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Abstract: This paper proposes a fault-tolerant control method that integrates real-time learning 
(JITL) and heuristic dynamic programming (HDP) to address the issues of actuator failures and 
model uncertainties in intelligent transportation vehicles in dynamic environments. Construct an 
online fault diagnosis module using a multi-source data-driven framework, and utilise JITL to 
dynamically update local models to quickly capture system anomalies; design an adaptive 
controller based on the dual layer optimisation structure of HDP, and compensate for the impact 
of faults through an evaluation execution network collaborative optimisation strategy. 
Experimental verification based on the publicly available traffic dataset NGSIM shows that in 
typical fault scenarios such as sensor failure and actuator offset, the proposed method can 
significantly improve tracking accuracy and response speed compared to traditional robust 
control methods, and effectively suppress oscillations caused by interference, verifying the 
adaptability and reliability of the algorithm in dynamic environments. 
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1 Introduction 
The rapid development of Intelligent Transportation 
Systems has put forward higher requirements for the 
reliability and safety of vehicle control. In complex dynamic 
traffic scenarios, vehicles need to respond in real-time to 
changes in road topology, interference from surrounding 
vehicles, and potential faults in their own actuators and 
sensors (such as brake offset, signal distortion, etc.) (Wang 
et al., 2023). However, traditional vehicle fault-tolerant 
control methods often rely on robust control strategies with 
fixed parameters or offline trained fault diagnosis models, 
which are difficult to adapt to multi-source uncertainty 
coupling problems in dynamic environments. Especially 
when sudden failures and model mismatches occur 
simultaneously, existing methods are prone to response lag, 
decreased tracking accuracy, and even instability, posing a 
serious threat to driving safety (Lamssaggad et al., 2021). 

In AI-based vehicle control systems, safety, 
transparency and responsibility are the core ethical pillars of 
safety for technology implementation. The level needs to 
ensure that the algorithmic decision-making mechanism has 

verifiable robustness, especially in the event of failure or 
sudden changes in the environment to maintain multi-level 
protection for pedestrians and vehicles; transparency 
requires the construction of an interpretable decision-
making traceability framework, so that the behaviour of 
automated driving in line with the cognitive logic of the 
human driver and the expectations of traffic laws and 
regulations; the responsibility of the responsibility needs to 
be clearly defined human-machine collaborative control of 
the boundaries of rights and responsibilities, and the 
establishment of an accountability mechanism to cover the 
development of algorithms, data training and real-time 
operation. The accountability mechanism covering 
algorithm development, data training and real-time 
operation should be established. The current research on the 
risk of black box modelling in complex scenarios urgently 
needs to integrate formalised verification tools and ethical 
constraint modules to achieve the unity of technical 
reliability and social acceptance. 

The main challenges facing current research include:  
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1 Fault dynamics: the fault modes of actuators and 
sensors have time-varying characteristics, and 
traditional threshold detection methods are difficult to 
achieve fast online identification 

2 Model uncertainty: the high nonlinearity of vehicle 
dynamics and external disturbances result in 
insufficient generalisation ability of fault-tolerant 
strategies based on accurate models 

3 Real-time control: in complex fault scenarios, it is 
necessary to balance dynamic optimisation efficiency 
with computational resource constraints. Although 
data-driven methods such as deep learning and 
reinforcement learning provide new ideas for the above 
problems, their dependence on annotated data and high 
computational complexity limit their application in 
real-time control. 

In response to the above challenges, this paper proposes a 
collaborative fault-tolerant control framework based on 
JITL and HDP. The core innovation lies in:  

1 Dynamic fault diagnosis: constructing a lightweight 
online local model through JITL, utilising dynamic 
similarity measurement of multi-source data streams 
(such as vehicle speed, steering angle, environmental 
perception information) to achieve rapid extraction of 
fault features and pattern classification 

2 Adaptive fault-tolerant optimisation: design a dual layer 
HDP controller, combine the evaluation network and 
execution network's interactive optimisation 
mechanism, dynamically adjust the control strategy to 
compensate for the performance loss caused by faults, 
and balance robustness and response speed through a 
cost function adaptive mechanism. 

