtaining differentiated feature representations. 

Whereas in deep contrastive learning the model optimises a type of contrastive loss 
function to learn the relationship between samples. Positive sample pairings are those in 
which the feature space is comparable; negative sample pairs are those in which the 
feature space is dissimilar. Whereas dissimilar samples pull further apart, deep 
contrastive learning aims to make similar samples closer together in the feature space. 

Two aspects define a commonly used contrast loss function: one for positive sample 
pairings and another for negative sample pairs (Xue et al., 2022). Considering a sample 
pair (xi, xj), its contrast loss may be stated as: 

2
positive ),(i i jL y D x x= ⋅  (2) 

where D(xi, xj) is the Euclidean distance between samples xi and xj, yi = 1 indicates that 
the sample pair is a positive one. The loss function for negative sample pairs (yi = 0) is 
then defined as: 

( ) ( )( )2
negative 1 max 0, ,i i jL y m D x x= − ⋅ −  (3) 

where D(xi, xj) still shows the Euclidean distance between sample pairs and m is a preset 
minimum distance criterion. Whereas the loss term Lnegative for negative sample pairs 
guarantees that the distance between negative sample pairs is greater than the predefined 
threshold, so avoiding the model from producing meaningless features during the 
learning process, the loss term Lpositive for positive sample pairs brings similar samples 
closer by minimising the distance between sample pairs. 

The final comparison loss function is formed by aggregating the losses of the positive 
and negative sample pairs, therefore weighing and summing the whole loss function: 

( )total positive negative
1

1
2

N

i

L L L
N =

= +  (4) 

where N is the overall count of pairs from samples. Deep contrastive learning can train 
efficient feature representations from data that distinguishes between several classes or 
patterns by minimising this loss function. 

Deep contrastive learning finds extensive application in image processing, speech 
recognition, and natural language processing. Deep contrastive learning, for instance, can 
increase image retrieval accuracy in image retrieval tasks by mapping the features of like 
images to adjacent regions in the feature space, hence improving their accuracy. Deep 
contrastive learning allows relevant speech features from a lot of unlabelled voice data to 
be learnt in speech recognition systems, therefore enhancing their performance 
(Michelsanti et al., 2021). 
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Deep contrastive learning still has certain difficulties even if it has shown great 
performance in many fields. First, a major question is how to create positive and negative 
sample pairs with efficiency. Inappropriate selection of the sample pairs could 
compromise the stability and performance of the training process. Second, a pressing 
issue in deep contrastive learning is also how to build a better distance metric. How to 
use richer distance metrics to enhance the effect of contrast learning is a crucial direction 
in present research. 

Furthermore, deep contrastive learning often requires a lot of processing resources, 
especially in relation to big-scale datasets and the computational load of training deep 
neural networks (DNNs) is significant. One more issue that must be addressed is how to 
lower the computational cost and increase training efficiency. 

3 Electronic component fault diagnosis model 

3.1 Model architecture 

Combining the benefits of cross-domain feature learning with aims to automatically 
extract useful fault diagnosis features from multi-source data and optimise the feature 
representations using deep contrastive learning to achieve efficient and accurate fault 
diagnosis, thus the proposed electronic component fault diagnosis model in this paper is 
named Cross-DeepContrastNet. 

See Figure 1 to find the following main components of the Cross-DeepContrastNet 
model: 

Figure 1 Architecture of the Cross-DeepContrastNet model (see online version for colours) 

 Cross-domain feature extraction

Characteristic representation Comparative losses

Feature fusion

Integration features Adaptive learning

deep comparative learning

Feature similarity Feature embedding mapping

Fault classification

Input features Cross entropy loss
 

1 Cross-domain feature extraction module 

 Cross-domain feature extraction module guarantees that the model can uniformly 
learn discriminative feature representations, regardless of the heterogeneity of the 
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data sources, through the learning of a shared feature space since failures of 
electronic components are often manifested as different data patterns that may come 
from different sensors, devices or operating environments. The model initially 
transfers the features Xi of every data domain into the shared feature space Z 
employing a mapping function to reach this: 

( );i i iZ f X θ=  (5) 

 where Zi represents the data in the ith domain in the shared space; f(•) is the neural 
network mapping function; θi is the related learning parameter. 

 The Cross-DeepContrastNet model uses a contrast loss function, which is intended to 
ensure that the feature representations of faults of different classes are as far away as 
possible while the feature representations of faults of the same class are as close 
together as possible in the shared space, so optimising the feature representations. 
The loss function motivates the distance between each pair of feature samples Zi and 
Zj to be as small as feasible if they belong to the same class; it penalises their 
distance and expands the gap between them if they belong to different classes. 

