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Abstract: Violin fingering techniques change rapidly, making it difficult to 
correct incorrect fingering in real time during instruction. To address this issue, 
this paper first employs a multi-head attention mechanism (MAM) and  
multi-scale dilated convolutional neural networks (DCNN) for hand fingering 
motion capture. Since hand movement occurs during performance, an 
augmented reality (AR)-based hand pose estimation module is designed. The 
pose from orthography and scaling with iterations (POSIT) algorithm, 
optimised using the Gauss-Newton method, is used to estimate relatively 
precise camera-based fingering poses. Finally, cosine similarity is used to 
compare virtual and real finger techniques, and corrections are made based on 
the features of the target finger technique to improve teaching effectiveness. 
Experimental results show that the proposed algorithm achieves a correction 
accuracy rate 3.66%–13.13% higher than the baseline algorithm, laying a 
foundation for improving violin finger technique instruction. 

Keywords: violin fingering instruction; motion capture; augmented reality; 
multi-scale dilated convolution; POSIT algorithm. 
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1 Introduction 

The violin, a treasure among string instruments, occupies a pivotal position in classical 
and modern music composition thanks to its rich expressiveness and profound artistic 
depth. However, learning to play the violin is a complex and challenging process, 
especially when it comes to mastering fingering techniques, which often requires learners 
to invest a great deal of time and effort in repeated practice and correction (Goldie, 
2015). Traditional violin fingering instruction primarily relies on verbal guidance from 
teachers, demonstration performances, and students’ visual observation and imitation. 
While this teaching method has a long history, it has obvious limitations in terms of 
teaching efficiency, personalised guidance, and learning experience (Peinan and 
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Pattananon, 2022). As the information technique rapidly growing, the emergence of 
augmented reality (AR) and motion capture technology has brought revolutionary 
opportunities for violin fingering instruction (Aykut and Taş, 2023). How to apply these 
two technologies to violin fingering instruction to help learners quickly identify and 
correct incorrect movements and improve learning efficiency is a research topic with 
practical value (D’Amato et al., 2020). 

In violin fingering instruction, relying on traditional verbal guidance, teachers often 
find it difficult to clearly explain abstract concepts, key points, and complex 3D 
structures that are difficult to understand (Akdeniz, 2015). AR technology allows users to 
experience a new environment where reality and virtual scenes are seamlessly integrated, 
opening up new possibilities for violin fingering instruction. Campo et al. (2023a) 
designed a virtual instrument that students can operate collaboratively, using an optical 
multi-touch screen as a multi-user input device to simulate percussion performance.  
Since camera-based motion tracking has become a popular supporting technology for 
gesture-based human-computer interaction, Wang (2024) proposed a gesture-controlled 
virtual violin, whose internal sound engine can be continuously controlled through 
various complex gestures. Similarly, the virtual instrument system developed by Fonteles 
and Rodrigues (2021) also uses the real-time posture detected by the Kinect device to 
interact with musical instruments. Rosa-Pujazón et al. (2015) used the Kinect device to 
implement virtual percussion instruments such as drums. Feng (2023) conducted research 
on gesture recognition in violin performance. They estimated the position of each joint 
and predicted the tapping of the fingertips, creating a virtual violin system that could 
simulate violin performance by tapping fingers on any surface, but required a physical 
instrument to operate. 

In AR-based violin fingering instruction, accurately capturing real-time finger 
position data, comparing it with standard fingering models, and correcting learners’ 
fingering is a key issue. Dalmazzo and Ramírez (2019) used the number and direction of 
fingertips as gesture features and combined them with a decision tree classifier to 
perform fingering recognition, but the recognition accuracy was not high. Nakamura  
et al. (2020) established a two-dimensional gesture coordinate system based on the main 
direction of gestures and used the spatial distribution characteristics of gesture coordinate 
points to perform preliminary recognition of piano fingering. They then used the dynamic 
time warping (DTW) method to identify the final fingering. Gao and Li (2023) extracted 
two types of features from gesture images, namely the histogram of orientation gradients 
(HOG) and local binary patterns (LBP), and then fused these features. They combined 
this to complete gesture recognition. 

