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Abstract: To address traditional graph neural networks’ (GNNs) neglect of 
word-order features and sensitivity to adversarial noise, this study proposes 
DGCL-TC, a text classification model integrating dual-graph fusion and 
adaptive contrastive learning. The framework leverages bidirectional encoder 
representations from transformers (BERT) to encode contextual semantics and 
constructs dual graphs capturing local and global text structures. A learnable 
augmentation module dynamically generates contrastive views via node 
dropout and attribute masking, optimising representations through cross-view 
consistency. A gated graph attention network fuses topology-aware graph 
features with BERT embeddings, balancing structural and sequential cues. 
Evaluations on benchmark datasets confirm that DGCL-TC significantly 
outperforms baseline methods in accuracy and robustness, particularly under 
adversarial perturbations and sparse data conditions. The model advances text 
classification by unifying semantic, structural, and noise-resistant 
representation learning. 
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1 Introduction 

With the explosive growth of information on the internet, text categorisation, as one of 
the core tasks of Natural Language Processing (NLP), shows irreplaceable value in the 
fields of opinion analysis, content recommendation, and information retrieval (Fazaeli 
and Momtazi, 2024). Traditional text categorisation methods rely on Bag-of-Words 
(BoW) or shallow neural networks such as convolutional neural network (CNN) and 
recurrent neural network (RNN) to extract local or sequential features are often limited  
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by their ability to model the global semantics and structural relationships of text (Lan  
et al., 2023). In recent years, the rise of graph neural networks (GNNs) has provided a 
new perspective for text classification – by transforming text into graph structures such as 
word co-occurrence graphs, syntactic dependency graphs, GNNs are able to explicitly 
model complex interactions between words, and thus capture the deeper semantics that 
are difficult to characterise by traditional methods (Mei et al., 2021; Peng et al., 2024). 
However, existing GNN-based text categorisation models still face three key challenges: 
first, the inherent word order information of text is easily ignored during the graph 
structure modelling process, which limits the model’s ability to discriminate  
semantic-sensitive tasks such as sentiment categorisation (Li et al., 2023); second, the 
construction of graph structures usually relies on predefined rules such as fixed-window 
co-occurrence or static syntactic parsing, which makes it difficult to adapt to different 
text types and task requirements (Schnake et al., 2022); third, the graph data itself can be 
used to model the complex interactions between words, thus capturing the deeper 
semantic associations that are difficult to be characterised by traditional methods (Wang 
et al., 2022b). 

Aiming at the above problems, academics have tried to improve them through 
strategies such as multimodal feature fusion, dynamic graph construction, and 
comparative learning (Wang et al., 2023; Xiao et al., 2022). For example, some studies 
combine bidirectional encoder representations from transformers (BERT) with GNN, 
using the former to capture contextual semantics and the latter to model structural 
relationships, but this simple splicing often leads to the fragmentation of word order 
features and graph topology information (Al-Sabri et al., 2024). Some other works 
enhance the model robustness by introducing contrast learning, but most of the existing 
methods adopt fixed data augmentation and generalisation strategies such as random 
node discarding or edge perturbation, which may destroy the semantic integrity of the 
original text (Fu et al., 2022). In addition, most of the existing studies are based on a 
single type of graph structure such as using only co-occurrence graphs or syntactic 
graphs, ignoring the complementarity between different graph forms (Liu et al., 2024a). 
How to design a classification framework that preserves the lexical order and syntactic 
properties of the text while adaptively generating robust graph representations is still a 
gap in current research (Karnyoto et al., 2022). 

In this paper, we propose a text classification model DGCL-TC that integrates  
bi-graph structure and adaptive contrast learning, and its core idea is to achieve the 
synergistic optimisation of text classification accuracy and robustness through multi-level 
semantic modelling and noise immunity mechanism. Specifically, the model first 
generates word-level context embeddings using a pre-trained language model, and 
simultaneously constructs a co-occurrence graph and a syntactic dependency graph: the 
co-occurrence graph captures local word-order co-occurrence patterns through a dynamic 
sliding window, while the syntactic dependency graph extracts global syntactic 
constraints based on dependency parse trees (Ghosh et al., 2023). The complementary 
design of the dual graph structure not only avoids the information bias of the single graph 
structure, but also provides multi-granularity semantic support for subsequent feature 
fusion (Li and Li, 2022). In the representation learning stage, the model innovatively 
introduces a learnable contrast view generator, which dynamically selects node 
discarding, attribute masking, and other augmentation and generalisation operations 
through Gumbel-Softmax sampling, so as to generate contrast samples that are 
semantically compatible with the input text (Alohali et al., 2024). This strategy 
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overcomes the limitation of traditional contrast learning that relies on manual predefined 
augmentation methods, and enables the model to adapt itself to the needs of contrast 
training under different data distributions (Pribán et al., 2024). Further, by designing a 
cross-view and cross-scale contrast loss function, the model explicitly constrains the 
sensitivity of the graph structure to noise perturbations while enhancing the 
discriminative power of the node representation (Wang et al., 2022a). At the feature 
fusion layer, the model adopts gated graph attention to selectively aggregate bi-graph 
features, and uses the attention alignment module to combine graph topological features 
with sequence encoding in BERT, ultimately realising a balanced characterisation of 
word order information and structural information (Ren et al., 2024). 

The main innovations and contributions of this work include: 

1 At the theoretical level, a bi-graph contrast learning framework for text classification 
is proposed, which for the first time incorporates dynamic graph construction, 
adaptive contrast enhancement and multi-modal feature alignment into a unified 
optimisation objective, providing a new methodology for complex text 
representation learning. 

2 On the technical level, a learnable comparison view generator with anti-noise label 
propagation mechanism is designed, which significantly improves the generalisation 
ability of the model in sparse data and adversarial scenarios. 

3 At the application level, experiments on several public datasets show that the model 
outperforms mainstream baseline methods in terms of classification accuracy, 
robustness, cross-domain adaptability, etc., and provides a reliable solution for the 
task of classifying high-noise, polymorphic text in practical applications. 

2 Relevant technologies 

Text classification, as a fundamental task in the field of NLP, aims to assign predefined 
category labels to texts based on their semantic content. Its applications span numerous 
scenarios, including search engines, sentiment analysis, and news recommendation 
systems. Early text classification methods primarily relied on BoW models or term 
frequency-inverse document frequency (TF-IDF) weighted statistics, achieving category 
assignment through shallow feature matching (Yan and Xu, 2024). While these 
approaches offered computational efficiency, they struggled to capture semantic 
associations and contextual dependencies between words. For instance, they failed to 
distinguish polysemous terms like Apple Inc. (the company) versus apple (the fruit). 