 The loss function can be expressed as: 

( ) 2
contrast

1

1 N

i j i j
i

L y y Z Z
N =

= = ⋅ −   (6) 

 where ( )i jy y=  is the indicator function and yi = yj shows that the samples fall into 
the same category, the loss function minimises their distance to so promote their 
similarity (Huang et al., 2020). The loss function maximises the distance to 
guarantee their difference for samples of several kinds. The cross-domain feature 
extraction module constantly optimises this procedure so that efficient distinction of 
various fault kinds is at last obtained. 

2 Feature fusion module 

 Using features from one domain alone may produce erroneous or insufficient fault 
pattern detection when features taken from several data sources have distinct 
semantic information. By weighing and merging features from several data sources, 
therefore fusing complimentary information from many data domains into a single 
feature space, the feature fusion module improves the defect diagnostic capacity of 
the model (Rong et al., 2019). 

 First, the module generates a complete fused feature representation Zfused by weighted 
summation of feature representations from several data domains. One may define the 
weighted summation operation as follows: 

fused
1

N

i i
i

Z Zα
=

= ⋅  (7) 

 where Zi is the ith domain feature representation; αi is the weighting coefficient, 
therefore indicating the significance of the features in that domain. Especially in the 
context of electronic component fault diagnosis, the model can synthesise the data 
features from many sensors or devices, so improving the ability to identify fault 
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patterns by means of weighted summation, which enables the combination of 
information from several domains. 

 By using an adaptive learning process, the feature fusion module also maximises the 
weighting coefficient αi, hence enhancing the efficacy of the fused features. The 
model specifically automatically changes the weighting coefficients of every domain 
depending on the contribution of the features of every domain in the diagnostic task, 
so ensuring that features in important domains are given higher weights while those 
in unimportant domains are given lower weights. One can visualise this process by 
means of the following equation: 

( )
( )

1

exp

exp
i

i N
ij

βα
β

=

=


 (8) 

 where βi is a learning parameter connected with domain i, which regulates the weight 
of the features in that domain in the fused results. The model can automatically 
modify its weights amongst several data domains using this adaptive method to 
maximise diagnostic performance. 

3 Deep contrastive learning module 

 By means of feature comparisons between similar and dissimilar failure samples, the 
deep contrastive learning module can enhance the capacity of the model to 
discriminate various failure modes since the failure modes of electronic components 
show considerable variations among cross-domain data sources, e.g., data from 
different sensors or devices. 

 The deep contrastive learning module is meant to decrease the distance between like 
fault samples and maximise the distance between dissimilar fault samples. Deep 
contrastive learning can assist the model to discriminate between various defect 
types by improving the sample relationships in the feature representation space  
(Xu et al., 2023). In this context, the feature representations of fault samples of the 
same class are brought closer together and those of different classes are brought 
further apart, hence improving the classification accuracy of fault diagnosis. 

 Furthermore, the computation of feature similarity is introduced by the deep 
contrastive learning module, therefore strengthening the discriminative power of the 
model. Especially in Cross-Domain data sources, feature similarity is a crucial metric 
of similarity across samples in the Cross-DeepContrastNet model. Cosine similarity 
is used to determine the relationship in the common feature space of two samples 
thereby evaluating their resemblance (Kirişci, 2023). Cosine similarity has the 
formula shown below: 

( )sim , i j
i j

i j

Z Z
Z Z

Z Z
⋅

=  (9) 

 where || Zi || and  || Zj || respectively indicate their vanes; Zi and Zj are respectively the 
feature representations of the ith and jth samples. The cosine similarity gauges the 
directional similarity between the two feature vectors; the value ranges from –1 to 1, 
the closer to 1 denotes the greater similarity between the two samples. The deep 
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contrastive learning module guarantees that several failure modes are essentially 
separated in the feature space by enhancing the similarity between samples of the 
same class and decreasing the similarity between samples of other classes. 

 The Cross-DeepContrastNet model uses a feature embedding mapping technique to 
improve mapping of the input data to the shared low-dimensional feature space. One 
may write the feature embedding Ei as: 

( )i iE f X=  (10) 

 where Xi is an input sample and f(•) is a deep network model, learning the mapping 
function of the input sample generates a low-dimensional feature representation. 
While offering a larger discriminative feature space for the next classification 
assignment, this embedding representation can efficiently capture the central 
information of the input data and avoid the redundancy of high-dimensional data. 