Deep learning-based finger recognition methods use automatic feature extraction, 
which has gradually improved the accuracy of gesture recognition. Su and Liang (2002) 
used data gloves to capture hand acceleration and bending angle data, then preprocessed 
the signals and fed them into a recurrent neural network (RNN) for classification.  
Pigou et al. (2018) proposed a spatio-temporal dual-stream convolution architecture that 
can extract both the spatial dimensional features of fingering images and the temporal 
dimensional features contained in video sequences, thereby improving recognition 
performance. Sun et al. (2020) jointly used improved convolutional neural network 
(CNN) and support vector machine (SVM) to extract features and classify segmented 
hand images, but the recognition error was relatively high. Liu and Fu (2023) used CNN 
and bidirectional long short-term memory networks (BiLSTM) to learn sequential data, 
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and after completing the classification, converted the prediction results into specified 
commands for application in AR teaching. 

In summary, existing violin fingering teaching algorithms do not fully consider the 
dynamic changes in fingering, resulting in low accuracy in correcting students’ incorrect 
fingering during teaching. To address the above issues, this paper proposes a violin 
fingering teaching algorithm based on AR and motion capture technology. The main 
innovative modules of this algorithm are summarised as follows. 

1 Designed a violin dynamic fingering motion capture module based on MAM and 
multi-scale DCNN. By constructing a spatial connection map of hand movements 
through a spatial attention mechanism and utilising temporal attention to learn the 
temporal relationships between joints, the depth and effectiveness of feature 
extraction were significantly improved. To avoid noise interference, a multi-scale 
DCNN was used to flexibly capture the spatial relationships between finger 
movements, significantly improving recognition performance. 

2 To locate the position of the hands during performance, an AR-based hand pose 
estimation module was designed. The pose from orthography and scaling with 
iteration (POSIT) algorithm and point-to-point data were used to estimate the relative 
finger positions with high accuracy, and the Gauss-Newton method was used to 
optimise the distance between control points to obtain more accurate virtual finger 
positions. 

3 Based on violin dynamic fingering motion capture and hand pose estimation, we 
designed a fingering motion comparison method that combines feature description 
based on relative two-dimensional vectors between hand joints and cosine similarity. 
For incorrect joints, this paper calculated the corrected positions based on the 
features of the target fingering. 

4 Simulation experiments and visualisation analysis were conducted on real datasets. 
The results showed that the top-1 and top-5 correction accuracy rates of the proposed 
algorithm were 94.18% and 97.36%, respectively, which were better than the 
baseline algorithm and could significantly improve the teaching effect of violin 
fingering. 

2 Relevant technologies 

2.1 Definition and classification of violin fingering 

The arrangement of fingers and the order in which they alternate when playing an 
instrument, as well as the notation of this arrangement and order in the score, is called 
fingering (Kruger and Jacobs, 2020). Proper fingering is one of the playing techniques 
that can make violin playing as close to perfect as possible. It helps us express musical 
emotions accurately and even more creatively. 

Finger techniques, like bowing techniques, can also be classified into different 
categories. Based on the structure of the finger technique itself, finger techniques can be 
divided into ‘fixed fingering’ and ‘non-fixed fingering’ (Kinoshita and Obata, 2009). 
Fixed fingering techniques play an irreplaceable role in consolidating hand positions and 
pitch concepts, as well as improving memory, but they are somewhat mechanical in 
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nature. ‘Non-fixed fingering techniques,’ on the other hand, can be further divided into 
‘extended fingering techniques’ and ‘dense fingering techniques.’ From a stylistic 
perspective, violin fingering techniques can be categorised into classical fingering, jazz 
fingering, and other techniques. In summary, there are numerous classifications of violin 
fingering techniques, and the appropriate classification should be selected based on the 
specific context. 

2.2 AR technology 

The principle of AR is to apply virtual information generated by a computer through 
simulation to the real world. In this way, the two types of information complement each 
other, thereby achieving enhancement of the real world (Yılmaz and Göktaş, 2018). A 
typical AR system structure is shown in Figure 1, which mainly consists of interactive 
devices such as virtual scene generation units, displays, and tracking and positioning 
devices. Among these, the virtual scene generation unit is used for peripheral 
management of scene models; the display is primarily used for real-time transmission of 
signals that fuse the real world with virtual objects; the head-mounted tracking and 
positioning device is used to track the coordinates and field of view of objects in the real 
world; and the interaction device is primarily used for input and output of environmental 
control signals and sensory signals. 

