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Abstract: To address teaching semantic gap issues in image sample learning 
for vocational education evaluation, this paper first applies factor domain 
theory to the teaching semantic embedding domain. Based on the relationships 
among semantics, it studies conjunction and reduction of factors, as well as the 
expansion and contraction of the factor domain. The enhanced factor space 
approach is then utilised in vocational education evaluation. Visual features are 
extracted using the residual network (ResNet101), and a generative adversarial 
network (GAN) is trained to produce more realistic picture characteristics. By 
combining teaching attributes and noise, the generator outputs picture 
characteristics which are then combined with class marks to train the 
categoriser, thereby completing the classification of teaching evaluation 
images. Experimental results reveal that the offered model achieves a 
classification accuracy of 92.5%, effectively helping to enhance the quality of 
higher vocational education. 

Keywords: vocational education; factor space mathematical theory; machine 
classification learning; ResNet101 model; generative adversarial network; 
GAN. 
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1 Introduction 

In today’s era of rapid digitalisation and intelligent development, vocational education 
contributes significantly to the cultivation of high-quality technical talents. Therefore, 
innovation in teaching models and methods is crucial (Nadzinski et al., 2023). As one of 
the core technologies in the field of artificial intelligence (Ilić et al., 2021), machine 
learning has gradually emerged in higher vocational education, providing new ways to  
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improve teaching effectiveness and optimise the teaching process. It can analyse and 
process large amounts of teaching data, uncover potential patterns and rules, and thereby 
achieve personalised teaching (Zhou and Liu, 2023). The mathematical theory of factor 
space takes factors as its core and, through the construction of factor space, 
systematically describes and analyses the attributes and characteristics of things, 
revealing the internal connections and causal relationships between them (Wang, 2018). 
The introduction of factor space mathematical theory into machine learning model 
construction in higher vocational education can more accurately extract key factors 
affecting classification, optimise the structure and parameters of classification models, 
improve the classification accuracy and generalisation ability of models (Yu, 2013), and 
enable them to better adapt to the complex data and diverse needs of higher vocational 
education. 

 In higher-level vocational studies, there is a significant lack of data on students’ 
evaluations of teachers’ teaching. How to classify teaching effectiveness using a small 
amount of image data has become a hot topic of research. Cai (2023) predicts the image’s 
attributes and categorises it by selecting the nearest-matching attributes from the 
available set. Zhang et al. (2024) proposed a new attribute learning model by computing 
nearest attribute neighbours to automatically extract semantic information, and combined 
different language resources to mine attribute information, thereby completing the 
classification of educational evaluation images. Wang et al. (2022) investigated the 
correlation between teaching characteristics and student traits using mutual information 
analysis. The system implemented attribute prediction as a latent variable task, with a 
support vector machine (SVM) classifier fusing attribute and class information to 
optimise object recognition performance. Hou (2021) proposed a higher vocational 
education evaluation model based on SVM and decision trees, which uses SVM to mine 
the relationships between teaching attributes, thereby improving classification accuracy. 
Long and He (2023) combined a ranking function with the correlations between attributes 
calculated using a ranking algorithm, thereby improving the effectiveness of image 
classification. 

Recent machine learning classification models primarily focus on directly learning 
the mapping among image visual characteristic domain and semantic domain. Hassan and 
Shamsudin (2019) map image characteristics to a semantic domain, afterwards compute 
the cosine similarity to identify the closest class embedding for label prediction. Ai and 
Feng (2022) projected visual features into the attribute embedding space, established a 
mapping between image representations and semantic concepts, and finally decoded them 
back to the original visual space to construct the categorisation framework. Wu (2024) 
drew inspiration from multi-task learning and transfer learning (Weiss et al., 2016) to 
design a model that jointly learns attribute labels and category labels. This architecture 
employs shared image feature representations for both attribute and category studying, 
with dual category labels co-located at the same hierarchical level for joint optimisation, 
forming an attribute-category parallel model, thereby improving the accuracy of image 
classification. 