4 Fault classification module 

 The primary responsibility of the fault classification module in the  
Cross-DeepContrastNet model is to categorise the input samples regarding the fault 
kinds depending on the feature vectors acquired from the aforesaid cross-domain 
feature extraction module and deep contrastive learning module. The major 
classification method selected for this aim is DNN. DNN demonstrates better 
performance in high dimensional data and has strong nonlinear modelling capacity, 
which helps it to properly manage complicated fault kinds (Duan et al., 2018). 

 Derived from the output of cross-domain feature extraction and deep contrastive 
learning in the preceding modules, the feature representation Ei provides input for 
this module. First, mapped and transformed across several hidden layers, the input 
features then pass through the output layer to generate the prediction of fault kinds. 
Specifically, the predicted probability distribution ˆiy  for every category is the output 
of the neural network; so, a softmax function is utilised to process the raw score Wc • 
Ei + bc of the network output to derive the final probability value for every category. 

' '
'

ˆ
c i c

c i c

W E b
c
i W E b

c

ey
e

⋅ +

⋅ +
=


 (11) 

 where Ei is the input feature vector; Wc and bc are respectively the weights and bias 
terms for category c. The softmax function guarantees that, over all categories, the 
probability values of the outputs add to 1, therefore enabling each forecast to be 
understood as the probability the sample falls into that category. 

 Using a cross-entropy loss function as the objective function which gauges the 
variation between the true labels and the model’s projected distribution helps one 
train the neural network and maximise the model parameters (Ho and Wookey, 
2019). The cross-entropy loss function has as its expression: 

( )CE ˆlogc c
i i

c C

L y y
∈

= −  (12) 
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 where ˆ c
iy  is the projected probability of the model for the category c corresponding 

to the sample i and c
iy  is the actual label which is usually 0 or 1, indicating whether 

the sample belongs to the category or not). By minimising the cross-entropy loss 
function, the model can help to categorise the errors in the category c. Reducing the 
cross-entropy loss function helps the neural network to modify its weights and biases 
such that the gap between the projected probability and the actual label is as minimal 
as feasible, hence enhancing the accuracy of fault classification. 

By means of close collaboration among the four above-mentioned modules,  
Cross-DeepContrastNet can efficiently process multi-source data, extract important 
features, and finally accomplish successful electronic component problem diagnosis. 

3.2 Training strategies 

First, a basic stage of the training plan is data preparation. Normalising the input data 
helps to guarantee that the scales of various features are constant, therefore enabling the 
convergence of the model and increasing its resilience. Usually, mean decentering and 
standard deviation normalisation are part of data preparation. The normalised data helps 
the optimisation process better fit to various feature distributions and avoid the scale 
variation between features. 

Cross-DeepContrastNet aggregates the cross-entropy loss function with the contrast 
loss function to build the loss function for design. Targeting to improve the feature 
consistency across cross-domain data, the contrast loss function is utilised in the  
cross-domain feature extraction and deep contrastive learning module. The cross-entropy 
loss function is utilised to maximise the classification accuracy in the fault categorising 
module. Simultaneous optimisation of these two loss functions helps the model to raise 
the local and global diagnosis performance. 

The Adam optimiser is employed in the choice of optimisation method; it is an 
adaptive learning rate optimiser with higher convergence and capable handling of the 
sparse gradient problem. By dynamically changing the learning rate of every parameter 
throughout the training process, the Adam optimiser can avoid the issue of gradient 
disappearance or gradient explosion and has a great robustness, which can hasten the 
training process and raise the convergence efficiency (Chen et al., 2022). 

Early halting techniques can find application in the training process. The early 
stopping technique tracks the change of the loss function of the validation set to avoid the 
model from overfitting throughout the training process (Anam et al., 2024). Early 
stopping of the training will prevent the waste of computing resources and guarantee the 
performance of the model on the validation set when the loss of the validation set does 
not show appreciable improvement within a given period. 

Furthermore, approaches are included in the training process for data improvement. 
By creating fresh training samples on the training data by means of transformations like 
rotation, scaling, and translation, the variety of the training set is expanded. This 
approach lowers the risk of overfitting, increases the generalising capacity of the model, 
and improves its classification performance on several fault kinds. 

