

International Journal of Information and Communication
Technology

ISSN online: 1741-8070 - ISSN print: 1466-6642
https://www.inderscience.com/ijict

Optimisation of gradient descent algorithm and resource
scheduling in big data environment

Zhendong Ji

DOI: 10.1504/IJICT.2025.10071986

Article History:
Received: 06 May 2025
Last revised: 23 May 2025
Accepted: 23 May 2025
Published online: 10 July 2025

Powered by TCPDF (www.tcpdf.org)

Copyright © 2025 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijict
https://dx.doi.org/10.1504/IJICT.2025.10071986
http://www.tcpdf.org

 Int. J. Information and Communication Technology, Vol. 26, No. 25, 2025 19

 Copyright © The Author(s) 2025. Published by Inderscience Publishers Ltd. This is an Open Access Article
distributed under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

Optimisation of gradient descent algorithm and
resource scheduling in big data environment

Zhendong Ji
School of Data Science and Computer Science,
Shandong Women’s University,
Jinan 250300, China
Email: jzd@sdwu.edu.cn

Abstract: With the rapid development of big data technology, traditional
gradient descent algorithms face problems such as low computational
efficiency, slow convergence speed, and uneven resource allocation. This
article proposes a collaborative framework that integrates dynamic resource
scheduling and adaptive gradient descent optimisation for distributed machine
learning scenarios in big data environments. Firstly, an asynchronous gradient
descent algorithm based on hierarchical batch sampling (HB-ASGD) was
designed, which dynamically adjusts the local batch size and global
synchronisation frequency to balance the load differences between computing
nodes and reduce communication overhead. Secondly, the resource aware
elastic scheduling (RAES) model is introduced to dynamically predict task
computation using reinforcement learning, and combined with containerisation
technology to achieve fine-grained allocation of CPU/GPU resources,
prioritising the protection of computing resources for critical iterative tasks.
The experiment shows that this study effectively solves the efficiency
bottleneck problem in massive data iteration.

Keywords: big data; gradient descent algorithm; resource scheduling;
reinforcement learning; resource aware elastic scheduling; RAES.

Reference to this paper should be made as follows: Ji, Z. (2025) ‘Optimisation
of gradient descent algorithm and resource scheduling in big data
environment’, Int. J. Information and Communication Technology, Vol. 26,
No. 25, pp.19–32.

Biographical notes: Zhendong Ji received his Master’s in Software
Engineering from the Shandong University in 2011. He is now working at the
Shandong Women’s University. His research interests are data mining (DM)
and mathematical modelling.

1 Introduction

In recent years, with the rapid development of the internet of things, social networks and
industrial internet, the global data scale shows exponential growth. IDC predicts that the
global data volume will reach 175ZB by 2025, with over 80% of the data having
high-dimensional, high noise, and unstructured features. In this context, machine learning
model training faces two core challenges: on the one hand, traditional gradient descent
(GD) algorithms suffer from problems such as decreased iterative convergence speed and

 20 Z. Ji

local optimal traps when processing TB level data (Haji and Abdulazeez, 2021); on the
other hand, the static allocation strategy of hardware resources (such as GPU memory
and network bandwidth) in distributed computing clusters is difficult to adapt to
dynamically changing computing loads, resulting in low resource utilisation. How to
achieve collaborative optimisation of algorithm efficiency and resource efficiency has
become a key issue in the field of big data machine learning (Tian et al., 2023).

In terms of optimising GD algorithm, researchers mainly improve it from two
dimensions: one is to improve computational efficiency through data parallelisation, and
the other is to accelerate convergence through gradient update strategy. The DistBelief
system proposed by Dean et al. (2012) achieved large-scale asynchronous stochastic GD
for the first time, decoupling computing nodes from parameter updates through a
parameter server architecture, resulting in a training speed increase of over ten times.
However, its fixed batch size design can easily lead to gradient delay differences between
nodes. In response to this issue, Zhang et al. (2015) proposed elastic average SGD, which
allows each node to dynamically adjust the local batch processing volume, but does not
consider the correlation between communication overhead and computational load. In
terms of convergence optimisation, Yi et al. (2020) constructed an effective non-convex
cost function optimisation method. This method solves the problem of getting stuck in
local minima by adding a cost function to the parameter update rules of the ADAM
method. Through numerical comparison with gradient descent (GD, ADAM, and
AdaMax), the convergence of the sequences generated by the proposed method and the
superiority of the proposed method have been demonstrated.