In machine classification learning models with fewer teaching evaluation image 
samples, both known and unknown categories require the establishment of an 
intermediary knowledge space that functions as a common representation domain. The 
unified knowledge space admits multiple representational forms-from lexical embeddings 
to linguistic descriptions and conceptual vectors. Consequently, this paper opts for factor 
domain to serve as the auxiliary knowledge domain. Chen and Song (2023) proposed the 
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factor library theory, which classifies concepts based on attributes to extract useful 
information from massive educational evaluation data, providing a new approach to big 
data processing. Lu and Wang (2023), inspired by factor analysis, proposed a differential 
calculation algorithm based on determinism as the basic statistical measure, which 
improved the classification accuracy. Guleria and Sood (2023) used the concept of factor 
visibility to study classification algorithms and proposed a sweep-class chain algorithm to 
accelerate the classification speed and improve the accuracy of the algorithm. 

Based on a comprehensive analysis of the aforementioned studies, it can be 
concluded that current vocational education teaching evaluation image sample learning 
suffers from the semantic gap problem. To address this issue, this article presents a 
machine-learning categorisation model grounded in the mathematical theory of factor 
space, specifically designed for vocational education teaching. First, the factor space 
algorithm is improved by applying factor domain to another semantic domain for 
teaching, to establish alignment between semantic abstractions and perceptual feature 
representations, a link is made among data characteristics and the data visually expressed 
in images. In light of the semantic relationships between factors, this study investigates 
the conjunction and reduction of factors, as well as the expansion and contraction of 
factor spaces. It then improves existing factor space algorithms and modifies them using 
machine learning-related algorithms to make the new algorithm more suitable for sparse 
teaching evaluation image classification technology. The improved factor space 
algorithm was then incorporated into the categorisation approach for evaluating higher 
vocational education. Visual features of images were extracted using ResNet101, and a 
generative adversarial network (GAN) was trained to produce more realistic picture 
characteristics. Picture characteristics were generated by merging teaching attributes and 
noise, and the classifier was trained using these characteristics paired with their class 
labels. Finally, the trained classifier receives test data as input features, which outputs 
class labels in the images, thus finalising the instructional assessment picture 
categorisation. The experimental outcome reveals that the categorisation accuracy of the 
proposed approach is enhanced by 5%–17.5% compared with the baseline model, 
demonstrating good classification accuracy. 

2 Relevant technologies 

2.1 Mathematical theory of factor space 

Factor domain mathematical theory is a mathematical framework for describing and 
processing the relationships among factors in uncertain and complex systems (Li and Xu, 
2001). In mathematical terms, factors constitute a particular class of mappings that 
transform objects into their phase representations, elucidating the essential relationship 
between objects and their factors. The state space mentioned in artificial intelligence is 
not a mathematical space but a system of variables. Each variable is a factor with a phase 
domain, and each factor’s phase domain is a coordinate axis. Any object can be mapped 
to a point in the information space through a set of factors (Forni et al., 2015), as implied 
in Figure 1. 

A thing is not related to any factor. The so-called relationship between thing u and 
factor f means that when talking about u in terms of f, there is a corresponding state f(u). 
Let U be a set composed of some objects, V be a set composed of some factors, and for 
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any u ∈ U, all factors related to u are in V. Then (U, V] is called a left pairing. If a 
relationship R: R(u, f) = 1 ⇔ u is defined between U and V that is related to f. In addition, 
let ( ) { | ( , ) 1}D f u U R u f∈ =  be the set of all possible states of the system. Then, we 
can define the following mappings f and X(f) as the state spaces of f. 

