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Abstract: Acoustic noise recognition of ancient buildings is crucial for the 
protection and study of ancient buildings, but the traditional methods have 
problems such as insufficient feature extraction and weak generalisation ability 
in complex scenes, which are ineffective for noise recognition. Therefore, this 
paper proposes an acoustic noise recognition method for ancient buildings 
based on space time joint processing and deep learning, which utilises space 
time joint processing to pre-process acoustic signals and extract effective 
features, and then classifies and recognises them through a deep learning 
model. Experiments show that the method shows excellent performance in 
terms of recognition accuracy and robustness, providing new ideas and 
effective means for the recognition of acoustic noise of ancient buildings, 
which helps to better protect and study ancient buildings. 
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1 Introduction 

As a precious heritage of human civilisation, ancient buildings embody rich historical and 
cultural significance. In the realm of ancient building preservation and research, the 
maintenance of the acoustic environment is of paramount importance. However, with the 
development of modern society, ancient buildings face the threat of various acoustic 
noises, such as those generated by tourism activities, neighbouring construction and 
changes in the natural environment (Gibbs, 2010). These noises not only affect the 
tourists' visiting experience, but also may potentially harm the structure and artefacts of 
the ancient buildings themselves. Therefore, it is important to accurately identify and 
analyse the acoustic noise of ancient buildings in order to develop effective protection 
measures. Traditional acoustic noise identification methods mainly rely on a single  
time-domain or frequency-domain analysis, and these methods have achieved some 
results in simple environments. However, in complex acoustic scenarios of ancient 
buildings, traditional methods have many limitations (Zhu et al., 2023). On the one hand, 
there are various sources of acoustic noise in ancient buildings, including anthropogenic 
noise, natural noise, and mechanical noise inside the building, etc. Various types of noise 
are intertwined with each other in the time and frequency domains, which makes it 
difficult for the traditional methods to accurately differentiate and recognise different 
noise sources. On the other hand, the acoustic environment of ancient buildings has 
unique spatial and temporal characteristics, for example, the spatial structure of the 
building, building materials, and air flow and other factors have an impact on the 
propagation of noise, and the traditional method fails to take these spatial and temporal 
factors into account, resulting in a lack of recognition accuracy and robustness (Jiang  
et al., 2019). 

In recent years, deep learning techniques have made significant progress in the field 
of pattern recognition and classification, providing new ideas for solving complex 
acoustic noise recognition problems. Acoustic recognition takes a segment of acoustic 
samples as input, and analyses the features of the input signal in order to classify and 
identify the identity of the speaker. There have been significant advancements in the field 
of voiceprint recognition and speech processing. Yang et al. (2016) proposed a method 
for temperament accuracy assessment and intelligent processing based on voiceprint 
recognition, which enhanced the accuracy of traditional voiceprint recognition in the 
presence of environmental noise and vocal variations. Li et al. (2020) introduced an 
adaptive threshold algorithm based on OTSU and deep learning to address internal and 
external speaker similarity value and threshold calculation issues in open-set speech 
recognition, thereby improving recognition accuracy. During the same period, Yao et al. 
(2021) developed a streamer voice recognition method for live broadcasts based on 
RawNet-SA and gated recurrent units (GRUs). By integrating self-attention mechanisms 
and GRUs, this method effectively boosted the efficiency of streamer voice feature 
extraction and aggregation, demonstrating great potential in real-time voice recognition 
applications. Khdier et al. (2021) designed a speech recognition system for noisy 
environments based on deep learning algorithms. They implemented RW-CNN methods 
using convolutional neural networks (CNN) based on MFCC features and raw 
waveforms, achieving a remarkable recognition accuracy rate of 96%. This research 
highlighted the effectiveness of deep learning in handling complex noise conditions. 
Kunjir (2022) proposed a dual-path attention mechanism and weighted clustering domain 
loss to enhance speaker and emotion recognition accuracy. Furthermore, a critical 
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enhanced loss function was introduced to tackle training efficiency challenges, providing 
new insights into optimising the training process of recognition models. Barakat et al. 
(2024) assessed the accuracy of speech recognition systems designed using Euclidean 
distance functions and genetic algorithms. Their study found that incorporating genetic 
algorithms significantly elevated recognition rates and decision-making speed, indicating 
the advantages of hybrid algorithms in improving recognition performance. In terms of 
speech separation and noise reduction, Zhang et al. (2024) proposed a two stages network 
method for voice devices, achieving speech separation and noise-echo reduction for 
specific speakers in noisy and echoic conditions. Its innovation lies in the cascaded 
structure of attention mechanisms and temporal convolutional networks (TCNs). In 
speaker verification, Jin et al. (2023) presented a single channel speech separation based 
network combined with MFCCT features to enhance accuracy in multi speaker scenarios. 
The innovation is integrating the speech separation model with the speaker verification 
task, evaluating separation quality through downstream task accuracy. As for real-time 
speech processing, Zhou et al. (2024) utilised distributed acoustic sensing technology 
with the MFCC method to achieve real-time speech reproduction and recognition, 
proposing an accurate and fast processing approach. These studies contribute to the 
development of speech recognition and processing technologies, offering references for 
the research on acoustic noise recognition of ancient buildings. 

