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Abstract: With the rapid development of big data technology, traditional 
gradient descent algorithms face problems such as low computational 
efficiency, slow convergence speed, and uneven resource allocation. This 
article proposes a collaborative framework that integrates dynamic resource 
scheduling and adaptive gradient descent optimisation for distributed machine 
learning scenarios in big data environments. Firstly, an asynchronous gradient 
descent algorithm based on hierarchical batch sampling (HB-ASGD) was 
designed, which dynamically adjusts the local batch size and global 
synchronisation frequency to balance the load differences between computing 
nodes and reduce communication overhead. Secondly, the resource aware 
elastic scheduling (RAES) model is introduced to dynamically predict task 
computation using reinforcement learning, and combined with containerisation 
technology to achieve fine-grained allocation of CPU/GPU resources, 
prioritising the protection of computing resources for critical iterative tasks. 
The experiment shows that this study effectively solves the efficiency 
bottleneck problem in massive data iteration. 
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reinforcement learning; resource aware elastic scheduling; RAES. 
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1 Introduction 

In recent years, with the rapid development of the internet of things, social networks and 
industrial internet, the global data scale shows exponential growth. IDC predicts that the 
global data volume will reach 175ZB by 2025, with over 80% of the data having  
high-dimensional, high noise, and unstructured features. In this context, machine learning 
model training faces two core challenges: on the one hand, traditional gradient descent 
(GD) algorithms suffer from problems such as decreased iterative convergence speed and  
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local optimal traps when processing TB level data (Haji and Abdulazeez, 2021); on the 
other hand, the static allocation strategy of hardware resources (such as GPU memory 
and network bandwidth) in distributed computing clusters is difficult to adapt to 
dynamically changing computing loads, resulting in low resource utilisation. How to 
achieve collaborative optimisation of algorithm efficiency and resource efficiency has 
become a key issue in the field of big data machine learning (Tian et al., 2023). 

In terms of optimising GD algorithm, researchers mainly improve it from two 
dimensions: one is to improve computational efficiency through data parallelisation, and 
the other is to accelerate convergence through gradient update strategy. The DistBelief 
system proposed by Dean et al. (2012) achieved large-scale asynchronous stochastic GD 
for the first time, decoupling computing nodes from parameter updates through a 
parameter server architecture, resulting in a training speed increase of over ten times. 
However, its fixed batch size design can easily lead to gradient delay differences between 
nodes. In response to this issue, Zhang et al. (2015) proposed elastic average SGD, which 
allows each node to dynamically adjust the local batch processing volume, but does not 
consider the correlation between communication overhead and computational load. In 
terms of convergence optimisation, Yi et al. (2020) constructed an effective non-convex 
cost function optimisation method. This method solves the problem of getting stuck in 
local minima by adding a cost function to the parameter update rules of the ADAM 
method. Through numerical comparison with gradient descent (GD, ADAM, and 
AdaMax), the convergence of the sequences generated by the proposed method and the 
superiority of the proposed method have been demonstrated. 

In the field of resource scheduling, existing research mainly focuses on two 
directions: static resource allocation and dynamic task orchestration. Dakić et al. (2024) 
proposed a different architecture based on seamless hardware integration and  
user-friendly UI. It also provides dynamic workload placement based on real-time 
performance analysis and prediction, as well as machine learning based scheduling. 
Recently, Deng et al. (2023) used deep reinforcement learning (DRL) to optimise the 
deployment of LRA class containers. The proposed non-generic model can customise 
specialised models for each container group, providing high-quality placement and low 
training complexity; meanwhile, the proposed batch deployment scheme can optimise 
various scheduling objectives that are not directly supported by existing constraint based 
schedulers, such as minimising SLO violations. However, the above methods often treat 
algorithm execution and resource management as independent problems, lacking cross 
layer collaborative optimisation mechanisms. 