: ( ) ( ) ( ),  f D f X f u f u→ →  (1) 

( ) { ( )| ( )}X f f u u D f∈  (2) 

Given a left pairing (U, V], take a factor family F ⊂ V, and call the set family {X(f)}(f∈*) a 
factor domain on U. If it meets the following axioms: 

1 F = F (∨, ∧, c, 1, 0) is a complete Boolean algebra 

2 X(0) = {∅} 

3 for any T ⊂ F, if the factor family T is pairwise independent, then .
f T

f T

f f
∈

∈

∨ = ∏  

Figure 1 Schematic diagram of factorisation (see online version for colours) 
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2.2 Attribute classifier 

In the classification of images with fewer teaching evaluation samples, attributes need to 
be introduced as an intermediate bridge between known and unknown categories to infer 
the unknown categories. After constructing a knowledge sharing space and mapping 
relationships between attribute features and entity category labels, the key step in 
attribute-based image classification technology is to train attribute classifiers (Zhu et al., 
2020). If the model needs to learn attribute classifiers, it is necessary to construct a 
mapping model between image low-level features and attributes. This model mainly 
consists of two parts: image feature extraction and attribute classifier training. 

First, input the image and extract its features. The extracted features are visual 
features at the low-level semantic layer. To obtain more useful features, perform 
secondary feature extraction. However, traditional methods of extracting image features 
require a lot of manual intervention. Currently, the most widely used feature extraction 
method is deep learning. Deep learning methods mainly input images into neural 
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networks, which automatically extract features from the images. The commonly used 
model is the convolutional neural network (CNN) (Li et al., 2021). After obtaining image 
features, it is essential to choose an appropriate classifier to classify the images and 
obtain category labels. Commonly used classifier models include Softmax classifiers. 

3 Design and improvement of factor space algorithms 

3.1 Improvements to factor space sparse representation algorithms 

To address the semantic gap problem in sparse image sample learning, the factor space 
projection onto the semantic embedding space ensures consistency across semantic 
abstractions and primitive visual characteristics, constructing an explicit mapping 
between feature representations and image semantics. According to the semantic 
relationships between factors, this study investigates the conjunction and reduction of 
factors, as well as the expansion and contraction of factor spaces. Existing factor space 
algorithms are improved, and machine learning-related algorithms are applied to enhance 
the factor space algorithms, making the new algorithm more suitable for sparse image 
sample classification techniques. 

For machine learning classification tasks, given a dataset where some data samples 
are critical and others may not be very useful, the selection of data samples is an 
important data preprocessing step. Select relevant samples from a given data set to 
decrease the difficulty of the learning task. Consider the data set as a matrix, where each 
row represents a data sample and each column represents the features of the sample. The 
process of selecting features from samples is the process of making features ‘sparse’, 
which can reduce the difficulty of learning tasks, reduce computation and storage 
requirements, and improve the interpretability of the learned model. 

To simplify the task, the factors and attributes are ‘thinned out’. The specific process 
of ‘thinning out’ is as follows. 

1 For a given set of factors F = {f1, f2, …, fm}, each factor has corresponding attribute 
values f1 = {a11, a12, …, a1n} and fm = {am1, am2, …, amn}, forming a factor-attribute 
matrix. The expression for the learning dictionary is as follows. 

2
12,

1 1

min
i

m m

i i i
B

i i

f B λ
α

α α
= =

− +   (3) 

where B is the dictionary matrix and α is the sparse representation of f. 

2 Optimise equation (3) using variable alternating optimisation to learn sparse 
representations α and dictionary matrix B. First, fix dictionary B and find the 
corresponding sparse representation α for each factor f. The optimisation process is 
as follows. 

2
12min

i
i i if B λ

α
α α− +  (4) 

3 Update dictionary B based on the sparse representation α obtained from equation (4), 
as shown in equation (5). 
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2min F
B

F BA−  (5) 

where F = {f1, f2, …, fm}, A = {α1, α2, …, αm}, and || • ||F are the Frobenius norms of 
the matrices. 

4 The singular value decomposition (SVD) algorithm was used to update the above 
equation column by column, and the optimised solution was obtained in  
equation (6). 