Figure 1 The typical AR system structure 
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AR and virtual reality both belong to the category of immersive technology, both aim to 
provide users with a richer, more vivid and immersive experience, breaking the 
limitations of traditional two-dimensional interaction, allowing users to interact with 
digital content in a new way. Through AR technology, violin fingering teaching will 
realise the change from abstract symbols to figurative interaction, significantly reducing 
the threshold for beginners. 
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2.3 Dilated convolution 

CNN is a deep learning model specifically designed to process data with a grid structure 
(such as images, videos, time series, etc.). In the CNN, DCNN is a technique that 
expands the receptive field by inserting gaps in the convolution kernels (Wang et al., 
2019). Their core advantage lies in their ability to capture broader contextual information 
without increasing computational complexity or the number of parameters, thereby 
improving network performance. 

Unlike standard convolution, DCNN can achieve zero-padding without affecting the 
original data. Adjusting the hole ratio (ar) can change the size of the hole convolution, 
where the hole ratio is the number of zeros filled in the adjacent parameters of the 
convolution kernel. Standard convolution is actually the convolution of DCNN when ar 
is 1. The definition of DCNN is shown below. 

1 1

( , ) ( , ) ( , )
H W

h w

y i j x i ar h j ar w w h w
= =

= + × + × ×  (1) 

where H is the length of the input feature map, W is the width of the input feature map, 
x(i, j) is the pixel value at position (i, j) in the input image, and y(i, j) is the output after 
the dilated convolution. 

3 Violin fingering motion capture based on multi-head attention and 
multi-scale dilated convolutions 

3.1 Temporal and spatial characteristics of violin fingering 

Due to the rapid dynamic changes in violin fingering, traditional methods find it difficult 
to extract the dynamic characteristics of fingering. To address this issue, this paper uses 
MAM to encode the spatial relationships between key joints, constructing a fully 
connected graph to accurately capture the complex dependencies between joints. At the 
same time, parallel multi-scale DCNNs with different expansion rates are introduced to 
effectively capture multiple time information, thereby improving the model’s perception 
of dynamic changes. The overall module for violin fingering motion capture is shown in 
Figure 2. 

To accurately capture the fingering movements of the violin, this paper applies 
position encoding to the joints of the hand so that the model can better utilise the 
relationships between joints, as shown in equation (2) and equation (3). The purpose of 
positional encoding is to inject signals of positional information into the model input, 
which is particularly important for processing sequential data. 

,2 2sin
10,000

pos i i
d

posE  =  
 
 

 (2) 

,2 1 2cos
10,000

pos i i
d

posE +
 =  
 
 

 (3) 
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where d is the encoding feature dimension; pos is the position index of the hand in the 
sequence; i is the feature dimension index. Each frame t in the gesture data contains N 
joint position information, represented as 1 2 , .[ .., , ],N

t t t tP p p p=  where j
tp  is the  

three-dimensional coordinate vector of the jth joint in frame t. Assume that at each time 
step t, each joint j

tp  generates a position encoding vector E, which is then combined with 

the three-dimensional coordinates of the joint to form joint feature j
tF  as [ ; ].j j

t tF p E=  

Figure 2 The overall module for violin fingering motion capture (see online version for colours) 
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3.2 Enhancement of violin fingering features based on spatio-temporal 
attention 

After obtaining the characteristics of finger techniques in violin playing, this paper 
designed spatial attention (AS) and temporal attention (AT) to extract spatial and 
temporal information of finger techniques, respectively. AS first takes j

tF  as input, 
updates it, and encodes spatial information. Then, the updated node features are input into 
AT to further learn time information; finally, the results are averaged and aggregated into 
a vector, which is used as the feature representation for classification. AS first calculates 
the scaling dot product between the query vectors and key vectors of nodes within the 
same time step; then, the results are normalised using the softmax function, as shown in 
equation (4) and equation (5). 

, ,

model

h h
t j t kh

jk
Q K

s
d h

⋅
=  (4) 

( )softmaxh h
jk jksα =  (5) 

where dmodel is the size of the model’s hidden level; h
jks  represents the scaling point 

product between nodes j
tp  and ;k

tp  ,
h
t jQ  and ,

h
t kK  are represented by the query vector 

and key vector between the hand joint nodes, respectively, h
jkα  is the attention weight 

between j
tp  and .k

tp  
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Each AS head generates a weighted skeleton diagram representing the specific spatial 
structure of the hand. Then, the AS features of node j

tp  are weighted and averaged with 
the value vector, and the results are merged as shown below. 