2 Related word 
The research on fault-tolerant control and fault diagnosis 
of intelligent transportation vehicles has made 
significant progress in recent years, but real-time 
performance and adaptability in dynamic environments 
remain the core challenges. Traditional fault diagnosis 
mainly relies on model-based residual analysis. For 
example, Isermann (2005) proposed an observer based 
model driven method that detects actuator and sensor 
faults through residual generation. However, its 
performance is highly dependent on an accurate vehicle 
dynamics model and is prone to false alarms under 
model mismatch or external interference. To reduce the 
dependence on the model, Gao et al. (2015) developed a 
data-driven kernel principal component analysis method 
that utilises nonlinear feature extraction to improve the 
robustness of fault detection. However, its  
real-time performance is limited by batch data 
processing mechanisms, making it difficult to meet the 
online requirements of dynamic traffic scenarios. In 
recent years, deep learning has been introduced into the 

field of fault diagnosis, such as Liang et al. (2020) using 
convolutional neural networks to automatically learn 
fault features from multi-source sensor data, but it 
requires a large amount of  data and has high 
computational complexity. Zhao et al. (2022) proposed a 
transportation infrastructure model based on parallel 
learning and federated intelligence as a potential path 
for the next generation of parallel intelligent 
transportation systems. 
In terms of fault-tolerant control, sliding mode control is 

widely adopted due to its strong robustness. Song et al. 
(2016) designed a new descriptor sliding mode observer for 
system state estimation and fault/noise reconstruction. 
Polycarpou (2001) proposed a learning method for adapting 
to faults occurring in a class of nonlinear multi input multi 
output dynamic systems in response to composite fault 
scenarios. In addition, reinforcement learning methods have 
shown potential, such as Ding et al. (2019) using deep 
reinforcement learning to obtain intelligent fault diagnosis 
agents that can autonomously and effectively mine the 
relationship between raw vibration signals and fault 
patterns. Shahbaz and Amin (2023) proposed a novel hybrid 
fault-tolerant control system with dedicated nonlinear 
controllers: artificial neural networks and sliding mode 
control for active and passive components, respectively. The 
proposed system can provide ideal stability against 
unexpected rapid interference and optimal performance 
after failure. 

The existing research still has the following limitations: 
traditional statistical methods and deep learning are difficult 
to balance efficiency and non-linear feature extraction; 
Fixed parameter and model free methods lack dynamic 
strategy adjustment mechanisms. This article combines  
real-time learning and heuristic dynamic programming 
(HDP) to improve diagnostic efficiency through lightweight 
online modelling, enhance control adaptability through  
two-layer dynamic optimisation, and verify algorithm 
reliability based on publicly available datasets. The system 
solves the above problems. 

3 Relevant theory 
3.1 Just in time learning 
Just in time learning is an online modelling method for 
dynamic systems (Jiang and Ge, 2022), which focuses on 
real-time filtering of historical data subsets that are most 
relevant to the current state, and constructing local  
time-varying models to capture the nonlinear and non-
stationary characteristics of the system (Yang and Ge, 
2021). JITL avoids the complexity of global models and is 
suitable for fast learning and prediction tasks in dynamic 
environments. 

Assuming the input state vector of the system at time t is 
n

tx ∈ , the output is m
ty ∈ , and the historical dataset is 

( ){ } 1
, N

i i i
D x y

=
= . JITL first selects the neighbourhood 

sample set from D that is most relevant to the current input 



 Fault-tolerant control of intelligent transportation vehicles based on instant learning 23 

xt based on similarity measurement. Similarity measurement 
usually uses a weighted distance function: 

( ) ( ) ( ), , ,T
t i t i t id x x x x W x x=  (1) 

where, n nW ×∈  is a semi positive definite weight matrix 
used to adjust the contribution of different state dimensions 
to similarity. Select the k samples with the smallest distance 
to form neighbourhood Nt, and establish a local model based 
on this. For the local regression model under the assumption 
of linear relationship, its form is: 

( )T
t t t ty x= +θ φ ε  (2) 

where, ( )txφ  is the state mapping function, θt is the  
time-varying parameter matrix, and εt is the modelling error. 
Parameter estimation is achieved by minimising the 
weighted loss function of neighbouring samples: 

( ) )
( )

2

,

ˆ arg min
i i t

T
t i i i

x y N

w y x
∈

= −θ
θ θ φ  (3) 

weight wt is usually designed as a decreasing function of 
distance, such as a Gaussian kernel function: 

( )( )2exp ,i t iw d x x= −γ  (4) 

The closed form solution for parameter estimation can be 
expressed as: 

( ) 1ˆ T T
t t t t t t tW W Y

−
= Φ Φ Φθ  (5) 

where, Φt is the mapping matrix of neighbouring samples, Yt 
is the corresponding output matrix, and Wt is the weight 
diagonal matrix. 