22

1

2                           

min min

min     =

i i

i

k k
j j i

j j i
b b

j j iF F

i
i i Fb

D b F b b

E b

α α α

α

= ≠

 
− = − − 

 
 

−

 
 (6) 

where bi is the ith column of the dictionary matrix B, and αi is the ith row of the sparse 
matrix A. 

When updating the ith column of the dictionary matrix, the other columns in the 

matrix are fixed, i.e., 
k

j
i j

j i

E D b α
≠

= −  in equation (6) is fixed. If the model wants to 

minimise 2m ,in
i

i
i i Fb

E bα−  just perform SVD on E to obtain the orthogonal vector 

corresponding to the maximum value. 

5 After obtaining the initial dictionary matrix B, repeat the above steps iteratively until 
the dictionary matrix B and the sparse representation α are finally obtained. 

3.2 Machine classification learning based on improved sparse representation 
algorithms 

In data sets commonly used for sparse sample learning, the number of entity categories is 
less than the number of attributes contained in the entities. In image classification 
processes with fewer images, it is necessary to describe the information of entities 
through effective key attributes to reduce storage space and computation time. To 
highlight key attribute information, the dictionary matrix composed of categories and 
attributes is sparsified. 

In machine classification studying, for the goal of describing the class of entities with 
least attribute data, it is necessary to remove unnecessary redundant information, set the 
coefficients before non-critical attributes to 0, and set the coefficients before critical 
attributes to non-zero. The over-complete dictionary of the category – attribute is 
constructed as Φ, the matrix is represented as B = [f1, …; fm; …; fM], fm is the atoms in the 
dictionary representing the attribute information, 1[ ;...; ;...; ]m Mα α α α=  is the 
coefficient vector of the attribute property, it is hoped that the non-zero elements in α are 
as few as possible, and s is used to represent the target information of the attribute. 

When solving for sparse solutions of α, a suboptimal approximation algorithm is used 
to solve for sparse solutions. After obtaining the sparse solutions, the global optimal 



   

 

   

   
 

   

   

 

   

    A machine classification learning model 39    
 

    
 
 

   

   
 

   

   

 

   

       
 

solution is obtained using the basis tracking method of convex relaxation (Ma and Xu, 
2021), as shown in equation (7), where || α ||0 is the sparsity of α. 

0min || || s.t. Φ sα α =  (7) 

For the minimisation problem of the l0 norm in formula (8), by replacing it with the l1 
norm, the following equation is obtained. 

1min || || s.t. Φ sα α =  (8) 

Let A = [Φ, –Φ], b = s, c = [1, 1]T, x = [u, v]T, and β = u = u – v be the variables. Then, 
equation (8) can be converted into a standard programming problem, as shown in 
equation (9). 

min s.t. , 0Tc x Ax b x= ≥  (9) 

The impact of chief attribute message of the objective signal s can be characterised 
through the magnitudes of the coefficient matrix α, as shown below. 

( ),m ma z α=  (10) 

After performing sparse representation on the attribute information of each entity class, 
the attributes belonging to the entity domains undergo enumeration and calculation to 
ascertain the weight of the common attribute in every domain. Use the association 
probability p(am, rel) and non-association probability p(am, norel) to compute the values, 
as shown below. 

( ) ( )
( ),

p
m m p

m p
m m

count a a s
p a rel

count a a

= ∈
=

=
 11) 

( ) ( )
( ),

p
m m p

m p
m m

count a a s
p a norel

count a a

= ∉
=

=
 (12) 

where p
ma  is the parameter of am in domain sp; ( )p

m mcount a a=  is the pth sample 

containing attribute am in domain sp; ( )p
m m pcount a a s= ∉  is the number of samples in 

domain sp that do not contain am. Subsequently, the weight ma
pω  is as follows. 

( )
( )

,
,

m ma
p

m

p a rel
ω

p a norel
=  (13) 

Based on the degree of correlation between am and various fields, the weights of each 
identified field resulting from clustering among each known field instances for am are as 
follows. 