( ), ,
1

N
h h

jkt j t k
j

F Vα
=

= ⋅  (6) 

1 2
, , ,, .., .,j H

t t j t j t jF Concate F F F =  
  (7) 

where H is the number of attention heads; ,
h

t jF  is the weighted average of the AS weights 

and value vector ,
h

t kV  of ;j
tp  j

tF  is the weighted average of multiple heads combined to 

form the final AS feature representation .j
tp  

For the AT part, the output node features of AS are used as input, and the attention 
mechanism described above is used for encoding. Given a time step T and the number of 
hand joints J, perform time masking tmask and spatial masking smask as shown below. 

0,  
[ , ]

1,  mask
i j

t i j
i j

=
=  ≠

 (8) 

[ , ] 1 [ , ]mask masks i j t i j= −  (9) 

To ensure the transmission of information from the same hand joint at different times, 
select an appropriate mask for constraint based on the time or space domain, as shown 
below. 

( )
( )
1
1

mask mask

mask mask

t t η
s s η

α
α

α
× + − ×
×



+ ×
=

−




 (10) 

3.3 Feature focusing and recognition results output based on multi-scale hole 
convolution 

Due to noise or errors in weight distribution, attention distribution may not be accurate. 
To address this issue, a fine-focusing module based on multi-scale DCNN was designed 
before AS. By expanding the receptive field, the network can capture multi-scale spatial 
dependencies without significantly increasing the number of parameters. DCNN uses 
different convolution kernel sizes and dilation rates to adapt to different scale features in 
dynamic fingerings. 

DCNN consists of five branches, each of which extracts features of specific scales 
through convolution. The fifth branch extracts global features through global average 
pooling. Finally, all features are concatenated and unified through convolution for 
dimension reduction and fusion, generating the final output as shown below, where BN is 
the normalisation operation, the dilation rate d is generated from the input features as 
shown in equation (12), P(x) is the pooling operation, and W is the dilation rate value. 
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( )( )
( )( )
( )( )

( )( )( )

1 1 1 1

3 1,

1 1

1 1 1 1 6 12 18

( )

* , , , ,

d d dil d

G

G

Y ReLU BN W X

Y ReLU BN W X

Y ReLU BN W GlobalAvgPool X

Y ReLU BN W Concat Y Y Y Y Y

× ×

× =

×

× ×






= ∗

= ∗

= ∗

=




 (11) 

( )( )d σ W P x= ⋅  (12) 

After processing the output feature map through the network, pooling is performed to 
form a vector for result prediction. Meanwhile, a SoftMax layer is added to the end of the 
model to calculate the probability value of each fingering category. The category with the 
highest probability value is the final prediction result. 

4 Violin fingering teaching algorithm based on AR and motion capture 
technology 

4.1 Finger position estimation for violin playing based on improved AR 
algorithm 

To improve the teaching effectiveness of violin fingering, this paper designs a violin 
fingering teaching algorithm based on AR and motion capture technology, as shown in 
Figure 3. First, RGB video clips of violin performances were captured using the Azure 
Kinect DK (Servi et al., 2024) device, and the performer’s hand skeleton sequence was 
extracted using the device’s SDK. Finally, the extracted hand skeleton sequence is input 
into the aforementioned finger movement capture module to obtain finger recognition 
results. When specific finger movements are recognised, positional changes occur during 
the performance. To locate the position of the character’s hands, a hand pose estimation 
module based on an improved AR algorithm is designed to obtain estimation results for 
comparison and analysis. This enables comparison and correction of students’ finger 
movements, thereby improving teaching effectiveness. 

The POSIT algorithm is a commonly used method for solving camera pose (Bhakar 
and Bhatt, 2020), but in violin playing, when the left hand presses the strings, some 
fingers are often obscured by the neck, causing POSIT to misjudge the fingering. For this 
purpose, the POSIT algorithm and point-to-data estimation are used to estimate the 
relative camera pose with high accuracy. Finally, the Gaussian Newton method (GN) is 
used to optimise the distances between control points to obtain a more accurate finger 
pose. 