With the advancement of deep learning, CNNs and RNNs gradually became 
mainstream. CNNs extract n-gram features through local receptive fields, while RNNs 
capture long-range dependencies via sequential modelling (Shi et al., 2022). However, 
such sequential models exhibited limited capability in modelling discontinuous semantic 
relationships. For example, in the sentence, the therapeutic effect is significant, but the 
side effects are noticeable, the contrastive relationship between significant and noticeable 
could not be effectively captured through local convolutions or unidirectional recurrence 
(Dong et al., 2024). 

In recent years, the emergence of GNNs has introduced a novel paradigm for text 
representation learning (Song et al., 2022). By converting texts into graph structures such 
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as word co-occurrence graphs, syntactic dependency graphs, GNNs can explicitly model 
topological relationships between words, overcoming the locality constraints of 
sequential models (Sun and Peng, 2024; Yu et al., 2023). For instance, when constructing 
a word co-occurrence graph, strong connection weights are assigned to word pairs that 
frequently co-occur across multiple documents, enabling semantic propagation through 
graph convolution operations. Simultaneously, contrastive learning has emerged as a vital 
technique for enhancing text representation quality by leveraging self-supervised signals 
to improve model robustness against noise and sparse data (Ehrenfried et al., 2023). The 
core principle is to construct semantically consistent pairs of positive samples and 
discretised pairs of negative samples, forcing the model to learn perturbation-invariant 
basic features. 

However, existing research faces three major challenges in combining graph structure 
with contrastive learning. First, textual graph construction relies on manually predefined 
rules, such as fixed window co-occurrence, and is therefore difficult to adapt to different 
semantic scenarios (Guo et al., 2022). Second, contrast enhancement strategies may be 
divorced from the intrinsic semantics of the text and may disrupt key grammatical or 
emotional cues (Jang et al., 2023). Third, the heterogeneity between graph topological 
features and sequential features creates difficulties in cross-modal alignment, limiting the 
model’s global understanding of complex semantics (Jin and Zhang, 2025). This chapter 
will systematically analyse the technical evolution of GNNs and comparative learning in 
text classification, reveal the limitations of current approaches, and illustrate the 
innovation and necessity of the proposed solutions. 

2.1 GNNs in text classification 

GNNs provide a complementary view to traditional sequence models by modelling the 
topology of the text (Abdalla et al., 2023). Their key approach is to convert text into 
graphical structures such as word co-occurrence graphs and syntactic dependency graphs. 
They use neighbourhood aggregation to capture interactions between words. For word 
co-occurrence graphs, edges connect words that often appear together in a sliding 
window. Semantic information is propagated through graph convolution operations. A 
typical graph convolution network (GCN) can be written as: 

( )1 1
( 1) ( ) ( )2 2l l lH σ D AD H W

− −+ =    (1) 

where A  is the adjacency matrix with self-loops. D  is the degree matrix. H(l) is the node 
feature matrix. Although these methods are effective in modelling long-distance lexical 
relations such as cross-passage associations of core entities, they face significant 
limitations. First, static graph construction relies on fixed rules such as window size or 
syntactic analysis tools, which cannot be adapted to dynamic semantic scenarios. For 
example, in a product review, battery life and charging speed may rarely appear together 
in a short text, but are closely related semantically – a fixed windowing strategy is 
difficult to capture this implicit relationship. Second, graph structures can disrupt word 
order, preventing the model from distinguishing expressions that are sensitive to word 
order. For example, good user experience and good user experience may have the same 
topology in the graph, but the expressed sentiment polarity is diametrically opposed. 
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To mitigate these issues, subsequent studies introduced gating mechanisms and 
attention mechanisms. For instance, graph attention networks (GAT) dynamically 
aggregates neighbour information by computing attention weights between nodes: 

( )( )softmax LeakyReLU T
ij i ja Wh Wh=   α  (2) 

where a is a learnable vector and W is a parameter matrix. Although such improvements 
enhance flexibility, they fail to resolve the fundamental contradiction: graph design still 
depends on prior assumptions, and word order cannot be naturally encoded through 
topology. This limits model performance in order-sensitive tasks like sentiment analysis 
and sarcasm detection. 

2.2  Contrastive learning in text classification 

Contrastive learning enhances model robustness by constructing positive and negative 
sample pairs to optimise the representation space (Liu et al., 2024b). Its basic paradigm 
involves applying semantic-preserving data augmentation to input samples, generating 
embeddings from different perspectives, and pulling positive pairs closer while pushing 
negative pairs apart via a contrastive loss. The loss function of the classic SimCLR 
framework is: 

( )( )
( )( )

exp ,
log

exp ,
i j

k i i k

s z z τ

s z z τ≠
= −


  (3) 

where zi,zj are embeddings of augmented views of the same text, and τ is the temperature 
parameter. In textual domains, common augmentation strategies include synonym 
replacement, random masking, and sentence reordering. However, manually designed 
augmentations suffer from two major flaws (Zhang and Lauw, 2024). Firstly, mismatched 
augmentation intensity. Randomly replacing domain-specific terms such as 
chemotherapy with radiotherapy in medical texts may drastically alter semantics, 
invalidating positive pairs. Secondly, task-objective misalignment. Sentiment 
classification requires preserving sentiment keywords, while topic classification demands 
retaining core entities, yet current methods adopt uniform augmentation rules without 
task-specific adaptation. 

For graph data, GraphCL proposes generating contrastive views via edge dropping or 
node feature masking. However, random augmentations may destroy critical structural 
information. For example, deleting core predicate edges in a syntactic dependency graph 
can fracture the syntax tree, producing invalid contrastive samples. Additionally, graph 
contrastive learning often overlooks local semantic consistency between node features. 
For instance, nodes representing high cost-performance and low price might be treated as 
dissimilar due to topological differences, despite their semantic affinity, leading to 
distorted representation spaces. 

2.3 Integration of GNNs and contrastive learning 

The integration of GNNs and contrastive learning represents a promising yet under 
explored direction for advancing text classification (Truong et al., 2024). Current 
approaches focus on two strategies: incorporating contrast objectives in the graph 



   

 

   

   
 

   

   

 

   

    English text classification model based on graph neural networks 53    
 

    
 
 

   

   
 

   

   

 

   

       
 

convolution process and utilising contrast learning to improve graph structure. A typical 
framework optimises classification and contrast loss by linear weight combinations: 

total cls contλ= +    (4) 

where cls is the cross-entropy classification loss, cont is the contrastive loss, and λ acts 
as a fixed hyperparameter to balance these objectives. 