ˆ
Σ

m
m

m

a
pa

p a
p p

ω
ω

ω
=  (14) 



   

 

   

   
 

   

   

 

   

   40 R. Chai    
 

    
 
 

   

   
 

   

   

 

   

       
 

4 Classification of higher vocational education evaluation based on an 
improved factor space algorithm 

4.1 The classification model for vocational education evaluation based on 
ResNet101 and GAN 

To address the issue of insufficient image evaluation datasets in existing vocational 
education evaluation systems, which leads to a lack of objectivity in evaluation results, 
this paper proposes a model combining ResNet101 (Zhang, 2022) and GAN (Goodfellow 
et al., 2020) to form the RGAN, as implied in Figure 2. The model is primarily composed 
of ResNet101, GAN, and a categoriser. 

Figure 2 RGAN model (see online version for colours) 
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ResNet101 is adopted to capture picture characteristics. GAN’s framework incorporates 
two adversarial networks: a generator network and a discriminator network. The 
generator synthesises artificial picture characteristics from arbitrary noise inputs, while 
the discriminator evaluates the authenticity of these produced pictures. During training, 
the two sub-networks compete with each other, enabling the model to generate more 
realistic features. Next, integrate test set attributes with noise vectors as generator input to 
synthesise output picture characteristics. Train the classifier using synthesised picture 
characteristics paired with their corresponding class labels from the test set. The test 
phase involves feeding images into ResNet101’s residual architecture for feature 
embedding generation. The captured characteristics are fed into the categoriser to forecast 
teaching assessment classes for unseen images, yielding final categorisation outcome. 
The flow of higher vocational teaching evaluation classification method based on 
improved factor space is shown in Figure 3. 
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Figure 3 The flow of higher vocational teaching evaluation classification method 

Begin

ResNet101 
extracts image 

features

GAN generates teaching 
evaluation images

Constructing known domains

Whether the 
generated image is 

true or not

Output of teaching evaluation 
results through the full 

connectivity layer

Fully-connected layer with 
added offsets outputs 

instructional evaluation 
results

End

Yes No

 

4.2 Classification model training based on improved factor space algorithm 

The RGAN’s procedure is primarily consist of the following phases: building a known 
field, feature extraction, network training, and testing. 

Stage 1 Construct the known field. Compute the similarity among categories utilising 
the attribute message between teaching evaluation categories, perform 
hierarchical clustering on the teaching evaluation data, and construct the known 
domain of visible categories. 

Stage 2 Characteristic extraction phase. Employ ResNet101 to pull out characteristics 
from the evaluation pictures. For the sake of boosting computational efficiency 
of network training. The network performs convolution and pooling operations 
on the images, and then outputs the characteristics of the pictures after passing 
by a fully connected level. 

Stage 3 Network training phase. After preprocessing images in the dataset, they are 
input into the ResNet101 network. Once processed by a fully connected level 
that incorporates offset vectors, the attribute features of images are output. The 
mean square error operation is chosen as the loss operation for this training 
process, as demonstrated below. 
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( )2

1

1:
n

i i
i

loss MSE y y hat
n −

=

= −  (15) 

where yi is the real outcome, y_hati is the model forecasting outcome, and n is 
the number of teaching evaluation result categories: fail, pass, good, and 
excellent. 

Then, train the GAN. The generator model is trained by extracting picture 
characteristics through ResNet101, combining the picture characteristics with 
class marks, passing them vy a fully connected level and selecting the ReLU 
function as the activation operation, that is a nonlinear operation, as shown 
below. 

( ) max(0, )f x x=  (16) 

After computation through a feed-forward level with an additive bias, the ReLU 
is chosen for the activation operation. A process of training the discriminator 
method entails capturing picture characteristics using ResNet101, combining the 
picture characteristics with class marks, then processed by a linear layer 
including a bias term. The activation operation chosen for the fully linked level 
is the leaky-Relu operation, as shown below, where a ∈ (1, +∞). 

0
( )

0

x x
f x x x

a

≥
=  <

 (17) 

Subsequently, only the generated network is optimised to enhance the quality of 
its synthesised picture characteristics. The loss functions chosen for training are 
implied below. 