Despite significant progress in research, there are still key issues in practical 
industrial level big data scenarios: existing GD optimisation methods often assume 
unlimited hardware resource supply and ignore the impact of memory limitations and 
communication bottlenecks on convergence speed (Chaudhary et al., 2022). For example, 
synchronous SGD in heterogeneous clusters often leads to a decrease in overall efficiency 
due to ‘slow node’ issues. Traditional resource schedulers (such as YARN and Mesos) 
adopt a periodic resource allocation strategy, which makes it difficult to respond in  
real-time to sudden load fluctuations in iterative calculations (Cao and Su, 2023). The 
current system design generally separates the algorithm layer (such as batch processing 
strategy) from the resource layer (such as container orchestration), failing to establish a 
joint optimisation objective function, resulting in potential performance loss (Rivas et al., 
2024). 
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In response to the above challenges, this article proposes an algorithm and resource 
collaborative optimisation framework, with core innovations including: 

1 Design a HB-ASGD that dynamically adjusts the local gradient computation and 
global synchronisation frequency to achieve Pareto optimality in communication 
overhead and convergence rate. 

2 Build a resource aware elastic scheduling (RAES), combine LSTM network to 
predict the computational requirements of iterative tasks, and design a dynamic 
scaling strategy for containerised resources to achieve fine-grained allocation of 
CPU/GPU resources. 

2 Relevant technologies 

2.1 GD algorithm 

The GD algorithm, as the core method for optimising machine learning models (Ahn  
et al., 2023), aims to minimise the parameter dθ∈  of the objective function J(θ) 
through iterative search. The basic idea is to gradually adjust the parameters along the 
negative gradient direction by calculating the gradient direction of the objective function. 
The parameter update equation is: 

( )+1t t tθ θ J θ= − ∇α  (1) 

where θt represents the parameter vector at the tth iteration, α is the learning rate 
(controlling the update step size), and ∇J(θt) is the gradient of the objective function at θt, 
that is, the vector composed of partial derivatives of each dimension. When initialising 
the algorithm, randomly select θ0 and calculate the gradient and update the parameters in 
each iteration until the gradient norm ||∇J(θt)|| is less than the preset threshold or reaches 
the maximum number of iterations. 

With the expansion of data scale, various variants of classical GD have emerged to 
balance computational efficiency and convergence stability. Batch gradient descent 
(BGD) uses all N samples to calculate the average gradient, and its update equation is: 

( )+1
1

1 N

t t i t
i

θ θ J θ
N =

= − ∇α  (2) 

where Ji(θt) represents the loss function of the ith sample. The gradient estimation of BGD 
is unbiased and the convergence direction is stable, but each iteration requires traversing 
the entire data, resulting in a time complexity of up to O(Nd), making it difficult to cope 
with big data scenarios. For this purpose, SGD adopts a single sample random sampling 
strategy (Chen et al., 2021), and the updated formula is simplified as: 

( )+1 tt t i tθ θ J θ= − ⋅∇α  (3) 

where it is a randomly selected sample index. SGD reduces the complexity of a single 
computation to O(d), but the gradient estimation variance is large, which may cause 
parameter update oscillations. To balance efficiency and stability, mini batch gradient 
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descent (MBGD) introduces a batch size of m, and randomly selects m samples (referred 
to as set Bt) from the dataset each time to calculate the average gradient: 

( )+1
1

t

t t i t
i B

θ θ J θ
m ∈

= − ∇α  (4) 

MBGD has become the mainstream choice for distributed training by adjusting the 
gradient variance of m and utilising GPU parallel computing acceleration. 

The convergence of GD algorithm depends on the properties of the objective function 
and the learning rate scheduling strategy. For convex functions that satisfy L-Lipschitz 
continuous gradient, if the fixed learning rate is set to α = 1/L, the upper bound of the 
error of BGD after T iterations is: 

( ) ( )
2*

0*

2T
L θ θJ θ J θ

T
−− ≤  (5) 

where θ* is the global optimal solution, indicating that its convergence rate is O(1/T). 
However, actual machine learning models often involve non-convex optimisation, and in 
this case, a decay learning rate is required to meet the Robbins Monroe condition. Under 
these conditions, the gradient norm of SGD converges to zero with probability: 

( ) 2lim inf 0t
t

E J θ
→∞

 ∇ =   (6) 

Although the convergence rate has decreased to ( )1/ ,O T  the actual training efficiency 
can be significantly improved by dynamically adjusting the learning rate or adaptive 
methods. The collaborative design of learning rate scheduling mechanism and gradient 
estimation method has become a key direction in the current research of large-scale 
optimisation algorithms (Li et al., 2023). 