Deep learning models are able to automatically learn complex features and patterns in 
the data with strong nonlinear fitting capabilities. Meanwhile, the space time joint 
processing technique takes into account the correlation of acoustic signals in the time and 
space dimensions, and is able to capture the characteristic information of noise more 
comprehensively (Li et al., 2020). Among various deep learning models, support vector 
machine (SVM) is chosen for its effectiveness in classification tasks with  
high-dimensional data and strong generalisation ability, while CNN is utilised for its 
powerful feature extraction and learning capabilities, which are crucial for handling the 
complex acoustic noise in ancient buildings. Based on this, this paper proposes an 
acoustic noise recognition method for ancient buildings based on space time joint 
processing and deep learning. First, the acoustic signal is pre-processed using space time 
joint processing to extract the space time features of acoustic noise, fully considering the 
complexity of the acoustic environment of ancient buildings. Then, the extracted features 
are input into the deep learning model for training and classification, and the powerful 
learning capability of deep learning is utilised to achieve accurate recognition of different 
noise types. Through experimental verification, the method has excellent performance in 
terms of recognition accuracy and robustness, providing a new technical means for the 
recognition of acoustic noise in ancient buildings. 

The main innovations and contributions of this work include: 

1 This paper introduces the space time joint processing technology to break through 
the limitation of the traditional acoustic noise identification method that only relies 
on a single time domain or frequency domain analysis. By simultaneously mining the 
correlation characteristics of acoustic signals in the time and space dimensions, the 
temporal and spatial characteristics of various types of noise sources in the acoustic 
environment of ancient buildings are accurately captured, which lays the foundation 
for the application of spatial-temporal joint processing technology in the field, and 
effectively improves the feature extraction accuracy. 
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2 In the face of the complexity and diversity of the acoustic noise of ancient buildings, 
this paper optimises the deep learning model. Design a reasonable network structure 
and parameter configuration, so that the model accurately learns and recognises 
acoustic noise features to improve classification accuracy. At the same time, data 
enhancement and regularisation techniques are used to enhance the generalisation 
ability of the model, ensure its stable recognition under different environmental 
conditions, and improve the adaptability of the model. 

3 This paper innovatively integrates space time joint processing and deep learning 
techniques. Space time joint processing provides space time feature extraction 
capability, deep learning automatically learns feature complex patterns, and the 
combination of the two enables the model to comprehensively and accurately analyse 
the acoustic noise of ancient buildings, realising efficient and accurate recognition. 
Compared with the traditional single means, the fusion method significantly 
improves the accuracy, robustness and adaptability, expanding the scope of 
application of the technology. 