In the field of resource scheduling, existing research mainly focuses on two
directions: static resource allocation and dynamic task orchestration. Dakić et al. (2024)
proposed a different architecture based on seamless hardware integration and
user-friendly UI. It also provides dynamic workload placement based on real-time
performance analysis and prediction, as well as machine learning based scheduling.
Recently, Deng et al. (2023) used deep reinforcement learning (DRL) to optimise the
deployment of LRA class containers. The proposed non-generic model can customise
specialised models for each container group, providing high-quality placement and low
training complexity; meanwhile, the proposed batch deployment scheme can optimise
various scheduling objectives that are not directly supported by existing constraint based
schedulers, such as minimising SLO violations. However, the above methods often treat
algorithm execution and resource management as independent problems, lacking cross
layer collaborative optimisation mechanisms.

Despite significant progress in research, there are still key issues in practical
industrial level big data scenarios: existing GD optimisation methods often assume
unlimited hardware resource supply and ignore the impact of memory limitations and
communication bottlenecks on convergence speed (Chaudhary et al., 2022). For example,
synchronous SGD in heterogeneous clusters often leads to a decrease in overall efficiency
due to ‘slow node’ issues. Traditional resource schedulers (such as YARN and Mesos)
adopt a periodic resource allocation strategy, which makes it difficult to respond in
real-time to sudden load fluctuations in iterative calculations (Cao and Su, 2023). The
current system design generally separates the algorithm layer (such as batch processing
strategy) from the resource layer (such as container orchestration), failing to establish a
joint optimisation objective function, resulting in potential performance loss (Rivas et al.,
2024).

 Optimisation of gradient descent algorithm and resource scheduling 21

In response to the above challenges, this article proposes an algorithm and resource
collaborative optimisation framework, with core innovations including:

1 Design a HB-ASGD that dynamically adjusts the local gradient computation and
global synchronisation frequency to achieve Pareto optimality in communication
overhead and convergence rate.

2 Build a resource aware elastic scheduling (RAES), combine LSTM network to
predict the computational requirements of iterative tasks, and design a dynamic
scaling strategy for containerised resources to achieve fine-grained allocation of
CPU/GPU resources.

2 Relevant technologies

2.1 GD algorithm

The GD algorithm, as the core method for optimising machine learning models (Ahn
et al., 2023), aims to minimise the parameter dθ∈ of the objective function J(θ)
through iterative search. The basic idea is to gradually adjust the parameters along the
negative gradient direction by calculating the gradient direction of the objective function.
The parameter update equation is:

()+1t t tθ θ J θ= − ∇α (1)

where θt represents the parameter vector at the tth iteration, α is the learning rate
(controlling the update step size), and ∇J(θt) is the gradient of the objective function at θt,
that is, the vector composed of partial derivatives of each dimension. When initialising
the algorithm, randomly select θ0 and calculate the gradient and update the parameters in
each iteration until the gradient norm ||∇J(θt)|| is less than the preset threshold or reaches
the maximum number of iterations.

With the expansion of data scale, various variants of classical GD have emerged to
balance computational efficiency and convergence stability. Batch gradient descent
(BGD) uses all N samples to calculate the average gradient, and its update equation is:

()+1
1

1 N

t t i t
i

θ θ J θ
N =

= − ∇α (2)

where Ji(θt) represents the loss function of the ith sample. The gradient estimation of BGD
is unbiased and the convergence direction is stable, but each iteration requires traversing
the entire data, resulting in a time complexity of up to O(Nd), making it difficult to cope
with big data scenarios. For this purpose, SGD adopts a single sample random sampling
strategy (Chen et al., 2021), and the updated formula is simplified as:

()+1 tt t i tθ θ J θ= − ⋅∇α (3)

where it is a randomly selected sample index. SGD reduces the complexity of a single
computation to O(d), but the gradient estimation variance is large, which may cause
parameter update oscillations. To balance efficiency and stability, mini batch gradient

 22 Z. Ji

descent (MBGD) introduces a batch size of m, and randomly selects m samples (referred
to as set Bt) from the dataset each time to calculate the average gradient:

()+1
1

t

t t i t
i B

θ θ J θ
m ∈

= − ∇α (4)

MBGD has become the mainstream choice for distributed training by adjusting the
gradient variance of m and utilising GPU parallel computing acceleration.