2.2 Reinforcement learning 

Reinforcement learning is an important branch of machine learning, whose core idea is to 
enable agents to learn optimal decision strategies through dynamic interaction with the 
environment (Matsuo et al., 2022). This process simulates the learning mode of 
organisms adapting to the environment through trial and error mechanisms, and is widely 
used in complex decision-making scenarios such as robot control, game AI, and resource 
scheduling. Unlike supervised learning that relies on static labelled data, the core 
challenge of reinforcement learning is how to gradually approach strategies that can 
maximise long-term returns through trial and error exploration and experience 
accumulation in an environment without prior knowledge. 

The mathematical foundation of reinforcement learning problems is Markov Decision 
Process (MDP). MDP assumes that the state transitions of the environment have 
Markovian properties, meaning that future states depend only on the current state and 
actions, and are independent of history. A standard MDP is defined by the following 
elements: 

1 State space: the collection of all environmental states that an intelligent agent may 
perceive, such as vehicle position, speed, and other information in autonomous 
driving (Shakya et al., 2023). 
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2 Action space: a collection of actions that an intelligent agent can perform, such as the 
direction of movement of robot joints or key operations in games. 

3 State transition probability: the probability distribution of transitioning to state s after 
executing action a, reflecting the dynamic uncertainty of the environment. 

4 Reward function: real-time feedback from the environment on the actions of the 
agent, such as an increase in scores or a decrease in energy consumption in the game. 

5 Discount factor: used to balance the importance of current rewards and future 
returns, avoiding the divergence problem of accumulating rewards over an infinite 
period of time. 

The goal of the intelligent agent is to find a strategy π(a| s), which is to select the 
probability distribution of action a in each state s, so as to maximise the expected 
cumulative discount reward from the initial state: 

( )+1
0

( ) , ,t
π t t t

t

J π E γ R s a s
∞

=

 
=  

  
  (7) 

This objective function embodies the core optimisation direction of reinforcement 
learning: seeking a balance between immediate benefits and long-term value. 

To quantify the advantages and disadvantages of strategies, reinforcement learning 
introduces state value function Vπ(s) and action value function Qπ(s, a). The state value 
function represents the expected cumulative reward that can be obtained by following 
policy π starting from state s, while the action value function is further refined to the 
long-term value after executing a specific action a in state s. The mathematical 
definitions of the two are: 

( )+ + + +1
0

( ) , ,π k
π t k t k t k t

k

V s E γ R s a s s s
∞

=

 
= = 

  
  (8) 

( )+ + + +1
0

( ) , , ,π k
π t k t k t k t t

k

q s E γ R s a s s s a a
∞

=

 
= = = 

  
  (9) 

According to Markov property, the value function can be recursively decomposed 
through the Bellman equation, decomposing the long-term reward into the sum of the 
discounted value of the current reward and subsequent states (Shinn et al., 2023). For 
example, the Bellman equation for the state value equation is: 

( ) ( )[ ]( ) ( | ) , ( , , ) +π π

a A s S

V s π a s P s s a R s a s γV s
′∈ ∈

′ ′ ′=   (10) 

This equation reveals the core idea of dynamic programming: to solve the global optimal 
solution through the recursive relationship of local optimal substructures. However, in 
real environments, the state transition probability P and reward function R are often 
unknown and need to be estimated through data-driven methods. 