First, the initial pose of the camera is solved using the control point information in the 
original POSIT algorithm. The correspondence between the control points and the 
coordinate system is shown in Figure 4. First, assume that the three-dimensional point of 
the hand is Pi and its normalised coordinates are represented by ( , , 1).m m

i i im x y=  Let ui 
represent the pixel coordinates of Pi, which are known information, and let K represent 
the internal parameter matrix of the camera. Based on the camera model, the normalised 
coordinates mi = K–1ui can be calculated. From the pinhole camera model, we can see that 
Pi and its normalised coordinates, as well as the optical centre Oc, are on the same 
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straight line. Therefore, the cross product of the vectors represented by mi and c
iP  is 0,


 

as shown below. 

0c
ι ιm P× =
 

 (13) 

Figure 3 The flow of violin fingering teaching algorithm based on AR and motion capture  
(see online version for colours) 

 Start

Device Azure Kinect DK 
captures performance data

End

Violin hand fingering motion 
capture

Enhanced spatio-temporal 
characteristics of violin fingering

AS AT

DCNN

(b) Estimation of the first finger 
position

Three-
dimensional 
registration

Control point 
to data

Collaborative 
Interaction

Coordinate 
system 
convert

ICP algorithm 
solves for better 

fingering 
position

GN optimizes 
control point 

distance

Control point 
to data

(c) Fingerstyle teaching movement comparison correction

Screening for 
incorrect 
fingering 

points

Similarity 
metric

Load AR Model & 
Gesture Pointer

Model 
Interaction

Threshold 
judgment

Wrong 
fingering 
correction

Corrected 
point 

coordinates 
are averaged

Correction result 
output

Softmax layer outputs 
fingering recognition 

results

(a) Finger motion capture

 

When n control points are involved in the calculation, a linear equation system Mx = 0 
containing more equations can be formed. The size of the M matrix is 2n × 12, and the 
solution of the equation system is contained in the null space of the M matrix, as shown 
in equation (14), where N is the size of the null space of M; βi is the eigenvalue of the 
characteristic vector vi. Let uj = [uj vj]T represent the pixel coordinates of the jth control 
point. According to the coordinate system transformation principle, we have  
equation (15), where fx and fy are the pixel points on the x-axis and y-axis, respectively. 

1

N

i i
i

x vβ
=

=  (14) 

[ ]
0

[ ]
0

[ ]

0
0

1 0 0 1

j
xj x

j
j y y

j
z

vu f u
s v f v v

v

β
β
β

         =               

 (15) 

In the above equation, s represents the scale factor. By rearranging the equation, we can 
obtain the pixel coordinates of the control points as follows. 
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
 +

=


+






 (16) 

The initial virtual hand pose for violin playing was obtained through the above 
calculations, but the accuracy of the initial pose was not optimal, so further optimisation 
was carried out. During the transformation of the three-dimensional coordinate system, 
the distances between the four control points remain unchanged. Therefore, an optimised 
objective function is constructed based on the distances between the control points, as 
shown in equation (17), where c

jc  is calculated from the three-dimensional coordinates 
w
jc  in the world coordinate system, the initial pose R, and the current time t. 

c w
j jc Rc t= +  (17) 

The value of β can be solved using equation (14). In the world coordinate system, the 
relative distance between points ci and cj is known. Apply GN optimisation to find the 
least squares solution, and define the objective function to be optimised as follows. 

( )2 2( ) c c w w
i j i j

i j

Error c c c cβ
<

= − − −  (18) 

where ( , , )j j jc
x y zjc v v vβ β β=  is the optimisation variable and β is the constrained 

variable. 

Figure 4 Control points versus coordinate system (see online version for colours) 
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By using β after the convergence of the objective function to calculate the new ,c
jc  

coordinates of the reference point in the camera system can be calculated, and at this 
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time, the 3D-3D point pair information is obtained. Finally, the point pair information is 
substituted into the iterative closest point (ICP) algorithm to re-solve for better violin 
finger postures R and t. 

4.2 Violin fingering technique comparison and correction 

After obtaining relatively accurate violinist hand position and posture through AR 
methods, cosine similarity is used to measure the fingering within the same hand gesture, 
and a similarity matrix is formed to filter out incorrect fingering points, as shown below. 

( ) 1 2 1 2 1 2
1 2

2 2 2 21 2 1 1 2 2

cos , v v x x y yv v
v v x y x y

⋅ += =
× + × +

 (19) 

This yields a similarity matrix, as shown in equation (20), where Sij refers to the cosine 
similarity between vector aij in the target fingering and vector ija′  in the AR fingering. 