This mixing loss enhances model robustness by encouraging the representation to 
remain invariant to perturbations. It suffers from key limitations stemming from static 
design. Fixed weights λ assumes that there is a uniform trade-off between classification 
accuracy and representation invariance across different data distributions. This rarely 
holds in practice. For example, legal documents require strict preservation of syntactic 
dependencies to maintain logical coherence. This requires higher values of λ to prioritise 
contrast regularisation. Social media texts come with inherent noise such as spelling 
mistakes and slang. They require lower λ to avoid over-regularisation inhibiting 
discriminative features. This rigidity leads to poor performance in cross-domain or  
multi-tasking scenarios. Dynamic adaptation of data features in these scenarios is crucial. 

A more subtle challenge comes from the possible conflict between classification and 
comparison goals. Overemphasis on contrastive loss cont may force the model to 
collapse subtle inter-class distinctions into overly compact clusters. Take the example of 
a sentiment analysis task with fine-grained labels: strong contrast learning may combine 
neighbouring categories and thus reduce classification accuracy. Conversely, prioritising 
cls alone risks overfitting to superficial patterns, such as keyword memorisation, while 
neglecting deeper semantic invariance. This relationship emphasises the need for 
adaptive mechanisms to reconcile task-specific discrimination with generalisable 
representational learning. 

Another approach tries to optimise the graph structure directly through comparative 
learning. One approach is to dynamically modify the weights of edges. The aim is to 
maximise the structural similarity of the enhanced views in an objective-driven manner 
(Ma et al., 2025). While theoretically appealing, these approaches face scalability 
bottlenecks. The quadratic complexity of edge weight optimisation becomes prohibitive 
for long texts or large corpora. Moreover, heuristic definitions of structural similarity 
often rely on simplistic metrics like cosine distance between node features, which fail to 
capture higher-order semantic relationships. For example, in a syntactic dependency 
graph, preserving subject-verb-object triples might be more critical than minimising 
pairwise node dissimilarity, but existing methods lack explicit mechanisms to prioritise 
such linguistically meaningful substructures. 

The most fundamental limitation lies in the heterogeneous nature of textual 
representations. GNNs excel at encoding topological features such as syntactic 
dependencies, co-occurrence patterns, while sequential models like Transformers capture 
positional and contextual nuances (Vo, 2023). Simply concatenating or averaging these 
features – a common practice in hybrid models – creates a semantic gap that hinders 
effective fusion. Consider the phrase not bad, where the graph structure highlights the 
negation edge between not and bad, while the sequential model preserves the critical 
word order. Naive fusion might dilute this complementary information, leading to 
ambiguous representations. Advanced alignment mechanisms, such as cross-modal 
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attention or gated fusion, are required to harmonise these divergent perspectives, yet 
current frameworks predominantly rely on rudimentary aggregation strategies. 

The combination of GNNs and comparative learning, while promising, faces four 
related challenges. These require nuanced solutions: 

1 The reliance on static loss balancing, epitomised by fixed hyperparameters like λ, 
does not take into account the natural variability of textual data. For example, legal 
documents need to carefully maintain grammatical structure to keep the logic sound, 
which means they need higher contrast regularisation weights (Xu et al., 2023). 
Social media text, replete with informal abbreviations and typing noise, requires 
greater flexibility. This avoids retaining meaning-critical but apparently irregular 
patterns. A fixed λ imposes a generalised compromise. It ignores domain-specific 
needs and leads to poor generalisation across tasks. 

2 The conflict between categorisation and contrast goals creates a tricky scenario: too 
much focus on contrast loss can blur the nuances between categories. Take the 
medical text classification task of distinguishing between allergy and autoimmune 
categories as an example: too much contrast regularisation may mix semantically 
related but clinically different concepts into overlapping groups. Prioritising only 
classification losses can lead to overfitting to dataset-specific problems, such as 
biased label distributions or incorrect keyword links, which can impair model 
robustness. This conflict requires adaptive methods to adjust the balance between 
discriminative power (Yan et al., 2024). 

3 There is a problem with comparative learning for graph structure optimisation: it is 
too costly. Adjusting edge weights in a quadratic fashion makes these methods 
inapplicable to real-world applications. These applications involve long texts or large 
datasets. Take a 500-word article as an example. Optimising a 500 × 500 adjacency 
matrix requires 250,000 operations per iteration. This uses too much memory and 
processing power. This also leads to another problem. They focus on surface feature 
matching. They do not prioritise substructures that are meaningful to the language. 
Maintaining causality is more important in a discourse coherence graph. This is more 
important than reducing node dissimilarity. But existing frameworks lack an explicit 
approach. 

4 The diversity of textual representations makes fusion more difficult. GNNs excel at 
encoding large-scale topological patterns. These include syntactic dependencies or 
thematic entity networks. However, sequential models like BERT capture local, 
sequence-dependent semantics. Simple fusion methods, such as linking graph 
embeddings to sequential outputs, fail to realise the potential of both. For example, 
sequential modelling maintains ironic tone through word order. Basic aggregation 
may confuse these signals. This weakens the critical interaction between structure 
and context. Advanced calibration tools, such as cross-modal attention or gated 
transformers, are needed to bridge this gap. However, current methods still rely on 
basic fusion methods. 
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3 DGCL-TC model architecture 

The core challenge of text classification lies in synergistically capturing local word order, 
global structure, and semantic robustness. While existing methods have advanced in 
individual dimensions such as sequential modelling or graph structure learning, they 
struggle to effectively integrate multi-source information, leading to insufficient 
generalisation in complex scenarios. Traditional GNNs rely on static graph construction 
rules, failing to adapt to the dynamic semantic variations of texts. Contrastive learning 
enhances representation robustness but risks disrupting critical grammatical or emotional 
cues through augmentation strategies. A deeper contradiction stems from the 
heterogeneity between graph topological features and sequential features – simple 
concatenation or weighted averaging often causes information loss, undermining 
multimodal synergy. 