The convergence of GD algorithm depends on the properties of the objective function
and the learning rate scheduling strategy. For convex functions that satisfy L-Lipschitz
continuous gradient, if the fixed learning rate is set to α = 1/L, the upper bound of the
error of BGD after T iterations is:

() ()
2*

0*

2T
L θ θJ θ J θ

T
−− ≤ (5)

where θ* is the global optimal solution, indicating that its convergence rate is O(1/T).
However, actual machine learning models often involve non-convex optimisation, and in
this case, a decay learning rate is required to meet the Robbins Monroe condition. Under
these conditions, the gradient norm of SGD converges to zero with probability:

() 2lim inf 0t
t

E J θ
→∞

 ∇ =  (6)

Although the convergence rate has decreased to ()1/ ,O T the actual training efficiency
can be significantly improved by dynamically adjusting the learning rate or adaptive
methods. The collaborative design of learning rate scheduling mechanism and gradient
estimation method has become a key direction in the current research of large-scale
optimisation algorithms (Li et al., 2023).

2.2 Reinforcement learning

Reinforcement learning is an important branch of machine learning, whose core idea is to
enable agents to learn optimal decision strategies through dynamic interaction with the
environment (Matsuo et al., 2022). This process simulates the learning mode of
organisms adapting to the environment through trial and error mechanisms, and is widely
used in complex decision-making scenarios such as robot control, game AI, and resource
scheduling. Unlike supervised learning that relies on static labelled data, the core
challenge of reinforcement learning is how to gradually approach strategies that can
maximise long-term returns through trial and error exploration and experience
accumulation in an environment without prior knowledge.

The mathematical foundation of reinforcement learning problems is Markov Decision
Process (MDP). MDP assumes that the state transitions of the environment have
Markovian properties, meaning that future states depend only on the current state and
actions, and are independent of history. A standard MDP is defined by the following
elements:

1 State space: the collection of all environmental states that an intelligent agent may
perceive, such as vehicle position, speed, and other information in autonomous
driving (Shakya et al., 2023).

 Optimisation of gradient descent algorithm and resource scheduling 23

2 Action space: a collection of actions that an intelligent agent can perform, such as the
direction of movement of robot joints or key operations in games.

3 State transition probability: the probability distribution of transitioning to state s after
executing action a, reflecting the dynamic uncertainty of the environment.

4 Reward function: real-time feedback from the environment on the actions of the
agent, such as an increase in scores or a decrease in energy consumption in the game.

5 Discount factor: used to balance the importance of current rewards and future
returns, avoiding the divergence problem of accumulating rewards over an infinite
period of time.

The goal of the intelligent agent is to find a strategy π(a| s), which is to select the
probability distribution of action a in each state s, so as to maximise the expected
cumulative discount reward from the initial state:

()+1
0

() , ,t
π t t t

t

J π E γ R s a s
∞

=

 
=  

  
 (7)

This objective function embodies the core optimisation direction of reinforcement
learning: seeking a balance between immediate benefits and long-term value.

To quantify the advantages and disadvantages of strategies, reinforcement learning
introduces state value function Vπ(s) and action value function Qπ(s, a). The state value
function represents the expected cumulative reward that can be obtained by following
policy π starting from state s, while the action value function is further refined to the
long-term value after executing a specific action a in state s. The mathematical
definitions of the two are:

()+ + + +1
0

() , ,π k
π t k t k t k t

k

V s E γ R s a s s s
∞

=

 
= = 

  
 (8)

()+ + + +1
0

() , , ,π k
π t k t k t k t t

k

q s E γ R s a s s s a a
∞

=

 
= = = 

  
 (9)

According to Markov property, the value function can be recursively decomposed
through the Bellman equation, decomposing the long-term reward into the sum of the
discounted value of the current reward and subsequent states (Shinn et al., 2023). For
example, the Bellman equation for the state value equation is:

() ()[]() (|) , (, ,) +π π

a A s S

V s π a s P s s a R s a s γV s
′∈ ∈

′ ′ ′=  (10)

This equation reveals the core idea of dynamic programming: to solve the global optimal
solution through the recursive relationship of local optimal substructures. However, in
real environments, the state transition probability P and reward function R are often
unknown and need to be estimated through data-driven methods.

Q-learning is a classic model free reinforcement learning algorithm, whose core is to
iteratively update the action value function Q(s, a) to approximate the optimal strategy.