Still another often-utilised training tactic is learning rate decline. A higher learning 
rate is utilised to hasten the convergence of the model at the start of training (Yan et al., 
2020). As the training advances, the learning rate is progressively lowered so that the 
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model may adjust the parameters and converge to a better solution. Common approaches 
of learning rate reduction are: 

0
1

1tη η
λt

= ⋅
+

 (13) 

where t is the number of training cycles; λ is the decay factor; η0 is the starting learning 
rate. Learning rate decay helps early stage of training to converge rapidly and later stage 
to fine-tune the model parameters to prevent oscillation and over-adjustment. 

Through suitable data preparation, loss function design, optimisation algorithm, early 
halting strategy, data augmentation and learning rate decay Cross-DeepContrastNet 
guarantees effective training of the model and powerful fault diagnosis capabilities. The 
model can have great accuracy and resilience in useful applications by means of an 
effective mix of all strategies. 

4 Experimental results and analyses  

4.1 Dataset 

In this work, the NASA Bearing Data Center (Paderborn Bearing Data) dataset has been 
used as a main data source in the endeavor of electronic component diagnosis. One of the 
main parts utilised in industrial equipment, rolling bearings have vibration signal data 
available in this NASA dataset. 
Table 1 Basic information of the NASA Bearing Data Center 

Fault types Normal operation, outer race fault, inner race fault, rolling element 
fault 

Sensor type Vibration sensor (accelerometer) 
Data format Time-series data, frequency range: 12 kHz 
Number of samples 6000 samples, corresponding to different fault types and operating 

conditions 
Sampling frequency 12 kHz 
Label information Each sample is labelled with fault type (normal, outer race fault, inner 

race fault, rolling element fault) 
Fault modes Outer race fault, Inner race fault, rolling element fault, Normal 

operation 
Relevance to study Bearing faults are common in electronic component diagnosis, suitable 

for cross-domain feature learning and fault classification 

Many mechanical devices and electrical components depend on bearing failures; failure 
types that influence not only the normal operation of the equipment but also might cause 
more major systemic failures. The dataset lets researchers spot and classify several kinds 
of bearing failures: outer ring failures, inner ring failures, rolling element failures, and so 
forth. These fault kinds are quite useful, notably in activities like accurate diagnosis, 
prediction and early fault detection since they resemble frequent problems in electronic 
components. Table 1 exhibits the fundamental details of this dataset: 



   

 

   

   
 

   

   

 

   

   104 Y. Liu    
 

    
 
 

   

   
 

   

   

 

   

       
 

Several features of this dataset reflect the fit with electronic component fault 
diagnosis: First, especially in the mechanical part, bearing failure is a typical issue in 
electronic component fault diagnostics. Second, this dataset can offer rich sample data for  
cross-domain feature learning and features a broad spectrum of defects. For this reason, it 
is perfect to apply the Cross-DeepContrastNet model in this work. Furthermore, the 
multi-dimensional data acquired from vibration sensors may efficiently support the use of 
deep contrastive learning in fault diagnosis and assist the model extract cross-domain 
features for more effective problem detection and diagnosis. 

4.2 Experimental setting 

Data preparation marks the start of the experimental phase; the raw vibration signal is 
split into fixed-length sections with 1,024 data points apiece. To remove scale variations 
and guarantee that individual characteristics equally supported the learning process, all 
signals were normalised. Furthermore, several overlapping segments created using a 
sliding window approach help to guarantee that the dataset has enough training examples 
for model development. Time and frequency domain analysis techniques then transform 
every segment into a feature vector. The Cross-DeepContrastNet model drew inputs from 
these feature vectors. 

Robust assessment of model performance and overfitting prevention were guaranteed 
during model training by using a 5-fold cross-valuation technique (Lee et al., 2021). Four 
of the randomly split datasets were utilised for training; each of the five subsets used in 
turn as a validation set. The model’s training batch size is set at 32; the maximum number 
of training rounds is 50 (Liao et al., 2023). Using a learning rate decay approach, the 
Adam optimiser is applied, and the initial learning rate is set at 0.001 and changed in line 
with the number of training cycles. Several criteria are used to evaluate the model’s 
performance so that its diagnostic powers may be properly analysed. 

4.3 Experimental procedure 

While comparing it with other popular algorithmic fusion models, experiment 1 seeks to 
reasonably assess the Cross-DeepContrastNet model inference time and accuracy in 
defect detection activities. The aim of the experiment is to test the efficiency and 
accuracy of Cross-DeepContrastNet in processing electronic component defect diagnosis 
data, particularly its responsiveness in real-time application scenarios. 