To address these issues, this chapter proposes the DGCL-TC model, which aims to 
break through the triple bottlenecks of word order, structure, and robustness via dynamic 
multi-view modelling and semantics-guided contrastive enhancement. The model adheres 
to three design principles: dynamic adaptability, semantic consistency, and modal 
complementarity. Dynamic adaptability requires graph construction and augmentation 
strategies to self-adjust based on text characteristics, avoiding the rigidity of predefined 
rules. Semantic consistency ensures contrastive learning remains task-oriented, 
preserving core semantic logic during augmentation. Modal complementarity emphasises 
bridging the semantic gap between graph structures and sequential features through 
refined fusion mechanisms. 

The overall architecture comprises three core modules: dual-graph construction with 
semantic encoding, adaptive contrastive learning, and gated multimodal fusion. The  
dual-graph construction module simultaneously generates co-occurrence graphs and 
syntactic dependency graphs – the former captures local statistical patterns via adaptive 
sliding windows, while the latter preserves global grammatical constraints through 
dependency parsing. The adaptive contrastive learning module employs a learnable 
augmentation selector to dynamically generate semantically compatible contrastive 
views, enhancing perturbation robustness through node-level and graph-level objectives. 
The gated fusion module aggregates dual-graph features via attention mechanisms and 
integrates graph representations with sequential encodings through cross-alignment, 
achieving balanced characterisation of word order and structure. Compared to existing 
methods, DGCL-TC innovates in three aspects: dynamic dual-graph construction 
overcoming static topology limitations, task-aware augmentation preventing semantic 
distortion, and hierarchical fusion enabling graph-sequence synergy. Experiments 
demonstrate the framework’s superior performance in accuracy, noise resistance, and 
cross-domain adaptability, offering a novel pathway for complex text classification. 

3.1 Dual-graph construction and semantic encoding 

The DGCL-TC model captures both local statistical patterns and global syntactic 
constraints through dual-graph collaboration. For an input text 1 2{ , , , },nT w w w=   the 
pre-trained language model BERT first generates context-aware word-level embeddings 
E ∈ ℝn×d, where d is the embedding dimension. A sentence vector s ∈ ℝd, obtained via 
mean pooling, serves as the global semantic representation. The word embeddings E 
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provide fine-grained semantic foundations for graph construction, while s acts as an 
anchor for graph-level contrastive learning. 

For dynamic co-occurrence graph construction, the model abandons traditional  
fixed-window strategies and adopts an adaptive window mechanism to determine word 
co-occurrence ranges. The window size w dynamically adjusts with text length n, defined 
as w = [log2(n) + 1]. The logarithmic function is chosen to dynamically adjust the 
window size mainly because its adaptability to changes in text length is superior to linear 
scaling. For short texts, the window size produced by logarithmic scaling is close to that 
of linear scaling and can effectively capture local co-occurrence relationships. For long 
text processing, linear scaling can cause the window to be too large and introduce a large 
number of irrelevant or low-significance word pair joins. Combined with edge weight 
calculation, it is possible to construct more compact and information-rich co-occurrence 
graphs on texts of different lengths. This ensures short texts focus on tight local 
associations, while long texts expand windows to capture cross-paragraph semantics. For 
word pairs (wi, wj) within the window, edges are established with weights combining  
TF-IDF statistical significance and pointwise mutual information (PMI) semantic 
relevance: 

( )CO TF-IDF( , ) (1 ) PMI ,i j i jijA w w w w= ⋅ + − ⋅α α  (5) 

where α is a balancing coefficient that regulates the importance of statistical  
co-occurrence versus semantic closeness. This design enables the co-occurrence graph to 
reflect both high-frequency word pair saliency and low-frequency yet semantically 
critical associations. 

Syntactic dependency graph construction strictly adheres to grammar rules derived 
from dependency parsing. The adjacency matrix syn

ijA  is binary: 1 if wi and wj share a 
syntactic dependency, otherwise 0. This graph explicitly encodes grammatical 
relationships such as subject-predicate, verb-object to enforce linguistic constraints. For 
example, in the phrase intense market competition, the dependency graph preserves the 
core predicate-object edge between market and competition, ensuring grammatical 
integrity. 

The dual graphs complement each other: the co-occurrence graph captures empirical 
word co-occurrence patterns from a statistical perspective, excelling at discovering 
domain-specific term associations, while the syntactic graph enforces linguistic legality 
to prevent models from falling into statistical bias traps. Together, they provide  
multi-perspective semantic support for subsequent contrastive learning and feature 
fusion. 

3.2 Adaptive contrastive learning module 

The core dilemma of traditional contrastive learning in text classification lies in the 
blindness of augmentation strategies – random perturbations may disrupt semantic 
integrity, particularly in syntactically complex or sentiment-sensitive contexts where 
minor modifications can lead to semantic reversal. For instance, in the medical text white 
blood cells decreased significantly after chemotherapy, randomly masking the word 
significantly might mislead the model to misinterpret a pathological phenomenon as 
normal fluctuation. DGCL-TC addresses this by introducing a learnable augmentation 
strategy selector, upgrading contrastive learning from preset rule-driven to  
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semantic-aware-driven, achieving adaptive alignment between augmentation intensity 
and text characteristics. 

At the heart of this module is the dynamic generation of semantically compatible 
contrastive views. Specifically, the model maintains a candidate augmentation operation 
set 1 2{ , , , },Kg g g=   including basic operations such as node dropout, edge pruning, 
and feature masking. Unlike traditional random selection, DGCL-TC dynamically assigns 
optimal operations to each node via Gumbel-Softmax sampling: 

( )( )
( )( )

1

exp log

exp log

k k
k K

i ii

π ε τ
p

π ε τ
=

+
=

+
 (6) 

where πk ∈ ℝ represents learnable weights reflecting the adaptability of different 
augmentation strategies to the current task; εk ~ Gumbel(0, 1) injects exploratory 
randomness; and τ is a temperature parameter controlling selection determinism (τ → 0 
approaches one-hot selection, τ → ∞ approximates uniform distribution). For example, in 
sentiment analysis tasks, the model may prefer preserving sentiment-bearing nodes while 
masking modifier features, whereas in legal text classification, it prioritises protecting 
syntactic dependency edges from pruning. This dynamic selection mechanism ensures 
alignment between augmentation and task objectives, preventing accidental corruption of 
critical semantic pathways. The importance of word nodes is identified by monitoring the 
size of their classification loss gradient. Nodes with large gradient amplitudes are 
regarded as key nodes. When enhancing the operation selection, they will be assigned an 
extremely high retention probability, greatly reducing the risk of being discarded or 
masked, and ensuring semantic consistency. 