2 Relevant technologies 

2.1 Space time adaptive processing technology 

The joint space-time processing technique, which originated in radar signal processing, 
laid the foundation for space time adaptive processing (STAP), and this concept was 
introduced by Klemm (1999). The primary goal of STAP is to leverage both temporal 
and spatial dimensions of signal information to enhance target detection and recognition 
performance. With the development of acoustic signal processing, this technique has 
been gradually introduced into the field of acoustics, especially in the noise processing in 
complex acoustic environments, showing unique advantages. In the recognition of 
acoustic noise in ancient buildings, the space-time joint processing technology collects 
acoustic signals through multiple acoustic sensors in different spatial locations at the 
same time, forming multi-channel data, which contain signal changes in the time domain 
and also reflect the differences in acoustic characteristics in different spatial locations. By 
analysing these multi-channel data, the technique can effectively capture the temporal 
variations and spatial distribution of noise sources, which is crucial for improving the 
accuracy of feature extraction. The simultaneous consideration of time and space 
dimensions allows for a more comprehensive representation of the noise characteristics, 
enabling better differentiation between various noise types in the complex environment 
of ancient buildings. The joint air-time adaptive processing technique is a joint 
processing of the time series (time) output from multiple beams (air). In active sonar, the 
array spatial response characteristics and variability of reverberant, interfering and 
desired signals are deeply analysed, and a single pulse is used to realise the joint spatial 
and temporal processing. The specific method is to introduce the complex analysed signal 
first, and then carry out the segmentation processing, and finally establish the minimum 
variance distortionless response (MVDR) spatial and temporal joint processing model 
(Dai et al., 2016). The MVDR spatial and temporal joint processing model is able to 
accurately extract specific types of noise signals from the complex acoustic environment, 
such as extracting the interior of ancient buildings from the background noises of the 
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tourists' conversations and the ambient wind noises, and so on. The MVDR model can 
accurately extract specific types of noise signals from complex acoustic environments, 
for example, the structural vibration noise inside ancient buildings from the background 
noise such as tourists' conversations, environmental wind noise, etc., so as to provide 
more accurate acoustic information for the protection and maintenance of ancient 
buildings (Shaw et al., 2021). 

Let the number of receiving array elements be N, the vectorial azimuth angle between 
the target and the receiving array be Ψ, the waveform of the transmitted pulse signal be 
denoted as s(t), and the echo signal received at the nth array element be: 

( )( , ) Δ ,nx n t s t τ τ f= − −  (1) 

where Δτn is the time difference of each array element relative to the reference array 
element, f is the Doppler shift, and τ is the echo arrival time. 

Aligning the scanning angle Ψ, each array element first receives the data x(n, t) with a 
time delay Δτn, introduces an auxiliary signal all the way orthogonal to the output time 
series of each array element, and constructs the resolved signal: 

( , ) ( , ) [ ( , )]y n t x n t jH x n t= +  (2) 

Similarly, the resolved signal of the transmit signal of the lth Doppler channel is 
constructed, the resolved signal of the transmit signal after Doppler frequency shift 
compensation: 

{ }( , ) [ ( )] [ ( )]l lz l k D s k H D s k= +  (3) 

In both equations, H denotes the Hilbert transform and Dl denotes the frequency shift 
transform of the lth Doppler channel. In order to obtain a stable and full-rank covariance 
matrix estimation, the signal time sampled data is divided into M segments, each segment 
contains K sampling points, and M takes a value of a magnitude that should guarantee a 
stable estimation of the correlation between each array element and each data segment. 
The transmissionisation of the lth Doppler channel of the constructed beam is given as: 

' *

1 1

(Ψ ) ( , ) ( , ) ( , )
N M m K

l l
n m k m

B w n m y n k z l k
+

= = =

=  (4) 

where wl is a complex weight vector in the spatial and temporal domains. The output 
power is: 

2
2' *

1 1

(Ψ ) (Ψ ) ( , ) ( , ) ( , )
N M m K

l l l
n m k m

P B w n m y n k z l k
+

= = =

′= =   (5) 

where, y(n, k)z*(l, k) denotes the complex space-time correlation of the received signal 
with the matched signal of the lth Doppler channel, which is a complex constant for the 
desired signal component. Let the signal and noise (non-expected signal) correlation 
coefficients be zero, i.e., uncorrelated, from which constraints can be introduced: 

1 1

( , )
N M

l
n m

w n m M
= =

=  (6) 
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Under this constraint, the Pl(Ψ) output is minimised by adjusting the weight vector, i.e., 
the output power of the noise is minimised under the condition of guaranteeing that the 
desired signal passes all the way through. Thus for a given beam Ψ′ and Doppler channel, 
the joint airtime white adaptation processing can be expressed as the following 
constrained optimisation problem: 

{ }
( , )

1 1

min (Ψ )

. . ( , )

l
lw n m

N M

l
n m

P

S
s t w n m

= =

′
= 




 (7) 

Further considering the output of multiple Doppler channels, the Doppler channel with 
the largest output can be finalised by the following equation: 