 24 Z. Ji

This algorithm adopts the concept of temporal difference and updates the Q-value by
combining the current reward with the optimal estimate of the next state:

() () () () ()+1 +1, , + , , + max , ,t t t t t t t t t t
a

Q s a Q s a R s a s γ Q s a Q s a
′

′← −


α (11)

where α represents the learning rate, and ()+1max ,t
a

Q s a
′

′ represents the greedy selection

of the optimal action value for the next state. The key feature of Q-learning lies in its off
policy property, which allows the use of historical empirical data during the update
process without strictly following the actions generated by the current policy, thereby
improving data utilisation efficiency.

In high-dimensional or continuous action spaces, methods based on value functions
face the problem of exploding complexity in action selection. The policy gradient method
directly parameterises policy πθ(s, a) and optimises policy parameter θ through gradient
ascent to maximise the expected return. According to the policy gradient theorem, the
gradient of objective function J(θ) can be expressed as:

() ()
0

() log π
θ πθ θ θ t t t t

t

J θ E π a s Q s a
∞

=

 
∇ = ∇ ⋅ 

  
 (12)

This formula indicates that the direction of strategy optimisation is determined by the
advantage of the action (i.e., the degree to which the value brought by the action is higher
than the average level). To reduce variance, a baseline function is often introduced, such
as the state value function Vπ(st), to construct an advantage function:

() () (), ,π π π
t t t t tA s a Q s a V s= − (13)

Gradient update is simplified as:

() ()
0

() log π
θ πθ θ θ t t t t

t

J θ E π a s A s a
∞

=

 
∇ = ∇ ⋅ 

  
 (14)

The actor critic algorithm further combines’ policy gradients with value function
estimation to form a dual network architecture: Actor network (policy network):
responsible for generating actions and adjusting policy parameters based on the
advantage signals provided by critic. Critic network (value function network): evaluate
the value of the current strategy, calculate the dominance function to guide actor updates
(Elguea-Aguinaco et al., 2023).

Critic optimises the value function estimation by minimising the temporal differential
error:

() () ()()2
+1 +1() , , +t t t w t w tL w E R s a s γV s V s = −  (15)

Actor updates their strategy based on the advantages provided by critic:

() ()+ log ,θ θ θ t t w t tθ θ π a s A s a← ∇ ⋅α (16)

With the development of deep learning, traditional reinforcement learning algorithms
have been combined with deep neural networks to form DRL. For example, deep
Q-Network solves the representation problem of high-dimensional state spaces (such as

 Optimisation of gradient descent algorithm and resource scheduling 25

image inputs) by fitting Q-value functions through convolutional neural networks; the
strategy gradient method achieves direct optimisation of continuous actions (such as
robotic arm torque control) by parameterising the strategy function through neural
networks. These extensions significantly enhance the applicability of reinforcement
learning in real-world scenarios, but also introduce new challenges such as training
stability and sample efficiency.

The theoretical framework of reinforcement learning provides a universal framework
for solving complex decision-making problems by formally defining interactive learning
processes. Its core value lies in the ability to autonomously optimise strategies through
environmental feedback without the need for pre-labelled data; by iterating discount
factors and value functions, global optimisation of multi-step decision-making is
achieved; it can be extended to heterogeneous task scenarios by combining deep learning,
meta learning, and other technologies. Currently, the successful application of
reinforcement learning in fields such as autonomous driving, energy management, and
medical decision-making has validated the powerful potential of its theoretical methods.
However, how to improve learning efficiency and ensure security in large-scale
distributed environments remains an important direction for future research (Gronauer
and Diepold, 2022).

3 GD optimisation algorithm based on dynamic resource collaboration

This chapter proposes a collaborative optimisation framework that integrates dynamic
resource scheduling and adaptive GD, as shown in Figure 1. Aiming to solve the core
problem of the imbalance between algorithm convergence efficiency and resource
utilisation in large-scale data parallel training. This method achieves load balancing for
gradient updates through a hierarchical batch sampling mechanism, while dynamically
allocating computing resources through a RAES, forming a closed-loop feedback
optimisation system between the algorithm layer and the resource layer. The following
discussion will focus on three aspects: gradient update strategy, resource scheduling
mechanism, and collaborative optimisation methods.