To adapt to the dynamic changes of the system, JITL 
adopts a sliding time window mechanism to update the 
historical dataset. When the new sample (xt, yt) arrives, add 
it to the dataset and remove the oldest sample to ensure data 
timeliness. The prediction residual of the model is defined 
as: 

( )ˆT
t t t tr y x= −θ φ  (6) 

The statistical properties of residuals can be used to evaluate 
model confidence or trigger model update conditions. The 
theoretical advantage of JITL lies in its ability to 
approximate nonlinear systems through local linearisation, 
while utilising online update mechanisms to reduce 
computational complexity, providing an efficient and 
flexible framework for real-time learning in dynamic 
environments (Naseem et al., 2022). 

3.2 Heuristic dynamic programming 
HDP is an implementation form of adaptive dynamic 
programming, aimed at solving optimal control problems in 
continuous state space through approximate dynamic 
programming methods. Its core idea is to use a two-layer 
structure of critic network and actor network to approximate 

the Bellman optimality equation, thereby avoiding the 
‘curse of dimensionality’ problem caused by the growth of 
state dimensions in traditional dynamic programming 
(Wang and Jiao, 2022). HDP dynamically adjusts network 
parameters through online learning mechanisms, gradually 
approaching the optimal control strategy, and is suitable for 
real-time optimisation control of nonlinear dynamic systems 
(Hu et al., 2021). 

Let the discrete-time state equation of a dynamic system 
be: 

( )1 ,k k k kx f x u w+ = +  (7) 

where, n
kx ∈  is the system state vector, m

ku ∈  is the 
control input vector, f(⋅) is the state transition function, and 
wk is the external disturbance. The control objective is to 
minimise the cumulative cost function in infinite time 
domain: 

( ) ( ),t k
k t t

t k

J x γ C x u
∞

−

=

=  (8) 

where, C(xt, ut) is the single step cost function, and γ∈(0, 1} 
is the discount factor. According to the Bellman optimality 
principle, the optimal value function J*(xk) satisfies: 

( ) ( ) ( )1min ,
k

k k k ku
J x C x u γJ x∗ ∗

+ = +   (9) 

HDP evaluates the approximate value function J*(xk) of 
network ( )ˆ ,k cJ x W , where Wc is the weight parameter of 
the evaluation network; at the same time, execute network φ 
(xk, Wa) to generate control strategies uk and Wa for 
executing network weight parameters. The training 
objective of evaluating the network is to minimise the 
temporal difference error. 

Updating evaluation network weights through gradient 
descent method: 

( )1
ˆ , k

k ck k
c c c k k

c

J x W
W W α δ

W
+ ∂

= −
∂

 (10) 

where, αc > 0 is the learning rate. The optimisation 
objective of the execution network is to minimise the long-
term cumulative cost, and its weight update depends on the 
gradient of the evaluation network towards the control 
input: 

( ) ( )1
ˆ , ,k k

k c k ak k
a a a k

k a

J x W x W
W W α

u W
+ ∂ ∂

= −
∂ ∂

φ
 (11) 

where, αa > 0 is the execution rate of network learning. The 
iterative process of HDP alternates between updating the 
evaluation network and the execution network: the 
evaluation network approximates the true value function 
through TD error, and the execution network optimises the 
control strategy based on the gradient of the value function 
until convergence to Nash equilibrium (Tang et al., 2023). 
In theory, when the approximation error between the 
evaluation network and the execution network is small 
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enough, HDP can ensure system stability and asymptotic 
convergence to the optimal control law (Ravelo and 
Meneses, 2021). 

The advantage of HDP lies in its decoupling of  
value function estimation and strategy optimisation through 
a dual layer network structure, significantly reducing 
computational complexity; meanwhile, the online learning 
mechanism enables it to adapt to dynamic environmental 
changes, providing theoretical support for real-time  
fault-tolerant control of complex systems. 