{ }
( , )

1 1

min (Ψ )

max
. . ( , )

l
lw n m

N M
l

l
n m

P

S
s t w n m

= =

′
= 




 (8) 

2.2 Theoretical foundations of deep learning 

Neural network technology imitates the structure and function of neurons in the human 
brain, and is used for efficient information processing and pattern recognition. The first 
model was constructed by McCulloch and Pitts in 1943, and has been continuously 
developed and improved since then, which mainly consists of convolutional layers, 
activation functions, fully connected layers, normalisation layers and other key 
components. In the field of acoustic noise recognition of ancient buildings, neural 
networks are capable of deep learning and accurate classification of acoustic features 
after joint processing in space and time, thus realising efficient recognition of acoustic 
noise (Tang and Sun, 2023). The optimisation of the deep learning model is based on 
extensive experimentation and validation. The number of hidden layers and nodes is 
determined by evaluating the model's performance on a validation set, aiming to balance 
complexity and avoid overfitting. Parameters such as the learning rate and regularisation 
terms are tuned using grid search and cross-validation to enhance convergence and 
generalisation. This systematic approach ensures the model's effectiveness in recognising 
acoustic noise in ancient buildings. 

Convolutional layer is a basic structure in the neural network, through the sliding 
convolution kernel and the input data correlation operation, the local depth features of the 
input data extraction. The convolutional layer used in this paper is a one-dimensional 
convolutional layer, for an input vector 1,Lx ×∈  the output 1Ly ×∈  of a  

one-dimensional convolutional layer, which has a convolutional kernel 1,mw ×∈  the 
computational process can be expressed as follows. 

1

0

( ) ( ) ( ) , 0
m

k

y i w k x k i i L
−

=

= − ≤ < ′  (9) 
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where m is the size of the convolution kernel, which is satisfied without input padding  
L = L–m + 1. The convolution kernel 1,mw ×∈  is a learnable parameter that is optimised 
with the gradient descent algorithm trained on the dataset. When the channel feature 
dimension size of the input and output is not 1, for a one-dimensional convolutional layer 
with an input vector L cx ×∈  and an output L cy ×∈  with a convolutional kernel 

1,mw ×∈  the computational process can be expressed as: 

( ) ( )
1

'

0

, ( ), 0
C

j j j
k

y c w c k x k c C
−

′

=

′ ′= ≤ <   (10) 

where denotes the mutual correlation operation process. When the convolution kernel 
size is taken as m = 1, the convolution operation at this point is called point-by-point 
convolution; when the input feature map is grouped for convolution operation and the 
number of groups is the same as the number of input channels C, the convolution 
operation at this point is called deep convolution. 

The activation function is a crucial component in neural networks, enabling a 
nonlinear mapping between inputs and outputs, which endows the network with the 
ability to model complex relationships. It also restricts the output values to a specific 
range (Demir et al., 2020). The Sigmoid activation function, widely used in neural 
networks, confines output values between 0 and 1. As the input x approaches positive 
infinity, g(x) tends to 1, while it approaches 0 as x heads toward negative infinity. This 
function enhances the network's nonlinear fitting capability by mapping neuron outputs to 
the (0, 1) range. However, due to its derivative being close to 0 for input values far from 
0, excessive use of Sigmoid can lead to gradient cumulants during backpropagation, 
resulting in gradient dispersion. 

1( ) , ( ) ( )(1 ( ))
1 xg x g x g x g x

e−= ′ = −
+

 (11) 

The ReLU activation function, one of the most widely used nonlinear activation 
functions, was introduced to address the vanishing gradient problem in deep neural 
networks. ReLU outputs the input directly if it is positive; otherwise, it outputs zero. This 
design not only enhances the network's nonlinear fitting capability but also mitigates the 
gradient vanishing issue that occurs in the Sigmoid activation function due to the 
cumulative multiplication of gradients. However, when the input value is negative, the 
derivative of ReLU is zero, which can hinder efficient gradient updates and potentially 
lead to the dying ReLU problem. 