3.1 Hierarchical adaptive GD algorithm

HB-ASGD introduces a two-stage optimisation mechanism of dynamic batch sampling
and asynchronous gradient aggregation. In the local computing stage, each working node
dynamically adjusts the batch processing size 1 based on real-time computing load, and
the adjustment rule is:

()
(1)
avgt

basei t
i

T
m m

T −
 = ⋅ 
 

 (17)

where mbase is the benchmark batch size, (1)t
iT − represents the computation time of node i

in the previous iteration, and Tavg is the average cluster time. By dynamically expanding
the batch processing capacity of faster nodes and reducing the computational load of
slower nodes, the difference in computation time between nodes can be effectively
balanced. In the gradient aggregation stage, a delay tolerant asynchronous update strategy
is adopted. After receiving the gradient ∇Ji(θ) from each node, the parameter server

 26 Z. Ji

updates the global parameters by weighting the gradient contributions within the time
window τ:

()(+1) () ()

0
t k

τ
t t k t k

i
k

θ θ J θ−
−

=

= − ⋅ ∇α β (18)

where β ∈ (0, 1) represents the delay gradient attenuation coefficient, which is used to
reduce the impact of expired gradients on the current update. This mechanism reduces
synchronous waiting time while suppressing gradient bias introduced by asynchronous
updates.

Figure 1 Method framework diagram (see online version for colours)

HB-ASGD

Dynamic Batch Processing Icon

RAES

Resource
allocation
vector Collaborative optimization feedback loop

Training Data

Optimized Model

3.2 RAES model

To improve the utilisation of cluster resources, the RAES model predicts the
computational requirements of iterative tasks based on LSTM network and drives the
dynamic scaling of containerised resources (Zha et al., 2022). Firstly, a task computation
predictor is constructed, taking historical resource usage sequence {(ct–∆, mt–∆), …, (ct–1,
mt–1)} as input (ct represents CPU usage, mt represents memory usage), and outputting the
predicted computation ˆ

td for the next time step through an LSTM network.

[]()1 + , +t h t x t t hh LSTM W h W c m b−= (19)

()ˆ +t d t dd σ W h b= (20)

where ht is the hidden state of LSTM, wh, wx, wd are weight matrices, bh, bd are bias
terms, and σ is the Sigmoid activation function. Based on the predicted results, the
resource scheduler constructs a mixed integer programming model with the goal of
minimising task completion time and resource idle costs:

 Optimisation of gradient descent algorithm and resource scheduling 27

1 2 ,
1

min +
N

exec
i ri

i r R

λT λ u
= ∈

 
 
 

  (21)

where exec
iT represents the execution time of task i, ui,r represents the usage of resource

type r (such as CPU core, GPU memory) by task i, and λ1 and λ2 are trade-off
coefficients. This model uses heuristic search to generate a dynamic allocation scheme
for container resources.

3.3 Algorithm resource collaborative optimisation mechanism

HB-ASGD and RAES achieve cross layer collaboration through bidirectional feedback:
HB-ASGD real-time calculates the gradient variance Var(∇Ji) and update delay δi of each
node, using them as input features for RAES, and prioritises allocating computing
resources to high variance or high delay nodes to accelerate the convergence of critical
gradient paths. RAES passes the current resource allocation vector ut to the parameter
server, and HB-ASGD adjusts the global learning rate α accordingly:

1 2 ,
1

min +
N

exec
i ri

i r R

λT λ u
= ∈

 
 
 

  (22)

When GPU resources are sufficient, increase the learning rate to accelerate convergence,
and when resources are tight, decrease the learning rate to avoid divergence. This
collaborative mechanism is implemented through the Spark on Kubernetes platform,
where Spark is responsible for distributed gradient computing and Kubernetes
dynamically adjusts container resource quotas based on RAES instructions.

This method achieves joint optimisation of gradient update efficiency and resource
utilisation through deep coupling between the algorithm layer and the resource layer.

4 Experiment and result analysis

4.1 Experimental setup and dataset

The experiment is based on a Spark on Kubernetes cluster environment, consisting of ten
computing nodes (Intel Xeon Gold 6248R CPU, NVIDIA A100 GPU, 256 GB memory),
with a network bandwidth of 100 Gbps.