4 Problem modelling and fault classification 
The fault-tolerant control of intelligent transportation 
vehicles needs to simultaneously handle the coupling effects 
of system nonlinearity, multi-source interference, and 
potential faults in dynamic environments (Yang et al., 
2023). This chapter establishes a problem description 
framework for fault-tolerant control based on vehicle 
dynamics models and typical fault scenarios, and defines 
fault classification criteria. Considering the scenario of 
vehicle lateral motion control, based on a two degree of 
freedom bicycle model, the system state vector is defined as 

[ , , , ] ,Tx e e φ φ=    where e is the lateral tracking error, e  is its 
derivative, ϕ is the heading angle error, and φ  is the yaw 
rate; Control input u as the front wheel steering angle 
command. The system dynamics equation can be expressed 
as: 

1

2

( )e v φ d
v vφ δa d
L L

= + +

 = +





β

β
 (12) 

where, v is the longitudinal vehicle speed, β is the slip 
angle, L is the wheelbase, and d1 and d2 are external 
disturbances (such as crosswinds and changes in road 
friction). In actual systems, the following typical faults may 
occur in actuators and sensors: 

1 Actuator malfunction: the efficiency of the steering 
mechanism decreases or deviates, manifested as a 
deviation between the control input and the actual 
execution amount, i.e., uactual = ρu + Δ, where ρ∈[0, 1] 
is the execution efficiency factor and Δ is a constant 
offset 

2 Sensor malfunction: abnormal measurement signal of 
lateral error e or lateral angular velocity φ , including 
deviation, drift, or complete failure 

3 Composite fault: simultaneous occurrence of actuator 
and sensor faults, or accompanied by model parameter 
perturbations (such as changes in tyre lateral stiffness). 

To quantify the impact of faults, define fault feature vector f 
= [fa, fs]T, where fa∈{0, 1} represents the actuator fault state 
(0 is normal, 1 is fault), and fs∈{0, 1, 2} represents the 
sensor fault mode (0 is normal, 1 is deviation, 2 is failure). 
The fault-tolerant control objective can be expressed as: at  

f ≠ 0 or in the presence of external disturbances at d1 and d2, 
design control law u = π(x, f) to ensure that the closed-loop 
system satisfies: 

1 Stability: the lateral tracking error e is bounded and 
consistent with the heading angle error ϕ 

2 Dynamic performance: recover to the allowable error 
range within T time after the fault occurs, and suppress 
oscillation 

3 Robustness: strong anti-interference ability against 
model uncertainty β and external disturbances d1 and 
d2. 

Based on the above modelling and classification, 
subsequent chapters will use JITL real-time diagnosis to 
drive the HDP controller to dynamically adjust π(⋅), 
achieving adaptive fault-tolerant control in fault scenarios. 

5 JITL-HDP fault-tolerant control method 
The JITL-HDP fault-tolerant control framework consists of 
a dynamic fault diagnosis module and an adaptive control 
optimisation module, forming a closed-loop control through 
real-time data exchange, as shown in Figure 1. JITL 
provides real-time fault feature driven strategy updates for 
HDP, while HDP's control performance feedback guides 
JITL to adjust similarity metric weights and neighbourhood 
sizes, forming bidirectional collaborative optimisation. 

Figure 1 Method framework diagram (see online version  
for colours) 

JITLL fault diagnosis module

Dynamic Neighborhood Selection

Similarity measurement Neighborhood screening Local linear regression fitting

Local modeling

Residual and threshold 

HDP fault-tolerant control module

Evaluation Network  Execution Network

Fault characteristics Adaptive cost function parameters

Update of Historical 
Dataset

Control 
quantity

 

5.1 JITL fault diagnosis module 

Assuming the current vehicle status is n
tx ∈  and the 

historical dataset is ( ){ } 1
, .N

i i i
D x y

=
=  JITL uses weighted 

Mahalanobis distance to screen neighbouring samples: 

( ) ( ) ( ) ( )1 2 2
1, , , , ,...,T

t i t i t i nd x x x x x x diag σ σ
−

= =   (13) 

where, 2
1σ  is the variance of the jth dimensional state 

variable, reflecting its sensitivity to faults. Select the top k 
samples with the smallest distance to form Neighbourhood 
Nt, whose size is adaptively adjusted according to the 
dynamic characteristics of the system: 
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(( )min max min 1exp t tk k k k x x −
 = + − ⋅ − − β  (14) 

where, kmin and kmax represent the upper and lower limits of 
the neighbourhood size, and β is the attenuation coefficient, 
ensuring that the neighbourhood is reduced to improve 
sensitivity during state transitions. 