0, 0 0, 0
( ) , '( )

, 0 1, 0
x x

g x g x
x x x

< < 
= = ≥ ≥ 

 (12) 

The GLU activation function, introduced by Google in 2017, is a gated mechanism that 
selectively filters input signals through a gating process, enhancing model generalisation. 
This function splits the input into two parts, applying a sigmoid activation to one part to 
gate the other. The computational expression for GLU is shown in equation (13), where 

1kx ×∈  is a vector of real numbers, and x1, x2 2 1,x ×∈  σ(⋅), are the Sigmoid activation 
functions. 
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[ ]1 2 1 2( ) ( ,) ;GLU x x σ x x x x= =  (13) 

The SoftMax activation function converts a real vector 1kx ×∈  into a probability 
distribution. In classification tasks, SoftMax converts the model's output vector into a 
probability distribution across categories. The category with the highest probability is 
then selected as the model's predicted classification result. The calculation procedure of 
SoftMax is shown in equation (14). 

( )
( )1

0

exp
( )

exp
i

i k
jj

x
softmax x

x
−

=

=


 (14) 

The fully connected layer is a fundamental component in neural networks, where each 
input neuron is connected to each output neuron. It performs a linear transformation of 
the input vector into a new feature space, followed by a nonlinear activation function to 
enable complex modelling. For a fully connected layer with an input vector 1Mx ×∈  
and an output 1,Ny ×∈  which has a weight matrix N MW ×∈  and a bias vector 

1,Nb ×∈  the computational process can be expressed by matrix operations as: 

( )y g Wx b= +  (15) 

where g(⋅) is the activation function chosen, the weight matrix W and the bias vector b are 
the learnable parameters, optimised with the gradient descent algorithm trained on the 
dataset. 

Excessive deviation in data or feature distribution can complicate model training, 
hinder convergence, or even trigger gradient vanishing or explosion. Introducing a 
normalisation layer can mitigate these issues by reducing the likelihood of gradient 
vanishing or explosion in neural networks. This not only simplifies the training process 
but also accelerates convergence. Additionally, normalisation enables the model to adapt 
to features of varying magnitudes and scales, thereby enhancing its generalisation ability 
and reducing the risk of overfitting. For an input N dx ×∈ , whose feature dimension size 
is d, x can be expressed as x = {x0, x1, x2, …, xd–1}, where 1, 0N

ix i d×∈ ≤ < . The layer 
normalisation of x feature dimension is performed as follows: 

( ) ( )
1 1

2

0 0

1 1,
d d

i i i
i i

μ x σ x μ x μ
d d

− −

= =

= = − −    (16) 

The input data x feature dimensions are then normalised to obtain the output x̂ : 

2
ˆ i

i
x μx
σ

−=
+ ∈

 (17) 

∈ = 10–6 is likewise a minimal value. The normalised data x̂  is then scaled and translated 
in the feature dimension: 

ˆi iy γx= + β  (18) 

The final input to the LN is obtained as { }0 1 1, , , , N d
dy y y y y ×

−= … ∈ . 
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3 Acoustic noise identification method for ancient architecture 

3.1 Mel frequency 

A sound signal can be viewed as being generated by a source excitation through a linear 
system of sound channels, and in speech signal processing, a speech signal is considered 
to be a random signal through a linear system such as: 

( ) ( ) * ( )y n x n h n=  (19) 

where y(n) is the speech signal, x(n) is the source excitation, and h(n) is the impulse 
response of the vocal tract, the speech signal can be described as the convolution of the 
source excitation and the vocal tract's impulse response. 

In acoustics, pitch is a measure of how high or low a sound appears to the human ear. 
There’s a nonlinear relationship between pitch and frequency. As frequency increases, 
pitch initially rises but at a decreasing rate. This means that while higher frequency 
sounds have higher pitch, the perceived increase in pitch slows down as frequency 
continues to rise. This is due to the physiological structure of the cochlea; the basilar 
membrane in the cochlea can perceive different frequencies, and the resonance points on 
the basilar membrane are proportional to the distance from the cochlear aperture, which 
creates a nonlinear relationship between the pitch perceived by the human ear and the 
frequency of the sound. In order to describe this nonlinear relationship, the Mel 
frequency was introduced, and the unit of pitch was specified as Mel (Shan et al., 2022). 
the Mel frequency has a nonlinear correspondence with the sound frequency, and the 
distance from the resonance point on the basilar membrane to the cochlear aperture is 
proportional to the sound frequency of its corresponding sound frequency, so the Mel 
frequency can reflect the pitch level. 