11 12 1

21 22 2

1 2

... ... ...

n

n
t

n n nn

s s s
s s s

Sim

s s s

 
 
 =
 
 
 






 (20) 

Since the average similarity data for correct points is significantly higher than that for 
incorrect points, the average similarity can be used to determine whether the fingering is 
correct. However, due to the varying degrees of error in the violinists’ fingering 
techniques, the average similarity is difficult to measure using a fixed threshold. 
Therefore, the average value bi of the average similarity Sij of all points is used, combined 
with the standard deviation as the threshold for judgment, as shown in equation (21) and 
equation (22). Finally, data below the threshold are identified as outliers, and their 
relative differences are recorded and accumulated for the final determination of correct 
and incorrect fingerings E, as shown in equation (23). 

1,

1

ij
j i j

i

S
b

n
= ≠=
−


 (21) 

( )2

1 1,

n n
i i t

i i
t t

b b
B

B
S

n n
= =

−
= =   (22) 

t t i

t t

S
B

bE E
S

B − −= +
−

 (23) 

After determining the correctness of students’ violin fingering, correct any incorrect 
fingering. Correcting incorrect fingering requires using information about the correct 
positions of the joints in the hand and the correct relative positions to predict the correct 
positions for the incorrect fingering, thereby achieving fingering correction. Correct 
techniques can provide accurate joint position information, and correct relative position 
information can be obtained from the feature descriptions of correct finger techniques. By 
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averaging the corrected point coordinates calculated from all correct finger techniques, 
the final corrected point coordinates can be obtained, as shown in equation (24). 

( )
( )

( )0
,

, ,

n
i i in

i
n n i

x y L
x γ e k

m
=

+
= <  (24) 

where xn is the target fingering, γn is the virtual fingering of AR, yi is the hand joint point 
of the correct fingering, Lin is the fingering sequence to be compared, m is the number of 
joint points of the correct fingering, k is the threshold set to determine whether the joint 
points are correct or incorrect, and ei < k is the relative error of the ith joint point less than 
the threshold. 

5 Experimental results and analyses 

This paper uses the violin fingering teaching dataset in reference (Campo et al., 2023b), 
which contains synchronised audio, hand movements, and 16,357 accurately annotated 
fingerings, including nine categories such as classical fingering, jazz fingering, and ethnic 
fingering. The training set and test set ratio is 8: 2. Extract detailed fingerings for violin 
playing from audio, including the string being played with the bow, finger numbers, and 
finger positions. The experiment is based on the PyTorch deep learning framework, using 
Python 3.7 as the programming language, with a hardware environment consisting of an 
NVIDIA GeForce GTX 1660 Ti 6GB graphics card, an Intel Core i7-8700 6-core CPU, 
and 16GB DDR4 memory. The experiment used the Adam optimisation algorithm, with 
the iteration batch size set to 16, the learning rate set to 0.0001, and the maximum 
training rounds set to 200. 

The top-1 and top-5 correction accuracy rates of the proposed algorithm AR-MCT are 
compared with those of the baseline algorithms RTC-GR (Pigou et al., 2018), CNN-SVM 
(Sun et al., 2020), and CNN-TR (Liu and Fu, 2023) as shown in Table 1. The top-1 and 
top-5 correction accuracy rates of AR-MCT are 94.18% and 97.36%, respectively, which 
are 13.13% and 11.89% higher than those of RTC-GR, 7.81% and 7.64% higher than 
those of CNN-SVM, and 3.66% and 4.79% higher than those of CNN-TR. AR-MCT not 
only utilises MAM and DCNN to accurately recognise violin fingering, but also uses the 
recognition results for AR hand fingering pose estimation, greatly improving the 
accuracy of correction for incorrect violin fingering movements and laying a foundation 
for improving the effectiveness of violin fingering instruction. 
Table 1 Comparison of finger correction accuracy between different teaching algorithms 