Q-learning is a classic model free reinforcement learning algorithm, whose core is to 
iteratively update the action value function Q(s, a) to approximate the optimal strategy. 
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This algorithm adopts the concept of temporal difference and updates the Q-value by 
combining the current reward with the optimal estimate of the next state: 

( ) ( ) ( ) ( ) ( )+1 +1, , + , , + max , ,t t t t t t t t t t
a

Q s a Q s a R s a s γ Q s a Q s a
′

′← −


α  (11) 

where α represents the learning rate, and ( )+1max ,t
a

Q s a
′

′  represents the greedy selection 

of the optimal action value for the next state. The key feature of Q-learning lies in its off 
policy property, which allows the use of historical empirical data during the update 
process without strictly following the actions generated by the current policy, thereby 
improving data utilisation efficiency. 

In high-dimensional or continuous action spaces, methods based on value functions 
face the problem of exploding complexity in action selection. The policy gradient method 
directly parameterises policy πθ(s, a) and optimises policy parameter θ through gradient 
ascent to maximise the expected return. According to the policy gradient theorem, the 
gradient of objective function J(θ) can be expressed as: 

( ) ( )
0

( ) log π
θ πθ θ θ t t t t

t

J θ E π a s Q s a
∞

=

 
∇ = ∇ ⋅ 

  
  (12) 

This formula indicates that the direction of strategy optimisation is determined by the 
advantage of the action (i.e., the degree to which the value brought by the action is higher 
than the average level). To reduce variance, a baseline function is often introduced, such 
as the state value function Vπ(st), to construct an advantage function: 

( ) ( ) ( ), ,π π π
t t t t tA s a Q s a V s= −  (13) 

Gradient update is simplified as: 

( ) ( )
0

( ) log π
θ πθ θ θ t t t t

t

J θ E π a s A s a
∞

=

 
∇ = ∇ ⋅ 

  
  (14) 

The actor critic algorithm further combines’ policy gradients with value function 
estimation to form a dual network architecture: Actor network (policy network): 
responsible for generating actions and adjusting policy parameters based on the 
advantage signals provided by critic. Critic network (value function network): evaluate 
the value of the current strategy, calculate the dominance function to guide actor updates 
(Elguea-Aguinaco et al., 2023). 

Critic optimises the value function estimation by minimising the temporal differential 
error: 

( ) ( ) ( )( )2
+1 +1( ) , , +t t t w t w tL w E R s a s γV s V s = −   (15) 

Actor updates their strategy based on the advantages provided by critic: 

( ) ( )+ log ,θ θ θ t t w t tθ θ π a s A s a← ∇ ⋅α  (16) 

With the development of deep learning, traditional reinforcement learning algorithms 
have been combined with deep neural networks to form DRL. For example, deep  
Q-Network solves the representation problem of high-dimensional state spaces (such as 
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image inputs) by fitting Q-value functions through convolutional neural networks; the 
strategy gradient method achieves direct optimisation of continuous actions (such as 
robotic arm torque control) by parameterising the strategy function through neural 
networks. These extensions significantly enhance the applicability of reinforcement 
learning in real-world scenarios, but also introduce new challenges such as training 
stability and sample efficiency. 

The theoretical framework of reinforcement learning provides a universal framework 
for solving complex decision-making problems by formally defining interactive learning 
processes. Its core value lies in the ability to autonomously optimise strategies through 
environmental feedback without the need for pre-labelled data; by iterating discount 
factors and value functions, global optimisation of multi-step decision-making is 
achieved; it can be extended to heterogeneous task scenarios by combining deep learning, 
meta learning, and other technologies. Currently, the successful application of 
reinforcement learning in fields such as autonomous driving, energy management, and 
medical decision-making has validated the powerful potential of its theoretical methods. 
However, how to improve learning efficiency and ensure security in large-scale 
distributed environments remains an important direction for future research (Gronauer 
and Diepold, 2022). 