Two types of datasets were selected to validate the generalisation of the method:
ImageNet-1K, which contains 1.2 million images and 1,000 categories, and the
ResNet-50 model was trained. Industrial grade user behaviour data, consisting of
210 million multimodal interaction logs from an e-commerce platform (covering
behaviours such as clicks, add ons, payments, etc.), is used to construct a DeepFM model
for click through rate prediction. This dataset has high-dimensional sparse features (over
5,000 dimensions) and real-time requirements, which can verify the practicality of the
method in industrial scale scenarios. The baseline comparison includes Adam optimiser
(Reyad et al., 2023), sync SGD (Hu et al., 2021), asynchronous SGD (Yu et al., 2023),
Kubeflow (Zhang et al., 2021), Optimus (Chiang et al., 2023) scheduling strategies.

 28 Z. Ji

4.2 Convergence efficiency verification

This experiment runs HB-ASGD and baseline methods separately in ImageNet and CTR
tasks, and records the number of iterations and time required to achieve the target loss
(ImageNet cross entropy loss  2.0, CTR LogLoss  0.35). The HB-ASGD parameters
are set to a baseline batch size of 512, a delay gradient attenuation coefficient of 0.8, and
an initial learning rate of 0.1.

As shown in Figure 2, HB-ASGD can converge in ImageNet task with only 1,420
iterations, a decrease of 36.9% compared to Adam (2,250 iterations) and a decrease of
27.2% compared to synchronous SGD (1,950 iterations). Its advantage lies in the
dynamic batch processing strategy: nodes with fast computing speed are batch expanded
to 768 (1.5 times the baseline), while slow nodes are reduced to 384. Load balancing
reduces the average iteration time of the cluster by 18%. Meanwhile, the delay gradient
attenuation coefficient (β = 0.8) suppresses the noise interference of expired gradients by
weighted aggregation of historical gradients. In the CTR task, HB-ASGD took 6.2 hours,
significantly better than asynchronous SGD’s 10.5 hours, indicating its efficient
adaptability to sparse data.

Figure 2 ImageNet task loss convergence curve (see online version for colours)

4.3 Resource utilisation optimisation

Static resource allocation (such as Kubeflow) can easily lead to resource idleness, while
periodic scheduling (such as Optimus) lags behind in responding to sudden loads. The
purpose of this experiment is to verify whether the RAES model can improve resource
utilisation through LSTM prediction and dynamic scaling. This experiment deployed
RAES and baseline scheduler in the ImageNet task to monitor GPU utilisation and CPU
memory fragmentation rate. The LSTM predictor of RAES takes the historical resource
usage sequence (CPU, memory, GPU memory) from 10 rounds and outputs the next

 Optimisation of gradient descent algorithm and resource scheduling 29

round of computation requirements; The elastic scaling strategy is based on a mixed
integer programming model, with the goal of minimising task completion time and
resource idle costs.

As shown in Table 1, RAES resulted in an average GPU utilisation rate of 89.4%, an
increase of 28.2 percentage points compared to Kubeflow (61.2%), and a decrease in
fragmentation rate from 34.7% to 6.5%. As shown in Figure 3, during the mid training
period (500–1,200 iterations), the accuracy of the LSTM predictor exceeded 92%. RAES
dynamically adjusted the GPU memory allocation (from 16GB to 48GB) to stabilise the
utilisation rate at over 85%; however, Optimus has a fixed five-minute adjustment cycle,
resulting in response delays when the load suddenly increases, causing GPU utilisation to
fluctuate between 60% and 80%. In addition, RAES reduces the execution time of critical
path tasks by 23% through priority scheduling, such as prioritising GPU resources for
high gradient variance nodes.
Table 1 Comparison of resource utilisation rates

Index Kubeflow Optimus RAES
GPU utilisation rate (%) 61.2 75.3 89.4
Fragmentation rate (%) 34.7 18.9 6.5

Figure 3 GPU utilisation rate (see online version for colours)

4.4 End to end efficiency and collaborative gain verification

A single optimisation algorithm or resource scheduling may lead to performance
bottlenecks due to interlayer coupling issues. The purpose of this experiment is to verify
whether cross layer collaboration mechanisms can significantly improve end-to-end
efficiency. This section analyses the synergistic effect contribution by comparing the total
training time of the complete framework (HB-ASGD+RAES) with the baseline
combination in ImageNet and CTR tasks.