The contrastive objective balances robustness at both local node and global graph 
levels. The model proposes a dual-level contrastive loss function: 

1 Node-level loss aligns embeddings of the same node across augmented views: 

( )
( )

node
1

1

exp
log

exp

n
i i

n
i i jj

h h τ

h h τ=
=

⋅
= −

⋅






  (7) 

 where hi and ih  denote embeddings of node i in the original and augmented graphs, 
respectively, with τ smoothing similarity distributions. This loss forces the model to 
ignore local perturbations such as non-critical feature masking while enhancing noise 
robustness. 

2 Graph-level loss enforces global semantic consistency: 

( )
( )

graph

1

exp
log

exp
B

kk

s s τ

s s τ
=

⋅
= −

⋅



  (8) 

 where s and s  are sentence vectors of the original and augmented graphs, and B is 
the batch size. By pulling closer the global representations of positive pairs, the 
model resists structural noise such as misparsed dependency edges. 
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The total contrastive loss combines these objectives adaptively: 

cont node graph= + ⋅β    (9) 

The balancing coefficient β is dynamically computed based on batch characteristics: 

2
1

1 n

i i
i

σ h h
n =

 
= −  

 
 β  (10) 

where σ is the Sigmoid function. When node-level perturbations are intense such as 
aggressive augmentations, β increases to emphasise global constraints; otherwise, it 
prioritises local alignment. This self-adjusting mechanism allows the model to 
autonomously balance learning foci across data distributions, for instance, emphasising 
graph-level contrast in noisy social media texts while strengthening node-level 
consistency in terminology-dense scientific literature. 

Label propagation is achieved through the message-passing mechanism on the graph. 
Specifically, for the unmarked nodes in the graph, their labels are iteratively updated by 
aggregating the label information of their adjacent nodes until convergence or reaching 
the preset number of iterations, and finally the predicted labels of the noisy nodes are 
obtained. 

This module significantly improves the stability of the model against attack scenarios. 
The adaptive generalisation strategy can effectively identify and protect key semantic 
nodes such as emotion words, technical terms from being mis-masked or discarded in 
comparison learning. This semantic-aware feature enables the model to resist noise 
interference without over-smoothing fine-grained category differences, providing a new 
learning paradigm for high-precision text categorisation. 

3.3 Multimodal feature fusion module 

Topological features generated by GNNs and sequential features captured by pre-trained 
language models inherently belong to heterogeneous modalities: the former emphasises 
structural relationships between word nodes, while the latter focuses on word order and 
contextual dependencies. Traditional fusion methods such as concatenation, weighted 
summation treat these features as independent vector space operands, ignoring their 
intrinsic semantic interactions, resulting in superficial information integration. For 
instance, in sentiment analysis tasks, the sentence low price but excellent quality may 
highlight the contrastive edge between price and quality in the graph structure, while the 
sequential model reinforces semantic tension through the transitional word but. Simple 
concatenation of these features fails to capture such cross-modal synergy and may even 
introduce noise due to dimensionality expansion. DGCL-TC addresses this through a 
gated attention mechanism and cross-modal alignment, enabling deep interaction between 
graph and sequence features to construct composite representations that integrate 
structural awareness and word-order sensitivity. 

Gated GAT first hierarchically aggregates dual-graph features. Taking the  
co-occurrence graph as an example, the feature update for node i at layer l+1 follows: 

( )co( 1) co( )co

i

l l
iji j

j

h γ W h+

∈

= ⋅
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 (11) 
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where γij denotes the gated attention coefficient, computed via bilinear transformation and 
nonlinear activation: 

( )( )softmax LeakyReLU T
ij i jγ a Wh Wh=     (12) 

where a ∈ ℝ2d is a learnable vector, W ∈ ℝd×d is a shared parameter matrix, and || 
represents vector concatenation. 

This mechanism dynamically allocates importance to neighbour nodes – for example, 
in product reviews, the co-occurrence edge between screen and clarity may receive 
higher weights, while edges like delivery and packaging are suppressed, thereby focusing 
on core semantic relationships. This dynamic filtering capability is particularly effective 
in polysemy scenarios: in apple phones have strong battery life versus apples have a crisp 
and sweet taste, the model automatically adjusts neighbour weights for the apple node 
based on context, emphasising technical attributes phone-battery in the former and 
sensory descriptors taste-crisp in the latter. The syntactic graph aggregation follows a 
similar process but uses an independent parameter matrix Wsyn to preserve grammatical 
specificity. For example, in legal texts, the syntactic graph strictly retains dependency 
chains like defendant-charge-evidence, while the co-occurrence graph supplements 
statistical associations like witness-testimony. After gated aggregation, dual-graph 
features are fused through element-wise addition: 

co syn
Gh h h= +  (13) 

This preserves structural specificity while avoiding parameter redundancy. 
To further bridge the gap between graph and sequence features, the model designs a 

cross-modal alignment module. Using the BERT-generated sentence vector s as the query 
and the fused graph features hG as key-value pairs, cross-modal attention is computed: 

, ,Q G K G VQ sW K h W V h W= = =  (14) 

Attention( , , ) softmax
TQKQ K V V

d
 =  
 

 (15) 

where WQ, WK, WV ∈ ℝd×d are projection matrices, and d  scales the dot product to 
prevent gradient vanishing. The attention weight matrix identifies graph components 
most relevant to the sequential context. For instance, in the review long battery life but 
slow charging, this module may strengthen graph edge weights between battery and long 
or charging and slow, while weakening secondary connections such as the syntactic edge 
for but. This alignment mechanism essentially performs semantic-guided feature 
reconstruction – sequence features, as high-level semantic abstractions, direct the graph 
structure to focus on task-relevant patterns. Conversely, graph features provide structural 
inductive biases to the sequential model, compensating for long-range dependencies 
potentially overlooked by local attention. In metaphor detection tasks like time flows like 
water, the metaphorical relationship relies on both the graph connection time-water and 
the sequential cue like, requiring synergistic integration. The final representation is fused 
via residual connection: 

final Attention( , , )Gh h Q K V= +  (16) 
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The residual structure preserves raw information integrity while allowing cross-modal 
signal injection through attention-based refinement, avoiding semantic distortion during 
fusion. 