3 GD optimisation algorithm based on dynamic resource collaboration 

This chapter proposes a collaborative optimisation framework that integrates dynamic 
resource scheduling and adaptive GD, as shown in Figure 1. Aiming to solve the core 
problem of the imbalance between algorithm convergence efficiency and resource 
utilisation in large-scale data parallel training. This method achieves load balancing for 
gradient updates through a hierarchical batch sampling mechanism, while dynamically 
allocating computing resources through a RAES, forming a closed-loop feedback 
optimisation system between the algorithm layer and the resource layer. The following 
discussion will focus on three aspects: gradient update strategy, resource scheduling 
mechanism, and collaborative optimisation methods. 

3.1 Hierarchical adaptive GD algorithm 

HB-ASGD introduces a two-stage optimisation mechanism of dynamic batch sampling 
and asynchronous gradient aggregation. In the local computing stage, each working node 
dynamically adjusts the batch processing size 1 based on real-time computing load, and 
the adjustment rule is: 

( )
( 1)
avgt

basei t
i

T
m m

T −
 = ⋅ 
 

 (17) 

where mbase is the benchmark batch size, ( 1)t
iT −  represents the computation time of node i 

in the previous iteration, and Tavg is the average cluster time. By dynamically expanding 
the batch processing capacity of faster nodes and reducing the computational load of 
slower nodes, the difference in computation time between nodes can be effectively 
balanced. In the gradient aggregation stage, a delay tolerant asynchronous update strategy 
is adopted. After receiving the gradient ∇Ji(θ) from each node, the parameter server 
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updates the global parameters by weighting the gradient contributions within the time 
window τ: 

( )( +1) ( ) ( )

0
t k

τ
t t k t k

i
k

θ θ J θ−
−

=

= − ⋅ ∇α β  (18) 

where β ∈ (0, 1) represents the delay gradient attenuation coefficient, which is used to 
reduce the impact of expired gradients on the current update. This mechanism reduces 
synchronous waiting time while suppressing gradient bias introduced by asynchronous 
updates. 

Figure 1 Method framework diagram (see online version for colours) 

HB-ASGD

Dynamic Batch Processing Icon

RAES

Resource 
allocation 
vector Collaborative optimization             feedback loop

Training Data

Optimized Model
 

3.2 RAES model 

To improve the utilisation of cluster resources, the RAES model predicts the 
computational requirements of iterative tasks based on LSTM network and drives the 
dynamic scaling of containerised resources (Zha et al., 2022). Firstly, a task computation 
predictor is constructed, taking historical resource usage sequence {(ct–∆, mt–∆), …, (ct–1, 
mt–1)} as input (ct represents CPU usage, mt represents memory usage), and outputting the 
predicted computation ˆ

td  for the next time step through an LSTM network. 

[ ]( )1 + , +t h t x t t hh LSTM W h W c m b−=  (19) 

( )ˆ +t d t dd σ W h b=  (20) 

where ht is the hidden state of LSTM, wh, wx, wd are weight matrices, bh, bd are bias 
terms, and σ is the Sigmoid activation function. Based on the predicted results, the 
resource scheduler constructs a mixed integer programming model with the goal of 
minimising task completion time and resource idle costs: 
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1 2 ,
1

min +
N

exec
i ri

i r R

λT λ u
= ∈

 
 
 

   (21) 

where exec
iT  represents the execution time of task i, ui,r represents the usage of resource 

type r (such as CPU core, GPU memory) by task i, and λ1 and λ2 are trade-off 
coefficients. This model uses heuristic search to generate a dynamic allocation scheme 
for container resources. 

3.3 Algorithm resource collaborative optimisation mechanism 

HB-ASGD and RAES achieve cross layer collaboration through bidirectional feedback: 
HB-ASGD real-time calculates the gradient variance Var(∇Ji) and update delay δi of each 
node, using them as input features for RAES, and prioritises allocating computing 
resources to high variance or high delay nodes to accelerate the convergence of critical 
gradient paths. RAES passes the current resource allocation vector ut to the parameter 
server, and HB-ASGD adjusts the global learning rate α accordingly: 

1 2 ,
1

min +
N

exec
i ri

i r R

λT λ u
= ∈

 
 
 

   (22) 

When GPU resources are sufficient, increase the learning rate to accelerate convergence, 
and when resources are tight, decrease the learning rate to avoid divergence. This 
collaborative mechanism is implemented through the Spark on Kubernetes platform, 
where Spark is responsible for distributed gradient computing and Kubernetes 
dynamically adjusts container resource quotas based on RAES instructions. 