 30 Z. Ji

As shown in Figure 4 and Table 2, the complete framework takes a total of 9.8 hours
in the ImageNet task, which is 35.5% less than Adam+Kubeflow (15.2 hours); took
6.2 hours in the CTR task, a decrease of 40.9% compared to asynchronous
SGD+Optimus (10.5 hours). The collaborative mechanism achieves efficiency doubling
through bidirectional feedback: when RAES detects that the GPU utilisation rate of a
node is below 70%, it triggers HB-ASGD to dynamically expand its batch processing
volume (such as increasing from 512 to 768), and at the same time, the global learning
rate is adjusted from 0.1 to 0.15 with resource adequacy to avoid iteration stagnation
caused by insufficient resources. Experiments have shown that when HB-ASGD or
RAES are used separately, the ImageNet task takes 12.3 hours and 11.9 hours,
respectively, while the collaborative framework is further compressed to 9.8 hours,
demonstrating the necessity of cross layer optimisation.
Table 2 End to end training time

Method ImageNet CTR
Adam + Kubeflow 15.2 8.7
Sync-SGD + Optimus 13.8 9.3
Async-SGD + Kubeflow 12.1 10.5
HB-ASGD + RAES 9.8 6.2

Figure 4 Comparison of end-to-end training time (see online version for colours)

Experiments have shown that the collaborative framework of HB-ASGD and RAES
significantly outperforms traditional methods in terms of convergence speed, resource
utilisation, and end-to-end efficiency. Its core advantage lies in: HB-ASGD compensates
for node heterogeneity through adaptive batch processing, reducing slow node blocking;
RAES utilises LSTM to capture load temporal characteristics and achieve fine-grained

 Optimisation of gradient descent algorithm and resource scheduling 31

elastic scaling; resource allocation and algorithm updates form a closed-loop optimisation
to avoid local optima.

5 Conclusions

This article proposes a collaborative framework that integrates dynamic GD optimisation
and elastic resource scheduling to address the core issue of the imbalance between
algorithm efficiency and resource utilisation in distributed machine learning tasks in the
big data environment. By designing HB-ASGD and RAES, deep coupling optimisation
between the algorithm layer and the resource layer has been achieved.
HB-ASGD effectively alleviates the slow node blocking problem in heterogeneous
clusters by dynamically adjusting the node batch processing scale and delay gradient
weighted aggregation. Future work will revolve around exploring collaborative
optimisation strategies for heterogeneous hardware (GPU/TPU hybrid clusters);
combining the federated learning framework, study the balance mechanism between
cross domain data privacy protection and training efficiency; develop a global
optimisation theoretical model for adaptive load sensing to further enhance the
generalisation ability of the method. This study provides a new technological path for
distributed machine learning training in the big data environment, and its engineering
implementation and theoretical achievements have important reference value for
promoting the development of efficient AI computing infrastructure.

Declarations

All authors declare that they have no conflicts of interest.

References
Ahn, K., Cheng, X., Daneshmand, H. and Sra, S. (2023) ‘Transformers learn to implement

preconditioned gradient descent for in-context learning’, Advances in Neural Information
Processing Systems, Vol. 36, No. 3, pp.45614–45650.

Cao, Y. and Su, S. (2023) ‘Fractional gradient descent algorithms for systems with outliers: a
matrix fractional derivative or a scalar fractional derivative’, Chaos, Solitons & Fractals,
Vol. 174, No. 12, p. 113881.

Chaudhary, N.I., Raja, M.A.Z., Khan, Z.A., Mehmood, A. and Shah, S.M. (2022) ‘Design of
fractional hierarchical gradient descent algorithm for parameter estimation of nonlinear control
autoregressive systems’, Chaos, Solitons & Fractals, Vol. 157, No. 19, p.111913.

Chen, C., Lee, B., Li, N-N., Chae, M., Wang, D., Wang, Q-H. and Lee, B. (2021) ‘Multi-depth
hologram generation using stochastic gradient descent algorithm with complex loss function’,
Optics Express, Vol. 29, No. 10, pp.15089–15103.

Chiang, M-C., Zhang, L-W., Chou, Y-M. and Chou, J. (2023) ‘Dynamic resource management for
machine learning pipeline workloads’, SN Computer Science, Vol. 4, No. 5, p.665.

Dakić, V., Kovač, M. and Slovinac, J. (2024) ‘Evolving high-performance computing data centers
with Kubernetes, performance analysis, and dynamic workload placement based on machine
learning scheduling’, Electronics, Vol. 13, No. 13, p.2651.