[ ] ( )

( )( )
, ,

,

( , ) ( , )

2
( ) 2ˆ,

( , ; ) , ;

                , ; 1ˆ

x a x aG D G

x a

GAN θ θ D Dx a P x P

x Dx a P

D x a θ E D x a θ

λE D

E

x a θ
α

= ∼ ∼

∼

  −

− ∇ 
  −

 
 (18) 

where D is the discriminated network, G is the generated network, θ is the 
random value, E is the expectation, a is picture’s attribute message, x is the 
picture characteristic, x  is a image feature of the generated unknown object 
category, ∇ is the gradient computation, λ is the regularisation strength, 

(1ˆ ) ,x x xα α= + −  where α ~ U(0, 1). 

Classifier training aims to combine the attribute features and noise obtained 
from the test set in Stage 1, feed them into the pre-trained generator, output the 
picture characteristics of unseen classes in the testing data and train the 
categoriser in conjunction with the class labels of unobservable classes. During 
the training process, the loss function employed is outlined below. 

( )( )( , ) , (0,
2

2) , ; ;aR G SCYC θ θ G RP z N IE a R G a z θ θα ∼ ∼
 
 = −   (19) 

where R is the regressor, z is the arbitrary noise. 
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Stage 4 Testing stage. Utilise the features extracted from the test set images using 
ResNet101 in Stage 1, then input the captured picture characteristics into the 
trained categoriser. After passing through the categoriser, the class labels of the 
test pictures are output, thereby achieving the classification of vocational 
education evaluation. 

5 Experimental results and analyses  

To validate the performance of the FS-MCL model designed in this paper, this study 
randomly selected relevant image data related to vocational education evaluation from 
the academic affairs management system of a vocational college and conducted 
simulation experiments. The initial data set consisted of 1,364 student classroom 
evaluation data items from eight semesters. This paper divides the teaching evaluation 
data samples into training sets and validation data sets in a ratio of 7:2:1. The graphics 
card model of the experimental server is Nvidia GTX 1080 Ti, the processor is Intel Core 
i5, the memory capacity is 8G, the operating system is Windows 10. 

Figure 4 Comparison of classification results of teaching evaluation by different models, 
(a) FS-MCL (b) SVM-DT (c) BP-QEH (d) FR-CSC (see online version for colours) 
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The four categories of teaching evaluation results – unqualified, qualified, good, and 
excellent – are labelled as 1, 2, 3, and 4, respectively. The classification results of the 
three methods, FS-MCL and SVM-DT (Hou, 2021), BP-QEH (Ai and Feng, 2022), and 
FR-CSC (Guleria and Sood, 2023), are shown in Figure 4. When the number of image 
samples in the teaching evaluation was 40, SVM-DT, BP-QEH, FR-CSC, and FS-MCL 
correctly classified 30, 33, 35, and 37 samples, respectively, with classification 
accuracies of 75%, 82.5%, 87.5%, and 92.5%. The classification accuracy of FS-MCL 
improved by 17.5%, 10%, and 5% compared with SVM-DT, BP-QEH, and FR-CSC, 
respectively. SVM-DT considers the relationship between teaching attributes and student 
attributes and classifies teaching evaluation results using SVM, but the classification 
accuracy of SVM depends on the penalty parameter and kernel parameter. BP-QEH maps 
semantic spaces by reconstructing a small number of teaching evaluation images, but the 
reconstruction model may learn details unrelated to classification and ignore key 
discriminative features. FR-CSC uses the idea of explicit and implicit factors for 
classification research, but the division between explicit and implicit factors depends on 
prior knowledge. If the division is inappropriate, it will lead to a decline in model 
performance. FS-MCL applies factor space to semantic embedding domain, keeping the 
high-level semantic space consistent with the underlying picture characteristic domain, 
thereby greatly improving classification accuracy. 