This method achieves joint optimisation of gradient update efficiency and resource 
utilisation through deep coupling between the algorithm layer and the resource layer. 

4 Experiment and result analysis 

4.1 Experimental setup and dataset 

The experiment is based on a Spark on Kubernetes cluster environment, consisting of ten 
computing nodes (Intel Xeon Gold 6248R CPU, NVIDIA A100 GPU, 256 GB memory), 
with a network bandwidth of 100 Gbps. 

Two types of datasets were selected to validate the generalisation of the method: 
ImageNet-1K, which contains 1.2 million images and 1,000 categories, and the  
ResNet-50 model was trained. Industrial grade user behaviour data, consisting of  
210 million multimodal interaction logs from an e-commerce platform (covering 
behaviours such as clicks, add ons, payments, etc.), is used to construct a DeepFM model 
for click through rate prediction. This dataset has high-dimensional sparse features (over 
5,000 dimensions) and real-time requirements, which can verify the practicality of the 
method in industrial scale scenarios. The baseline comparison includes Adam optimiser 
(Reyad et al., 2023), sync SGD (Hu et al., 2021), asynchronous SGD (Yu et al., 2023), 
Kubeflow (Zhang et al., 2021), Optimus (Chiang et al., 2023) scheduling strategies. 
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4.2 Convergence efficiency verification 

This experiment runs HB-ASGD and baseline methods separately in ImageNet and CTR 
tasks, and records the number of iterations and time required to achieve the target loss 
(ImageNet cross entropy loss   2.0, CTR LogLoss   0.35). The HB-ASGD parameters 
are set to a baseline batch size of 512, a delay gradient attenuation coefficient of 0.8, and 
an initial learning rate of 0.1. 

As shown in Figure 2, HB-ASGD can converge in ImageNet task with only 1,420 
iterations, a decrease of 36.9% compared to Adam (2,250 iterations) and a decrease of 
27.2% compared to synchronous SGD (1,950 iterations). Its advantage lies in the 
dynamic batch processing strategy: nodes with fast computing speed are batch expanded 
to 768 (1.5 times the baseline), while slow nodes are reduced to 384. Load balancing 
reduces the average iteration time of the cluster by 18%. Meanwhile, the delay gradient 
attenuation coefficient (β = 0.8) suppresses the noise interference of expired gradients by 
weighted aggregation of historical gradients. In the CTR task, HB-ASGD took 6.2 hours, 
significantly better than asynchronous SGD’s 10.5 hours, indicating its efficient 
adaptability to sparse data. 

Figure 2 ImageNet task loss convergence curve (see online version for colours) 

 

4.3 Resource utilisation optimisation 

Static resource allocation (such as Kubeflow) can easily lead to resource idleness, while 
periodic scheduling (such as Optimus) lags behind in responding to sudden loads. The 
purpose of this experiment is to verify whether the RAES model can improve resource 
utilisation through LSTM prediction and dynamic scaling. This experiment deployed 
RAES and baseline scheduler in the ImageNet task to monitor GPU utilisation and CPU 
memory fragmentation rate. The LSTM predictor of RAES takes the historical resource 
usage sequence (CPU, memory, GPU memory) from 10 rounds and outputs the next 
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round of computation requirements; The elastic scaling strategy is based on a mixed 
integer programming model, with the goal of minimising task completion time and 
resource idle costs. 