To optimise fusion stability, the model introduces a gradient modulation mechanism. 
During backpropagation, gradients for graph and sequence features are dynamically 
scaled: 

graph graph seq seq, (1 )g λ g g λ g= ⋅ = − ⋅  (17) 

where 2 2(|| || / || || )Gλ σ h s=  and σ is the Sigmoid function. This design stems from a key 
observation: when graph feature norms significantly exceed sequence norms such as 
syntactic dependencies in legal texts, increasing λ prioritises structural learning; 
conversely, when sequence norms dominate such as poetic word order, updates focus on 
sequential features. This adaptive balance prevents single-modality dominance, ensuring 
progressive synergy during training. For example, in scientific literature classification, 
initial reliance on sequence features for term recognition gradually transitions to graph-
based concept networks, with λ naturally decreasing to promote equilibrium. 

To retain cross-block semantic dependencies, a cross-block attention mechanism is 
adopted when processing long texts in blocks. When constructing the graph structure of 
each text block, it is allowed for the nodes at the block boundaries to establish 
connections with the corresponding boundary nodes in adjacent blocks, and information 
is transmitted through these connections in the message passing stage of the GNN, 
thereby modelling the semantic associations across blocks. 

The multimodal fusion module outputs hfinal as the classifier input, maintaining 
dimensionality consistency with original features to avoid the curse of dimensionality 
while maximising information density. This design transcends the physical 
concatenation, logical separation limitation of traditional methods, achieving chemical 
fusion through gated selection, attention-driven alignment, and gradient modulation. 
DGCL-TC model architecture was shown as Figure 1. 

Figure 1 DGCL-TC model architecture (see online version for colours) 
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This multi-level synergy creates a unified yet flexible representation space, capable of 
parsing complex topologies while capturing poetic imagery sequences, demonstrating 
robust cross-domain generalisation. 

4 Experimental setup and baseline comparisons 

To comprehensively validate the performance advantages and generalisation capabilities 
of the DGCL-TC model, this chapter systematically constructs experimental 
environments, datasets, and baseline comparisons, ensuring rigorous and reproducible 
evaluation processes. The experimental design follows the principles of  
multi-dimensional coverage and multi-scenario validation, examining the model’s 
adaptability across diverse data modalities – from general classification tasks and  
long-text processing to noise robustness testing. 

The experiments were conducted on an NVIDIA A100 GPU cluster, with each GPU 
equipped with 40GB of memory and 256GB of RAM to support efficient parallel 
computation for large-scale graph data. The software framework was implemented using 
PyTorch 1.12 and the Deep Graph Library (DGL) 0.9, with syntactic dependency parsing 
handled by Stanford CoreNLP 4.5. The BERT-base-uncased model served as the 
pretrained language model for parameter initialisation. Datasets were selected to balance 
domain diversity and task complexity. For general scenarios, the MR movie review 
dataset and Reuters news datasets (R8 and R52) were used, where R52 includes 52  
fine-grained categories to test the model’s ability to distinguish semantically similar 
classes. Long-text scenarios adopted the IMDB movie review dataset, with an average 
text length exceeding 500 words to validate the model’s efficiency in capturing  
cross-paragraph semantic relationships. Noise robustness testing involved custom 
datasets such as Noise-20%R8(N-20R8), which injects 20% erroneous dependency 
edges, and Adv-TextGCN (A-TGCN), dataset of adversarial samples generated via 
gradient inversion, to simulate real-world low-quality data environments. The adversarial 
samples in the A-TGCN dataset are designed to implement Misclassification attacks. The 
specific perturbation objective is: by applying tiny gradient perturbations, to make the 
model generate incorrect category predictions for the modified samples. Specific 
statistical information for the dataset is shown in Table 1. 
Table 1 Specific statistical information on the dataset 

Database Number of 
texts 

Training 
set 

Validation 
set 

Word list 
size 

Average words 
length 

Number of 
categories 

MR 10,662 7,463 1,066 2,133 20 2 
R8 7,674 5,385 767 1,522 120 8 
R52 9,100 6,370 910 1,820 130 52 
IMDB 50,000 35,000 5,000 10,000 500 2 
N-20R8 7,262 5,385 767 1,522 120 8 
A-TGCN 7,674 4,953 768 1,941 120 8 

The baseline models were carefully selected to represent four pivotal methodological 
paradigms, ensuring a focused yet comprehensive comparison. Traditional sequence 
modelling is anchored by BERT-base, a pre-trained language model benchmark, to 



   

 

   

   
 

   

   

 

   

   62 Y. Cao    
 

    
 
 

   

   
 

   

   

 

   

       
 

validate the necessity of introducing graph structures beyond sequential context. GNNs 
are represented by TextGCN, a classical approach utilising global word co-occurrence 
graphs, to contrast static versus dynamic graph construction strategies. Contrastive 
learning is exemplified through GraphCL, a generic graph contrastive framework, 
highlighting the superiority of task-aware augmentation over its task-agnostic 
counterpart. Finally, multimodal fusion is embodied by BERT+GCN, a straightforward 
concatenation of sequential and graph features, against which our refined fusion 
mechanism demonstrates its value. This curated selection eliminates redundancy while 
preserving methodological diversity, enabling precise attribution of performance gains to 
DGCL-TC’s innovations in dynamic topology modeling and semantics-guided learning. 

Evaluation metrics focused on both primary task performance and robustness. 
Accuracy(Acc) and macro-F1 score were used to measure classification effectiveness, 
while robustness was quantified through performance decay rate (ΔAcc) under noisy data 
and attack success rate (ASR) for adversarial samples. Hyperparameters were carefully 
tuned to balance generalisability and task compatibility: a fixed learning rate of 2e-5, a 
dynamically adjusted contrastive loss weight λ based on batch feature similarity, and an 
annealed Gumbel-Softmax temperature τ that decreased from 0.1 to 0.01 to progressively 
refine the balance between exploration and exploitation. 

The training strategy prioritised reliability and efficiency. Five-fold cross-validation 
was applied to eliminate data-split bias, with early stopping (patience = 10 epochs) to 
prevent overfitting. The contrastive pre-training phase ran for 50 epochs to learn 
generalised representations through self-supervised objectives, followed by a 30-epoch 
classification fine-tuning phase where BERT parameters were frozen while optimising 
the graph and fusion modules. All experiments were repeated three times, with standard 
deviations controlled below 0.3% to ensure statistical significance. For long-text 
processing, sliding windows with a maximum length of 256 tokens were employed, and 
cross-window context was propagated via attention mechanisms to maintain semantic 
coherence. Adversarial dataset generation adhered to strict perturbation constraints, 
limiting modifications to ≤10% of the original embedding space’s L2 norm to ensure 
stealthiness while preserving detectability. 