This work presents a deep learning model called Cross-DeepContrastNet, which 
combines deep contrastive learning methods with cross-domain feature extraction to aim 
at effective electronic component fault diagnosis. The model first employs a deep 
contrastive learning module to optimise the representation of the important features 
extracted from various source domain data; subsequently, it uses a cross-domain feature 
extraction module to classify the features eventually in the fault classification module. 

Apart from the conventional models used in the comparative studies, this work 
chooses three classical fusion algorithms for comparison: 

• CNN-SVM: it is a feature extraction and classification tool combining support vector 
machines (SVM) with convolutional neural networks (CNN). While SVMs classify 
the acquired spatial characteristics, CNNs automatically extract them from 
unprocessed data. 
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• CNN-RF: it integrates random forest (RF) with CNN. CNN extracts features; RF 
serves as a classifier to categorise the features obtained by CNN. 

• CNN-RF: it is a mix of SVM and decision tree (DT), SVM used for feature 
extraction and DT used for feature classification. 

The benefits and constraints of merging deep learning with conventional machine 
learning algorithms may be assessed by comparing Cross-DeepContrastNet with similar 
fusion techniques, subsequently the performance advantages of Cross-DeepContrastNet 
in actual applications can be found. Figure 2 exhibits experimental outcomes. 

Figure 2 Experimental results of the fault diagnosis task (see online version for colours) 
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Cross-DeepContrastNet clearly beats other models in both inference speed and accuracy 
based on experimental findings. Cross-DeepContrastNet has a processing time of 2.5 ms 
per sample, far less than other models, especially the SVM model, whose inference time 
is 4.2 ms. With evident benefits for industrial situations needing quick diagnosis, the 
difference inference time indicates Cross-DeepContrastNet can react more effectively in 
real-time applications. 

Cross-DeepContrastNet achieves 98.2% accuracy, hence it performs equally well. 
This outcome shows the accuracy with which the model can classify electronic 
component failures, so indicating its efficiency in fault diagnosis chores. Though 
somewhat less than Cross-DeepContrastNet, fusion models such as CNN-SVM and 
CNN-RF demonstrated good classification ability with accuracy rates of 97.6% and 
97.3%, respectively. Though less accurate, some conventional models such as SVM-DT 
keep a classification accuracy of over 96%. 

Moreover, in terms of the performance of the fusion models, especially in the  
SVM-DT combination with an inference time of 3.8 ms, which results in a decrease in 
their adaptability in real-time fault diagnosis, the inference time is considerably longer 
even if they combine several machine learning approaches and have some advantages in 
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terms of accuracy. Cross-DeepContrastNet provides more consistent performance in 
accuracy in addition to a major benefit in inference speed. Consequently, in defective 
detection activities especially for applications with high real-time response needs, the 
Cross-DeepContrastNet model is obviously more competitive. 

Based on experiment 1, experiment 2 investigates the performance variation between 
Cross-DeepContrastNet and other models under various fault kinds, therefore verifying 
the robustness of the model in several fault diagnostic situations. 

Experiment 2 specifically intends to assess Cross-DeepContrastNet’s performance in 
several kinds of electronic component problem diagnosis. The accuracy of any model in 
spotting several kinds of electronic component defects (e.g., open-circuit faults,  
short-circuit faults, defective contact, etc.) is tested by including several common sorts of 
problems. All models in the experiment use the same fault type dataset and are evaluated 
and compared under the same criteria. 

Figure 3 displays the experimental outcomes. 

Figure 3 Experimental results of classification fault diagnosis (see online version for colours) 
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With an accuracy of 98.6%, which is much higher than previous models,  
Cross-DeepContrastNet shows great accuracy in the diagnosis of various fault kinds, 
especially in the detection of open-circuit faults, according to the experimental data. By 
contrast, CNN-SVM and CNN-RF have accuracy of 97.8% and 97.5%, respectively, 
which is greater but still less than Cross-DeepContrastNet in the recognition of  
open-circuit faults. 

Cross-DeepContrastNet had 97.9% accuracy in the identification of short-circuit 
defects, also more than in all other compared models. While SVM-DT has 96.5%,  
CNN-SVM and CNN-RF have respective accuracy of 97.4% and 96.9%. These findings 
reveal high generalisation capacity and robustness of Cross-DeepContrastNet in the 
diagnosis of several defect kinds. 
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Furthermore, Cross-DeepContrastNet beats the other models with an accuracy of 
98.2% when diagnosing defective contact failures. CNN-SVM has accuracy of 97.2% 
and CNN-RF of 97.0%; SVM-DT has accuracy of 96.3%. Cross-DeepContrastNet 
demonstrates great robustness in several kinds of defect identification in addition to being 
very accurate taken all around. Cross-DeepContrastNet so clearly performs well in  
multi-fault type diagnosis jobs, particularly for real-time fault diagnosis applications 
requiring great accuracy and vast adaptability. 