As shown in Table 1, RAES resulted in an average GPU utilisation rate of 89.4%, an 
increase of 28.2 percentage points compared to Kubeflow (61.2%), and a decrease in 
fragmentation rate from 34.7% to 6.5%. As shown in Figure 3, during the mid training 
period (500–1,200 iterations), the accuracy of the LSTM predictor exceeded 92%. RAES 
dynamically adjusted the GPU memory allocation (from 16GB to 48GB) to stabilise the 
utilisation rate at over 85%; however, Optimus has a fixed five-minute adjustment cycle, 
resulting in response delays when the load suddenly increases, causing GPU utilisation to 
fluctuate between 60% and 80%. In addition, RAES reduces the execution time of critical 
path tasks by 23% through priority scheduling, such as prioritising GPU resources for 
high gradient variance nodes. 
Table 1 Comparison of resource utilisation rates 

Index Kubeflow Optimus RAES 
GPU utilisation rate (%) 61.2 75.3 89.4 
Fragmentation rate (%) 34.7 18.9 6.5 

Figure 3 GPU utilisation rate (see online version for colours) 

 

4.4 End to end efficiency and collaborative gain verification 

A single optimisation algorithm or resource scheduling may lead to performance 
bottlenecks due to interlayer coupling issues. The purpose of this experiment is to verify 
whether cross layer collaboration mechanisms can significantly improve end-to-end 
efficiency. This section analyses the synergistic effect contribution by comparing the total 
training time of the complete framework (HB-ASGD+RAES) with the baseline 
combination in ImageNet and CTR tasks. 
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As shown in Figure 4 and Table 2, the complete framework takes a total of 9.8 hours 
in the ImageNet task, which is 35.5% less than Adam+Kubeflow (15.2 hours); took  
6.2 hours in the CTR task, a decrease of 40.9% compared to asynchronous 
SGD+Optimus (10.5 hours). The collaborative mechanism achieves efficiency doubling 
through bidirectional feedback: when RAES detects that the GPU utilisation rate of a 
node is below 70%, it triggers HB-ASGD to dynamically expand its batch processing 
volume (such as increasing from 512 to 768), and at the same time, the global learning 
rate is adjusted from 0.1 to 0.15 with resource adequacy to avoid iteration stagnation 
caused by insufficient resources. Experiments have shown that when HB-ASGD or 
RAES are used separately, the ImageNet task takes 12.3 hours and 11.9 hours, 
respectively, while the collaborative framework is further compressed to 9.8 hours, 
demonstrating the necessity of cross layer optimisation. 
Table 2 End to end training time 

Method ImageNet CTR 
Adam + Kubeflow 15.2 8.7 
Sync-SGD + Optimus 13.8 9.3 
Async-SGD + Kubeflow 12.1 10.5 
HB-ASGD + RAES 9.8 6.2 

Figure 4 Comparison of end-to-end training time (see online version for colours) 

 

Experiments have shown that the collaborative framework of HB-ASGD and RAES 
significantly outperforms traditional methods in terms of convergence speed, resource 
utilisation, and end-to-end efficiency. Its core advantage lies in: HB-ASGD compensates 
for node heterogeneity through adaptive batch processing, reducing slow node blocking; 
RAES utilises LSTM to capture load temporal characteristics and achieve fine-grained 
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elastic scaling; resource allocation and algorithm updates form a closed-loop optimisation 
to avoid local optima. 

5 Conclusions 

This article proposes a collaborative framework that integrates dynamic GD optimisation 
and elastic resource scheduling to address the core issue of the imbalance between 
algorithm efficiency and resource utilisation in distributed machine learning tasks in the 
big data environment. By designing HB-ASGD and RAES, deep coupling optimisation 
between the algorithm layer and the resource layer has been achieved.  
HB-ASGD effectively alleviates the slow node blocking problem in heterogeneous 
clusters by dynamically adjusting the node batch processing scale and delay gradient 
weighted aggregation. Future work will revolve around exploring collaborative 
optimisation strategies for heterogeneous hardware (GPU/TPU hybrid clusters); 
combining the federated learning framework, study the balance mechanism between 
cross domain data privacy protection and training efficiency; develop a global 
optimisation theoretical model for adaptive load sensing to further enhance the 
generalisation ability of the method. This study provides a new technological path for 
distributed machine learning training in the big data environment, and its engineering 
implementation and theoretical achievements have important reference value for 
promoting the development of efficient AI computing infrastructure. 
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