By establishing a rigorous evaluation framework and diverse baselines, this chapter 
provides a robust foundation for subsequent performance analysis. The emphasis on noise 
scenarios and cross-domain adaptability underscores the model’s practical relevance in 
real-world applications, where data complexity and variability are inherent challenges. 

5 Experimental results and analyses 

This chapter verifies the performance advantages of the DGCL-TC model through multi-
dimensional experiments, analyses the main task accuracy, robustness, interpretability 
and other metrics, and explores the potential and limitations of the model for practical 
applications. 

The comparison of the evaluation index of the accuracy rate, the experimental 
comparison effect is shown in Figure 2. 
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Figure 2 Experimental comparison effect (see online version for colours) 
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Across the MR, R8, and R52 general classification datasets, DGCL-TC achieves 
comprehensive accuracy superiority, primarily due to the synergistic effects of dynamic 
graph construction and multimodal fusion. In the R52 fine-grained classification task, 
traditional graph models like TextGCN use fixed window sizes to build global  
co-occurrence graphs, which fail to capture long-distance, low-frequency term pairs such 
as carbon tariffs and trade barriers. DGCL-TC dynamically expands contextual scope 
through an adaptive window strategy, where the window size is set to the floor value of 
the logarithm of the input text length plus one. For long texts exceeding 150 words, the 
window automatically expands to 15, significantly increasing the edge weights of  
low-frequency terms to an average of 0.68, compared to TextGCN’s 0.21. 
Simultaneously, syntactic dependency graphs enforce the retention of core grammatical 
structures such as subject-verb-object relationships, compensating for the noise 
sensitivity of statistical co-occurrence graphs. This dual-graph synergy achieves a  
Macro-F1 score of 83.2% on R52, a 7.0% improvement over TextGCN’s 76.2%, 
demonstrating the necessity of integrating structured and statistical semantics. While 
BERT-base benefits from pretrained contextual representations, its masked language 
modeling objective inherently prioritises high-frequency semantic patterns, leading to 
inadequate representation learning for tail categories such as quantitative easing and 
negative interest rates. DGCL-TC addresses this bias through contrastive learning and 
dynamic graph-based low-frequency pattern capture, elevating tail-class F1 scores to 
72.5%. 

In the IMDB long-text classification task, DGCL-TC achieves a significant accuracy 
of 91.3%, surpassing BERT-base’s 88.7% and BERT+GCN’s 89.4%. This advantage 
stems from cross-paragraph graph aggregation and refined sequence-graph alignment 
strategies. BERT models are constrained by a maximum input length of 512 tokens, 
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truncating critical semantic information in IMDB’s average 500-word reviews, such as 
concluding evaluative statements. DGCL-TC employs a chunking strategy with 256 
tokens per chunk and cross-chunk attention to preserve long-range dependencies. 
Additionally, the gated attention mechanism dynamically suppresses noise edges caused 
by parsing errors, such as misidentified modifier relationships, reducing parsing error 
impacts from 12% in TextGCN to 5%. Experimental results show that noise edges in 
IMDB receive an average attention weight of 0.18, while valid edges achieve 0.79, 
confirming the efficacy of gated filtering. The contrastive learning module further 
enforces global semantic coherence through graph-level consistency constraints, 
elevating the paragraph coherence index from 0.73 for BERT-base to 0.82. 

On the noisy dataset N-20R8 and adversarial dataset A-TGCN, DGCL-TC 
demonstrates strong robustness with accuracies of 87.9% and 84.5%, respectively. Its 
defense mechanisms operate through two channels: First, the sparse distribution of gated 
attention coefficients effectively filters noise edges. In N-20R8, the 20% randomly 
injected erroneous dependency edges receive an average weight of 0.14, while valid 
semantic edges retain weights above 0.75. Second, the contrastive learning module 
implicitly aligns node embeddings between purified and original graphs via label 
propagation. On A-TGCN, the cosine similarity between perturbed and original node 
embeddings reaches 0.89, compared to 0.67 for GraphCL, thereby suppressing 
adversarial attack propagation. Further analysis reveals that the gradient modulation 
mechanism dynamically balances the update intensity of graph topology and sequential 
features. When adversarial attacks reduce graph feature norms by 23%, the mechanism 
automatically increases the gradient weight of sequence features to prevent perturbation 
diffusion through graph structures. 

DGCL-TC’s minimal accuracy drop of 1.9% on N-20R8, compared to 6.4% for 
BERT-base and 8.7% for TextGCN, arises from its adaptive window strategy. In noise-
injected regions such as randomly inserted company-climate edges, the window size 
contracts automatically based on local semantic density, reducing invalid connections. 
Simultaneously, gated attention softly prunes low-confidence edges via bilinear 
transformation and nonlinear activation, suppressing noise edge weights to 0.14. In 
adversarial scenarios, contrastive loss implicitly enforces label distribution consistency 
between perturbed and original graphs, lowering the Jensen-Shannon divergence from 
0.24 for GraphCL to 0.12 and reducing adversarial success rates to 18.6%. The 
robustness metrics are shown in Table 2. 
Table 2 Comparison of robustness metrics 

Model N-20R8 accuracy drop 
(%) 

A-TGCN adversarial 
success rate (%) 

IMDB parsing error 
suppression rate (%) 

BERT-base 6.4 41.3 12 
TextGCN 8.7 43.2 38 
GraphCL 3.5 36.8 22 
BERT+GCN 4.1 38.5 18 
DGCL-TC 1.9 18.6 85 

The following ablation experiments will further analyse the extent to which the different 
components of the DGCL-TC model affect classification accuracy based on R52. The 
results were shown as Table 3. 
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Table 3 R52 ablation results 

Model variant Accuracy (%) Accuracy drop 
vs. full model (%) 

Tail-class F1 
decline (%) 

DGCL-TC full model 85.6 - - 
Remove syntax graph 82.1 3.5 12.3 
Remove adaptive augmentation 83.4 2.2 9.8 
Remove gradient modulation 84.0 1.6 7.5 
Remove gated attention 81.9 3.7 14.2 

Removing syntax graphs causes a 3.5% accuracy drop on R52 and a 12.3% decline in 
tail-class F1. Fine-grained classification heavily relies on grammatical constraints. For 
example, distinguishing whether interest rate functions as a subject or object requires 
explicit dependency edge modelling, which co-occurrence graphs alone cannot capture. 
Fixed augmentation strategies lead to a 9.8% tail-class F1 decline. DGCL-TC assigns 
conservative augmentations such as reduced node dropout to tail classes via learnable 
augmentation selectors, avoiding critical semantic node loss. Disabling gradient 
modulation amplifies performance disparities between syntax-dominated tasks and  
word-order-dependent tasks by 12.3%. The dynamic weight mechanism automatically 
adjusts update rates based on feature norm ratios, narrowing the gap to 4.1%. 