Build Nt local linear models: 
T

t t t ty θ x ε= +  (15) 

The parameter estimation adopts the weighted least squares 
method: 

( ) 1ˆ ΦT T
t t t t t t tθ X W X W Y

−
=  (16) 

Weight matrix Wt = diag(wi, …, wk), where wi = exp(–γd2(xt, 
xi)). The residual calculation is: 

ˆT
t t t tr y θ x= −  (17) 

The dynamic threshold is designed as ηt = μt + 3σt, where μt 
and σt are the mean and standard deviation of the 
neighbourhood residuals. If rt > ηt, trigger the fault 
classifier and output ft, as shown in Table 1. 

Table 1 Coding rules for fault feature vectors 

Fault type fa fs 

No fault 0 0 
The efficiency of the actuator decreases 1 0 
Sensor deviation 0 1 
Actuator sensor composite fault 1 2 

5.2 HDP control optimisation module 
The cost function of HDP integrates tracking error, control 
input, fault penalty, and model smoothness constraints: 

( ) 2 2 2 2 2
1 2 3 4 1, , || || || || || ||t t t t t t t t tC x u f e λφ λ u λ f λ θ θ −= + + + + −  (18) 

Dynamic adjustment of weight coefficients: 

( )3 3, 4 4, 11 || || , || ||base t base t tλ λ f λ λ u u −= ⋅ + = ⋅ −  (19) 

Evaluation network ( )ˆ , cJ x W  is a three-layer fully 
connected neural network with inputs of xt and ft and 
outputs as value function estimates. Weight update based on 
temporal differential error: 

( ) ( ) ( )1
ˆ ˆ, , , ,t t t t t c t cδ C x u f γJ x W J x W+= + −  (20) 

Adopting an adaptive learning rate strategy: 

( )2
0 expc c tvδ= ⋅ −α α  (21) 

The update rule is: 

( ) ( )( )1
ˆ ˆ, ,

tc c cδ c t c c t cW W α W J x W γ W J x W+← ∇ − ∇  (22) 

The output control quantity ut of network φ(x, Wc) is 
executed, and its loss function is: 

( ) 2
1

ˆ || ||a t c t tL E J x W η u u − = + + −   (23) 

Weight update adopts momentum gradient descent: 

(1 ) ,a a c a a a a aW W W L W W WΔ = Δ + − Δ ← − Δβ β α  (24) 

where, β is the momentum factor, which suppresses  
high-frequency oscillations. 

5.3 Collaborative optimisation and stability analysis 
The dual triggering mechanism achieves collaborative 
optimisation between JITL and HDP modules by 
dynamically sensing system status and fault characteristics. 
Its design includes two types of conditions: fault triggering 
and performance triggering. The stability proof is as 
follows: 

Construct Lyapunov function: 

( ) ( ) 1ˆ , 0
2

T
t t c t tV x J x W e Pe P= + +   (25) 

The difference ΔV = V(xt+1)–V(xt) satisfies: 
2 2|| || || ||t tV μ e k εΔ ≤ − +  (26) 

where, μ > 0 and k are the upper bounds of approximate 

error. When the learning rate satisfies 2
c

JγL
<α  and 

2
a L

<
φ

α , the system state is ultimately bounded uniformly. 

This chapter solves the problem of diagnostic lag and 
strategy rigidity in traditional methods under dynamic faults 
through the deep collaboration of JITL and HDP, providing 
a theoretically rigorous, real-time and efficient fault-tolerant 
control scheme for intelligent transportation vehicles. 