Cross-DeepContrastNet so clearly performs well in multi-fault type diagnosis jobs, 
particularly for real-time fault diagnosis applications requiring great accuracy and vast 
adaptability. 

5 Discussion and challenges 

Aiming to overcome the frequent cross-domain feature and complicated data problem in 
electronic component failure diagnosis, this work proposes a cross-domain feature and 
deep contrastive learning based electronic component fault diagnosis model, called 
Cross-DeepContrastNet. Deep contrastive learning and cross-domain feature extraction 
help the model to perform accurate defect diagnosis via deep learning techniques and 
efficiently extract important features from many sources and diverse kinds of data. Under 
certain fault types, Cross-DeepContrastNet shows outstanding performance, particularly 
in terms of accuracy and inference speed, both of which demonstrate higher diagnostic 
efficiency and stronger robustness than other conventional approaches according to 
experimental results. 

This study has some restrictions, though as well. First of all, even though  
Cross-DeepContrastNet shows good performance in many studies, its generalisation 
capacity in particular circumstances still have to be shown, particularly on electrical 
component datasets of varied domains and sizes. Furthermore, especially in large-scale 
data, the deep contrastive learning model applied in this work depends on high 
computational resources and may encounter significant training overheads and 
computational bottlenecks. 

Furthermore, even if this work demonstrates great capacity in defect diagnosis tasks, 
in some useful application scenarios data imbalance, data noise, and real-time speed 
could still be issues. These elements will affect the practical application impact of the 
model to some degree. Cross-DeepContrastNet offers a fresh approach for electronic 
component failure diagnosis overall, but more optimisation and validation are still 
required to guarantee its dependability and usefulness in increasingly challenging 
surroundings. 

6 Future work 

Cross-DeepContrastNet has shown improved experimental outcomes in jobs involving 
electronic component problem identification, although some issues still need attention. 
Deeply in the following directions future studies can investigate to enhance the actual 
application capacity and performance of the model. 

First, the model still has to have more generalising capability developed. By adding 
more cross-domain learning approaches to increase its generalisation capacity in  



   

 

   

   
 

   

   

 

   

   108 Y. Liu    
 

    
 
 

   

   
 

   

   

 

   

       
 

real-world contexts, further study can improve the model’s adaptability to several data 
distributions. Researchers might thus investigate ways to attain more accurate fault 
diagnosis using adaptive feature extraction techniques for the variety of different kinds of 
defects. 

Second, a still major difficulty for the model is its computational resource 
consumption. By means of network architecture optimisation, lightweight neural 
networks (e.g., MobileNet, EfficientNet, etc.), or quantisation and pruning adoption,  
the computational resource consumption of the model can be lowered in the future  
(Musa et al., 2025), so enabling more efficiency in industrial applications. Furthermore, it 
is feasible to investigate how to integrate distributed computing architectures with 
hardware acceleration (e.g., GPUs, TPUs, etc.) to improve the training and inference 
speed of models for large-scale real-time fault diagnosis activities. 

Moreover, one of the main elements influencing the performance of fault diagnosis 
models remains is the data issue. Future studies can investigate generative adversarial 
networks (GANs), data improvement strategies, or sample recalibration approaches to 
balance the dataset and lower the negative influence of noise on model performance. 
Furthermore, taken into consideration as further improving the performance and 
applicability of the model is a mix of unsupervised learning or semi-supervised learning 
approaches using a little amount of labelled data and a great number of unlabelled data 
for training. 

Finally, the implementation of models in industrial environments depends much on 
their interpretability and real-time character. Future studies could aim to find a better 
balance between inference speed and accuracy and make the fault diagnosis process more 
transparent by introducing interpretable techniques (e.g., model visualisation, locally 
interpreted models, etc.) to enable engineers to understand and change the models  
(Mi et al., 2020). 

To further promote the application of deep learning in the diagnosis of electronic 
component faults and to meet the needs in real industrial environments, future research 
directions can concentrate on improving the generalisation ability of models, optimising 
computational efficiency, solving data problems, and enhancing the real-time and 
interpretability of models. 
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