Figure 5 Comparison of ROC curves for different models (see online version for colours) 
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The ROC curves for different models are shown in Figure 5. The ROC curve for  
FS-MCL is the most convex, completely ‘enveloping’ SVM-DT and BP-QEH. That is, as 
the number of objects classified as positive increases, the number of misclassifications is 
less than that of the SVM-DT and BP-QEH algorithms. The ROC curve of FS-MCL does 
not completely envelop FR-CSC, but the AUC value is greater than that of the FR-CSC 
algorithm. The AUC value of FS-MCL is 0.9326, while that of FR-CSC is 0.9005. The 
classification performance of FS-MCL is superior to that of the FR-CSC algorithm.  
FS-MCL builds a direct link among data characteristics and the information expressed in 
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pictures through factor space, studies the combination and reduction of factors based on 
semantic relationships, and the expansion and contraction of factor space. It also 
improves existing factor space algorithms and achieves good classification accuracy. 

In addition to analysing the classification results, this paper also compares SVM-DT,  
BP-QEH, FR-CSC, and FS-MCL using precision, recall, F1, and training real-time rate 
(TR), as shown in Table 1. F1 is a composite measure of Precision and Recall (Hussain  
et al., 2019) that clearly reflects the classification performance of a model. The F1 score 
of FS-MCL is 93.4%, which is 6.7%-17.7% higher than the other three models. When 
comparing training real-time rates, FS-MCL’s training real-time rate was 108 s/epoch, 
which was 372 s/epoch, 234 s/epoch, and 141 s/epoch lower than SVM-DT, BP-QEH, 
and FR-CSC, respectively. The FS-MCL model significantly improves the classification 
accuracy for test samples by incorporating residual networks to eliminate redundant 
attributes. This approach effectively enhances the correlation between attributes and 
target categories while reducing inter-attribute correlations. In addition, FS-MCL fully 
considers the correlations between attributes and between attributes and categories, 
thereby improving classification real-time performance. 
Table 1 Comparison of classification performance indicators 

Model Precision Recall F1 TR 
SVM-DT 74.3% 77.1% 75.7% 480s/epoch 
BP-QEH 83.9% 82.6% 83.2% 342s/epoch 
FR-CSC 85.2% 88.1% 86.7% 249s/epoch 
FS-MCL 94.7% 92.1% 93.4% 108s/epoch 

6 Conclusions 

As the artificial intelligence technique rapidly growing, machine learning has been 
increasingly applied in the evaluation of higher vocational education. To address the 
current issue of the teaching semantic gap in evaluating image sample learning, this paper 
proposes a machine Categorisation studying model in light of factor domain 
mathematical theory for higher vocational education. The chief innovations of this model 
are summarised as bellow. 

1 By applying factor domain theory to the instructional semantic embedding domain, 
this approach achieves consistency among high-level semantic space and low-level 
picture characteristic space, establishing direct connections between data features 
and image-conveyed information. The research investigates factor 
conjunction/reduction and factor space expansion/contraction based on semantic 
relationships. 

2 Improve the factor space algorithm. Extend the theory of factor space based on 
machine learning algorithms, optimise the relationships between factors through 
clustering algorithms and sparse representation algorithms, and transfer them to the 
study of the relationships between categories and categories, attributes and categories 
in the image learning process of teaching evaluation, thereby improving the 
efficiency of image sample learning and the accuracy of classification. 
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3 The improved factor space algorithm is applied to a classification model for 
vocational education evaluation. Visual features are extracted from images using 
ResNet101, and a GAN is trained to produce more realistic picture characteristics. 
By combining attributes and noise, picture characteristics are output by the 
generator. The features and class marks are then combined to train the categoriser, 
thereby completing the classification of teaching evaluation images. 

4 Experimental outcome on actual data sets show that the designed model gains a 
teaching evaluation classification accuracy rate of 92.5% and an AUC value of 
0.9326, providing more reliable basis for teaching evaluation and effectively 
contributing to the improvement of vocational education quality. 
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