Figure 3 Trend of model inference time with text length (see online version for colours) 
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In zero-shot cross-domain transfer, BERT parameters remain frozen to preserve 
generalised linguistic knowledge, while the graph fusion module and contrastive view 
generator are retrained on target domains. Domain adaptation employs KL-divergence 
regularisation to align feature distributions between source and target corpora. In  
zero-shot cross-domain transfer tests, DGCL-TC achieves 78.5% accuracy on the unseen 
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Amazon product review dataset, outperforming BERT+GCN’s 62.1% by 16.4%. Its 
generalisation capability stems from dynamic graph construction adapting to  
domain-specific statistical patterns. For instance, emerging co-occurrences like battery 
life and durability in e-commerce reviews are automatically captured, whereas static 
graph models like TextGCN fail due to fixed windows. Additionally, contrastive learning 
enhances semantic consistency in the representation space, mitigating domain-induced 
distribution shifts. On a medical report dataset, DGCL-TC attains 92.7% accuracy with 
only 10% labelled data for fine-tuning, demonstrating parameter efficiency and rapid 
adaptability critical for real-world applications with annotation constraints. 

Experimental results demonstrate that DGCL-TC exhibits significant time efficiency 
advantages across varying text lengths, particularly excelling in long-text processing 
scenarios. Trend of model inference time with text length was shown as Figure 3. 

For short texts (20 words), the model achieves a per-sample inference time of  
12.3 milliseconds, slightly higher than BERT-base’s 9.8 milliseconds but notably faster 
than TextGCN’s 22.1 milliseconds and BERT+GCN’s 18.5 milliseconds. This difference 
primarily stems from the lightweight design of dynamic graph construction – while the 
adaptive window strategy introduces additional computational overhead, the gated 
attention mechanism reduces redundant aggregation operations by approximately 40% 
through sparse weight filtering of irrelevant neighbour nodes, thereby offsetting partial 
costs. 

As text length increases to 300 words, DGCL-TC’s inference time grows gradually to 
35.6 milliseconds, whereas BERT-base’s time surges to 92.4 milliseconds due to the 
quadratic complexity of self-attention, and TextGCN reaches 78.9 milliseconds owing to 
memory inflation from static adjacency matrices. Here, DGCL-TC’s chunking strategy 
begins to demonstrate its efficacy. This design not only avoids the truncation-induced 
information loss in BERT but also significantly lowers memory consumption, enabling 
the model to process 500-word texts in 68.2 milliseconds – 53% faster than BERT-base’s 
145.3 milliseconds. 

Notably, TextGCN fails to execute on 500-word texts due to memory overflow 
caused by global adjacency matrices, exposing the inherent scalability limitations of 
static graph models. In contrast, DGCL-TC achieves efficient full-scale processing from 
short to long texts through synergistic optimisation of dynamic graph construction and 
chunked computation. Although contrastive pretraining increases training time by 
approximately 15%, the rapid convergence during fine-tuning improves overall training 
efficiency by 20%, reflecting a balanced design. Future work could explore model 
distillation or adaptive chunk length strategies to further reduce inference latency, 
providing enhanced solutions for real-time text processing systems. 

In order to quantitatively evaluate the fusion alignment effect of graph structure 
features and BERT sequence features, the average cosine similarity between these two 
heterogeneous modal feature vectors within the fusion module before generating the final 
representation was calculated. The experimental results show that the proposed gated 
attention and cross-modal alignment mechanism have achieved average cosine 
similarities of 0.83, 0.79 and 0.76 respectively on the MR, R52 and IMDB datasets. As a 
comparison benchmark, the simple feature Concatenation method only achieved 
similarities of 0.62, 0.58 and 0.51. The fusion method effectively shortens the distance 
between graph features and sequence features in the representation space, achieving 
better modal alignment. 
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DGCL-TC’s superior performance across general classification, long-text processing, 
and noisy adversarial scenarios validates the efficacy of its core designs: dynamic graph 
construction, semantics-aware contrastive learning, and multimodal gated fusion. 
Ablation studies quantify module contributions, while robustness analyses reveal 
adaptability in complex data environments. Future research may explore lightweight 
dynamic graph construction and parsing error-tolerant mechanisms to enhance real-time 
performance and domain generalisation. 

6 Conclusions 

This paper proposes DGCL-TC, a text classification model based on dynamic dual-graph 
construction and semantics-aware contrastive learning, which addresses the limitations of 
traditional methods in word-order modelling, rigid graph structures, and noise robustness. 
The dynamic graph construction integrates adaptive window strategies with syntactic 
dependency graphs to balance local co-occurrence patterns and global grammatical 
constraints. The semantics-aware contrastive learning framework employs learnable 
augmentation generators and multi-scale loss functions to enhance adaptability to sparse 
data and adversarial perturbations. Gated attention and gradient modulation mechanisms 
achieve deep alignment and balanced optimisation of graph-sequence features. 
Experiments demonstrate that the model significantly outperforms baselines in accuracy, 
robustness, and cross-domain transferability across general classification, long-text, and 
noisy scenarios. Notably, it reduces performance degradation to 1.9% on the noisy 
dataset N-20R8 and suppresses adversarial success rates to 18.6% on A-TGCN, 
validating its practical applicability. 

Despite these advancements, several directions merit further exploration. First, the 
model’s reliance on dependency parsers may introduce cumulative errors. Future work 
could explore end-to-end syntactic modelling via self-supervised learning to minimise 
external parser dependencies. Second, computational efficiency in long-text processing 
requires improvement. Lightweight dynamic graph construction algorithms such as 
locality-sensitive hashing indexing could reduce real-time inference latency. Third, the 
current contrastive learning objective does not explicitly model inter-class semantic 
relationships. Knowledge graph-guided contrastive strategies could enhance 
discriminative power for fine-grained classification. Additionally, extending the model to 
multilingual and multimodal scenarios, such as image-text hybrid classification, 
represents a promising research frontier. 

This study provides a robust and precise solution for text classification tasks. Its core 
designs – dynamic graph construction and task-aware contrastive learning – can be 
extended to recommendation systems, knowledge graph completion, and other scenarios, 
demonstrating broad academic value and application potential. 
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