 32 Z. Ji

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Ranzato, M.A., Senior, A.,
Tucker, P. and Yang, K. (2012) ‘Large scale distributed deep networks’, Advances in Neural
Information Processing Systems, Vol. 25, No. 2, p.876.

Deng, L., Wang, Z., Sun, H., Li, B. and Yang, X. (2023) ‘A deep reinforcement learning-based
optimization method for long-running applications container deployment’, International
Journal of Computers Communications & Control, Vol. 18, No. 4, p.776.

Elguea-Aguinaco, Í., Serrano-Muñoz, A., Chrysostomou, D., Inziarte-Hidalgo, I., Bøgh, S. and
Arana-Arexolaleiba, N. (2023) ‘A review on reinforcement learning for contact-rich robotic
manipulation tasks’, Robotics and Computer-Integrated Manufacturing, Vol. 81, No. 32,
p.102517.

Gronauer, S. and Diepold, K. (2022) ‘Multi-agent deep reinforcement learning: a survey’, Artificial
Intelligence Review, Vol. 55, No. 2, pp.895–943.

Haji, S.H. and Abdulazeez, A.M. (2021) ‘Comparison of optimization techniques based on gradient
descent algorithm: a review’, PalArch’s Journal of Archaeology of Egypt/Egyptology, Vol. 18,
No. 4, pp.2715–2743.

Hu, S., Chen, X., Ni, W., Hossain, E. and Wang, X. (2021) ‘Distributed machine learning for
wireless communication networks: techniques, architectures, and applications’, IEEE
Communications Surveys & Tutorials, Vol. 23, No. 3, pp.1458–1493.

Li, X., Liu, Y. and Liu, Z. (2023) ‘Physics-informed neural network based on a new adaptive
gradient descent algorithm for solving partial differential equations of flow problems’, Physics
of Fluids, Vol. 35, No. 6, p.9887.

Matsuo, Y., LeCun, Y., Sahani, M., Precup, D., Silver, D., Sugiyama, M., Uchibe, E. and
Morimoto, J. (2022) ‘Deep learning, reinforcement learning, and world models’, Neural
Networks, Vol. 152, No. 2, pp.267–275.

Reyad, M., Sarhan, A.M. and Arafa, M. (2023) ‘A modified Adam algorithm for deep
neural network optimization’, Neural Computing and Applications, Vol. 35, No. 23,
pp.17095–17112.

Rivas, J.M., Gutiérrez, J.J., Guasque, A. and Balbastre, P. (2024) ‘Gradient descent algorithm for
the optimization of fixed priorities in real-time systems’, Journal of Systems Architecture,
Vol. 153, No. 8, p.103198.

Shakya, A.K., Pillai, G. and Chakrabarty, S. (2023) ‘Reinforcement learning algorithms: a brief
survey’, Expert Systems with Applications, Vol. 231, No. 9, p.120495.

Shinn, N., Cassano, F., Gopinath, A., Narasimhan, K. and Yao, S. (2023) ‘Reflexion: language
agents with verbal reinforcement learning’, Advances in Neural Information Processing
Systems, Vol. 36, No. 8, pp.8634–8652.

Tian, Y., Zhang, Y. and Zhang, H. (2023) ‘Recent advances in stochastic gradient descent in deep
learning’, Mathematics, Vol. 11, No. 3, p.682.

Yi, D., Ahn, J. and Ji, S. (2020) ‘An effective optimization method for machine learning based on
ADAM’, Applied Sciences, Vol. 10, No. 3, p.1073.

Yu, E., Dong, D. and Liao, X. (2023) ‘Communication optimization algorithms for distributed deep
learning systems: a survey’, IEEE Transactions on Parallel and Distributed Systems, Vol. 34,
No. 12, pp.3294–3308.

Zha, W., Liu, Y., Wan, Y., Luo, R., Li, D., Yang, S. and Xu, Y. (2022) ‘Forecasting monthly gas
field production based on the CNN-LSTM model’, Energy, Vol. 260, No. 2, p.124889.

Zhang, S., Choromanska, A.E. and LeCun, Y. (2015) ‘Deep learning with elastic averaging SGD’,
Advances in Neural Information Processing Systems, Vol. 28, No. 7, pp.223–234.

Zhang, X., Li, L., Wang, Y., Chen, E. and Shou, L. (2021) ‘Zeus: Improving resource efficiency
via workload collocation for massive kubernetes clusters’, IEEE Access, Vol. 9, No. 4,
pp.105192–105204.