( ) 2595lg 1
700

fMel f  = + 
 

 (20) 

where f is the sound frequency and Mel(f) is the Mel frequency. 
The Mel Cepstrum coefficients (MFCC) are based on the Mel frequencies and are 

proposed in conjunction with cepstrum analysis. The calculation of the MFCC utilises a 
Mel filter bank to simulate the nonlinear properties of the human ear (Deng et al., 2020). 
Because each band component acts superimposed in the human ear, it is also necessary to 
superimpose the energy within each filter band, so the Mel filter bank is designed as a set 
of filters superimposed on each other, the simplest of which is the interleaved rectangular 
filter, which treats each frequency component equally but in reality does not have the 
same effect on different frequency components (Zhu et al., 2017). A triangular filter 
weights the different frequency components, giving different weights to the different 
frequency components. The parameters of the triangular filter bank include the lower 
limit frequency fl, the upper limit frequency fh, and the centre frequency fm. In the Mel 
filter bank, the lower limit frequency of a filter serves as the upper limit frequency of the 
preceding filter, while the upper limit frequency acts as the centre frequency of the 
subsequent filter. For the l-th filter in the Mel filter bank, let the lower limit frequency, 
upper limit frequency, and centre frequency be denoted as fl(i), fh(i) and fm(i), 
respectively, so that the Mel filter bank can be expressed as: 
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( ) ( ) ( )
( ) ( )

1 2
1 2

1 0
( )

( )
( )

l m h

h m l

l

h max

f i f i f i
f i f i f i
f
f L f

= − = −
 = + = +
 =
 =

 (21) 

where L is the total number of filters and fmax is the highest frequency of the signal.  
Due to the nonlinear and masking effects of human ear hearing, when the low 

frequency end, Mel frequency and sound frequency are roughly linear, while at the high 
frequency end Mel is logarithmic; at the low frequency end the critical bandwidth is 
linear with the centre frequency, and at the high frequency end it is nonlinear with the 
centre frequency. In the design of the Mel filter bank, the centre frequencies of the filters 
in the low-frequency range are distributed linearly, while at the high-frequency end, the 
relationship between the centre frequency and the filter index is exponential. Its 
frequency response is: 

( )

( )

0, ( 1)
( 1) , ( 1) ( )

( 1)
( ) , 0 1

( 1) , ( ) ( 1)
( 1)

0, ( 1)

m

m
m m

m m
m

m
m m

m m

m

k f i
k f i f i k f i

f i f i
H k i M

f i k f i k f i
f i f i

k f i

≤ −
 − − − ≤ ≤
 − −= ≤ ≤ − + − ≤ ≤ +
 + −


> +

 (22) 

where M is the number of Mel filters and the centre frequency 
( ) ( )1

1( ) .
1

h l
m

s

B f B fNf B B f m
f M

−  − = +    +  
 

3.2 Noise classification methods 

SVM is a classical machine learning method known for its simple construction, strong 
learning ability, and good generalisation performance. Its core idea is to map low-
dimensional sample features to high-dimensional space using a kernel function, 
leveraging the advantages of high-dimensional space to solve classification difficulties in 
the low-dimensional feature space (Blanco et al., 2022). This process involves finding the 
optimal hyperplane in the high-dimensional space that maximises the margin between 
different data samples. Suppose the data samples are (xi, yi), i = 1, 2, …, N, N is the 
number of samples, and the feature vector xi∈Rn. The category label is yi, yi∈{–1, 1} 
which represents two different classes respectively (Li et al., 2018). Then we need to find 
a classification surface wTx + b = 0 can distinguish the data of the two classes of samples, 
and make the interval between these two classes of samples the maximum, i.e., yi(wTx + 
b) ≥ 1, i = 1, 2, …, N. And the classification interval of the two classes of samples is  
d = 2/||w||, to make the classification interval distance d maximum, equivalent to the 
minimum of , that is, to find the minimum value of ||w||2 or ||w||2/2, then the optimal 
hyperplane solution equations can be transformed into the optimal problem with 
constraints to be solved. 
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Solve for the minimum value using Lagrangian: 

( )2

1

1( , , ) 1
2

N

i i i
i

L w a b w a y wx b
=

 = − + −   (24) 