6 Experiment and result analysis 
6.1 Experimental setup 
The experiment used the next generation simulation 
(NGSIM) dataset released by the Federal Highway 
Administration in the USA (Wipulanusat et al., 2021), 
selecting high-precision vehicle trajectory data (sampling 
frequency 10 Hz) from US-101 and I-80 highway sections, 
to simulate the lateral tracking control task of intelligent 
vehicles in dynamic traffic environments. The experiment 
covers the following scenarios: 

1 Normal scenario: no faults, verify basic tracking 
performance 

2 Fault scenario: inject three types of faults, including 
actuator offset, sensor deviation, and composite faults 

3 Interference scenario: overlapping crosswind 
disturbance (speed 10–15 m/s, direction random). 

All experiments were conducted in a joint simulation 
environment of Python and MATLAB/Simulink, using Intel 
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i7-12700H processor as the hardware platform to verify 
real-time requirements. 

To verify the effectiveness of the proposed JITL-HDP 
method, three representative comparative methods were 
selected for the experiment: 

1 H∞ robust control (Bokor and Szabó, 2009): based on 
fixed parameter robust controller 

2 SMC fault-tolerant control (Van et al., 2016): sliding 
mode control combined with fault observer 

3 DDPG fault-tolerant control (Qiu et al., 2019): deep 
deterministic policy gradient algorithm. 

The evaluation indicators include: lateral tracking error emax 
and eRMS; heading angle error ϕmax; control input change rate 
ΔuRMS (measure control smoothness); fault detection delay 
of Td (the time from the occurrence of the fault to the 
alarm). All methods were run under the same initial 
conditions, with a fault injection time of t = 5s, and the 
experiment was repeated 10 times to calculate the average 
performance. 

Table 2 Performance comparison under composite fault 
scenarios 

Method emax 
(m) 

eRMS 
(m) 

ϕmax 
(rad) ΔuRMS Td(s) 

H∞ 0.92 ± 
0.11 

0.41 ± 
0.06 

0.18 ± 
0.03 

0.15 ± 
0.02 

– 

SMC 0.68 ± 
0.09 

0.32 ± 
0.05 

0.14 ± 
0.02 

0.23 ± 
0.03 

1.2 ± 
0.2 

DDPG 0.54 ± 
0.07 

0.27 ± 
0.04 

0.11 ± 
0.02 

0.19 ± 
0.03 

– 

JITL-HDP 0.39 ± 
0.05 

0.18 ± 
0.03 

0.07 ± 
0.01 

0.12 ± 
0.02 

0.6 ± 
0.1 

6.2 Horizontal tracking performance and fault 
tolerance verification 

Table 2 shows the performance comparison of various 
methods under composite fault scenarios. JITL-HDP is 
significantly better than the comparison method in all key 
indicators: its maximum lateral tracking error (emax = 0.39 
m) is reduced by 57.6%, 42.6%, and 27.8% compared to 
H∞ control (0.92 m), SMC (0.68 m), and DDPG (0.54 m), 
respectively, and its root mean square error (eRMS = 0.18 m) 
is also the lowest value. This advantage stems from the 
synergistic effect of JITL's online fault diagnosis capability 
and HDP's dynamic strategy optimisation. In addition, the 
heading angle error of JITL-HDP (ϕmax = 0.07 rad) is 
reduced by more than 60% compared to traditional methods, 
verifying its advantage in directional stability. 

6.3 Dynamic response process and robustness 
analysis 

Figure 2 compares the temporal curves of lateral tracking 
errors of various methods under composite fault scenarios. 
After fault injection (t = 5 s), H ∞ control cannot adaptively 

adjust due to fixed parameters, and the error continues to 
increase to 0.92 m accompanied by low-frequency 
oscillations (red dashed line); SMC (blue dotted line) 
suppresses overshoot through sliding mode surface, but 
high-frequency chattering leads to significantly higher 
control input change rate (ΔuRMS = 0.23), as shown in Figure 
3, which may accelerate actuator wear; DDPG (green 
dashed line) performs well in the initial stage, but due to the 
lag of offline training strategy, overshoot (error peak 0.54 
m) occurs after t > 10 s; JITL-HDP (solid black line), 
through real-time diagnosis and dynamic optimisation, 
converged the error to below 0.2 m within 1.2 seconds (t = 
6.2 s) after the fault, without significant oscillation, 
verifying its fast response capability and robustness. 