Algorithm top-1 top-5 
RTC-GR 81.05% 85.47% 
CNN-SVM 86.37% 89.72% 
CNN-TR 90.52% 92.57% 
AR-MCT 94.18% 97.36% 
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Figure 5 Performance results for the estimation of fingering joint points of the hand,  
(a) comparison PCK curve and AUC value (b) algorithm loss comparison 
(see online version for colours) 
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The PCK curves and AUC values of the correct estimation ratio (PCK) for hand finger 
joint nodes, as well as the estimation loss comparisons between AR-MCT and RTC-GR, 
DL-VBA, and CNN-TR, are shown in Figure 5. As shown in Figure 5(a), the horizontal 
axis represents the normalised distance, with threshold points set at (0, 0.05, …,0.5) for 
the test settings. The vertical axis denotes the corresponding PCK values. The PCK 
values of AR-MCT are higher than those of other algorithms, and the AUC is also the 
largest. When the threshold is 0.15, the PCK value of AR-MCT has reached 91.5%, while 
RTC-GR, CNN-SVM, and CNN-TR have reached 70.2%, 78.9%, and 83.2%, 
respectively. Although RTC-GR extracts spatio-temporal features of finger movements 
through a spatio-temporal dual-stream convolution structure, it does not enhance key 
features, resulting in poor motion estimation performance. Although CNN-SVM utilises 
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CNN and SVM to extract features and classify hand fingering images, it does not 
consider the dynamic spatiotemporal characteristics of violin fingering movements. 
CNN-TR recognises hand fingering images through CNN-BiLSTM, but its ability to 
perceive dynamic changes in fingering movements is weak. 

The loss values for the four algorithms’ finger movement estimation are shown in 
Figure 5(b). AR-MCT achieved a significant reduction in the first 15 epochs, 
demonstrating that the algorithm can quickly capture and adapt to key features in the 
training dataset. As training continued until the 120-th epoch, despite a period of slight 
fluctuations and adjustments, it ultimately showed a strong convergence trend and 
stabilised at a relatively low level. 

Figure 6 Visualisation of the recognition effect of violin fingering movements, (a) RTC-GR  
(b) CNN-SVM (c) CNN-TR (d) AR-MCT (see online version for colours) 
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(c)     (d) 

In addition, this paper also visually demonstrates the recognition performance of each 
algorithm for the nine types of violin fingering actions in the dataset, as shown in  
Figure 6. The RTC-GR algorithm identifies various types of finger movements in a 
relatively scattered manner, and different types of finger movements may be confused. 
The recognition performance of the CNN-SVM algorithm is superior to that of RTC-GR. 
It can accurately recognise some finger movement types, but there are still cases of 
confusion between different finger movement types. When compared with the CNN-TR 
algorithm, only a few types of finger movements remain unrecognised. The AR-MCT 
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algorithm achieves the best recognition performance, clearly identifying various types of 
finger movements and demonstrating the overall best recognition performance. 

6 Conclusions 

Correct fingering is one of the key factors for successful violin performance. However, 
the rapid dynamic changes in violin fingering make it challenging for teachers to 
promptly correct students’ incorrect fingering during instruction. To this end, this paper 
first designs a violin dynamic fingering motion capture module, adopts a multi-head 
attention mechanism, and utilises multi-scale hollow convolution to enhance the capture 
of complex dependencies between hand joints, significantly improving recognition 
performance. After identifying specific finger positions, the hands move during the 
performance. To locate the position of the hands, an AR-based hand pose estimation 
module was designed. The POSIT algorithm and point-to-point data are used to estimate 
the relative position of the fingers in relation to the camera, and the GN method is used to 
optimise the distance between control points to obtain more accurate virtual finger 
positions. Finally, cosine similarity is used to compare the virtual fingering with the 
actual fingering. For incorrect skeletal points, fingering correction is performed based on 
the feature description of the target fingering, thereby improving the teaching 
effectiveness. The experimental results indicate that the PCK value of the proposed 
algorithm reaches 91.5%, enabling accurate correction of incorrect fingering in violin 
fingering instruction. 

Future research can focus on optimising feature extraction of finger movements to 
further improve the performance of the motion capture module in complex finger 
movement recognition tasks. Specifically, by introducing a dynamically adjustable  
multi-scale feature extraction mechanism, the receptive field and expansion rate can be 
adaptively adjusted according to the complexity of violin fingering to flexibly capture 
multi-scale features. A feature enhancement strategy is designed for similar fingerings. 
The feature differences are strengthened through contrastive learning, and the generative 
adversarial network is utilised to expand the training data and improve the generalization 
ability. 
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