Figure 2 Comparison of horizontal tracking error time series 
(see online version for colours) 

 

Figure 3 Comparison of control input change rates (see online 
version for colours) 

 

6.4 Control smoothness and fault detection 
performance 

From the control input change rate, it can be seen that  
JITL-HDP has a value of (ΔuRMS = 0.12, which is lower than 
H∞ (0.15), DDPG (0.19), and SMC (0.23). This result 
indicates that the adaptive cost function of HDP improves 
tracking accuracy while ensuring actuator smoothness by 
penalising sudden changes in control inputs, which helps to 
extend hardware lifespan and improve ride comfort. In 
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addition, the fault detection performance of JITL further 
supports the reliability of the method, as shown in Figure 4: 
for the fault of decreased actuator efficiency, the detection 
accuracy reaches 98.7%, and the average delay is 0.5 
seconds (median of the box plot). Due to its direct 
correlation with the control input, the features are easy to 
capture; The sensor deviation is slightly increased to 0.7 
seconds due to measurement noise interference, but the 
dynamic threshold mechanism still ensures an accuracy of 
95.2%; In the composite fault scenario, the multi-source 
coupling effect leads to a slight decrease in detection 
accuracy to 92.4%, but the delay remains stable at 0.6 
seconds, significantly better than the accuracy of traditional 
threshold methods below 85%. 

Figure 4 Delay distribution of detection for three types of faults 
(see online version for colours) 

 

The experimental results show that JITL-HDP exhibits 
significant advantages in dynamic fault scenarios: its lateral 
tracking error is reduced by 33–57% compared to traditional 
methods, the fault detection delay is shortened by 50%, and 
the control input is smoother. The core advantage comes 
from JITL's lightweight online modelling and HDP's dual 
layer optimisation mechanism: the former quickly captures 
fault features through local neighbourhood search, while the 
latter dynamically adjusts strategies to balance tracking 
accuracy and robustness. In addition, JITL-HDP remained 
stable in the interference superposition scenario, verifying 
its adaptability to model uncertainty. 

This chapter validates the effectiveness of the  
JITL-HDP method through publicly available datasets and 
multidimensional experiments. Its collaborative mechanism 
of integrating online learning and dynamic programming 
provides theoretical and practical basis for high reliability 
control of intelligent vehicles in dynamic fault and 
interference scenarios. 

7 Conclusions 
This article proposes a collaborative fault-tolerant control 
method that integrates JITL and HDP to address the 
coupling problems of actuator failures, sensor anomalies, 

and model uncertainties faced by intelligent transportation 
vehicles in dynamic and complex environments. Through 
theoretical analysis, algorithm design, and experimental 
verification, the system solves the shortcomings of 
traditional methods in dynamic adaptability, real-time 
performance, and robustness. The dynamic fault diagnosis 
module based on JITL achieves fast extraction and 
classification of fault features through local online 
modelling and adaptive neighbourhood selection, with 
detection delay reduced to less than 0.6 seconds and 
accuracy exceeding 92%; combining the dual layer 
optimisation control architecture of HDP, the closed-loop 
interaction between the evaluation network and the 
execution network is evaluated, and the strategy is 
dynamically adjusted to compensate for the impact of faults. 
In the NGSIM public dataset experiment, the root mean 
square value of lateral tracking error and heading angle 
error are reduced by 33–57% compared to traditional 
methods, and the control input smoothness is improved by 
more than 35%. Moreover, the error fluctuation under 
crosswind disturbance is less than 5%, which verifies the 
strong adaptability of the algorithm to unknown 
disturbances. The experimental results show that the 
proposed method significantly improves tracking accuracy 
and stability in dynamic fault scenarios under real-time 
constraints of single step diagnosis time of 8 ms and control 
cycle of 20 ms. This study provides theoretical support and 
technical implementation path for the high reliability control 
of intelligent vehicles. At the system scalability level, the 
generalisation ability of existing methods to heterogeneous 
vehicle dynamics is limited, and the compatibility of 
communication protocols of different vehicle brands may 
interfere with multi-source data synergy; at the 
environmental adaptability level, the complex geometrical 
features of unstructured roads may reduce the reliability of 
the sensors, and changes in vehicle-environment interaction 
modes triggered by extreme climates and the differences in 
regional traffic rules still need to be optimised for specific 
design. Future work will focus on efficient similarity 
measurement in high-dimensional state spaces, fault-
tolerant mechanisms for vehicle networking groups, and 
embedded platform deployment verification, further 
promoting their application in key safety scenarios of 
autonomous driving. 
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