Find the partial derivatives of w and b for L(w, a, b) and make them equal to 0, 
respectively, and then follow the KKT complementarity condition: 
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 (25) 

3.3 Acoustic noise identification model for ancient buildings 

In the field of acoustic noise recognition of ancient buildings, facing the complex and 
changing acoustic environment and a wide variety of noise sources, the traditional single 
recognition method is often limited by low accuracy and insufficient robustness. In view 
of this, this paper innovatively proposes a recognition method framework based on space 
time joint processing and deep learning, aiming to give full play to the advantages of each 
technology to realise efficient and accurate recognition of acoustic noise of ancient 
buildings. First of all, to overcome the problem of inconspicuous target noise features and 
complex interference components in the original acoustic signals, MVDR spatial joint 
processing model is introduced to pre-process the acquired multi-channel acoustic 
signals. MVDR, with its powerful spatial filtering capability, can effectively enhance the 
target acoustic features, weaken the background noise and interference, and provide a 
clearer basis for analysing the acoustic features after the spatial joint processing. Then, 
using Mel frequency feature extraction technology, the pre-processed acoustic signal is 
converted to the Mel frequency domain, taking full account of the auditory characteristics 
of the human ear, highlighting the more recognisable feature components in the acoustic 
signal, so that the subsequent feature learning is more targeted. On this basis, the  
MFA-conformer network integrates Mel-frequency Cepstral coefficients with the 
conformer model. The conformer model's combination of convolution and self-attention 
mechanisms allows it to capture both local and global features of the audio signals. This 
network takes the Mel-frequency features extracted from the spatiotemporal processing 
as inputs. The convolution layers in the conformer capture local patterns, while the  
self-attention layers model long-range dependencies. This dual approach enables the 
network to comprehensively analyse the acoustic noise characteristics. On this basis, with 
the powerful feature learning capability of CNN, the deep complex patterns and 
associations in the acoustic features are automatically extracted, and the abstract 
representation of the features is gradually extracted by CNN through convolutional 
layers, pooling layers and other operations, and finally the mapping of feature vectors is 
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realised through the fully-connected layer. The feature vectors extracted by the CNN are 
fed into the SVM classifier, enabling precise classification of various noise types and thus 
completing the task of recognising the acoustic noise of ancient buildings. This method 
framework provides a new method for the recognition of acoustic noise of ancient 
buildings through the integration of multiple technologies, and its specific flow is shown 
in Figure 1. The connection between the steps is seamless, with data transferred directly 
from one stage to the next. Specifically, the pre-processed multi-channel audio signals 
from the MVDR model are first converted into Mel-frequency features. These features 
are then fed into the CNN, where they undergo convolution and pooling operations to 
extract deeper feature representations. The resulting feature vectors are subsequently 
transferred to the SVM classifier for final noise type identification. This streamlined data 
transfer ensures that each step builds upon the previous one, maintaining the integrity and 
continuity of the recognition process. 

Figure 1 Framework diagram of acoustic noise identification method for ancient buildings  
(see online version for colours) 
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4 Experimental results and analyses  

In the field of acoustic noise recognition of ancient buildings, in the face of the complex 
and changing acoustic environment and a wide variety of noise sources, the traditional 
single recognition method is often limited by low accuracy and insufficient robustness. 
To verify the effectiveness of the proposed noise recognition method for ancient 
buildings, this study conducts a series of experiments. A 3-layer RBM is employed to 
explore the impact of different hidden layer nodes on the results. Except for the number 
of hidden layer nodes, other parameters of the DBN are kept constant. The data 
augmentation methods used in this study include adding background noise and varying 
the speed of audio recordings. The regularisation technique is implemented using L2 
regularisation with a weight decay parameter of 0.0001. Specifically, the network's loss 
function is set to the cross-entropy loss function, with a learning rate of 1e-3. The dropout 
rate is 0.12. The hidden layer uses a sigmoid activation function, while the output layer 
employs a softmax activation function. The network undergoes 30 iterations, utilising a 
small batch stochastic gradient descent algorithm with a batch size of 32. In the RBM 
training phase, the initial learning rate is 1e-3, and the number of iterations is 10. The 
parameter of the contrast-scattering algorithm is set to 1. The network weights are 
initialised randomly through a normal distribution with a standard deviation of 

( )2 / v hn n+ , where nv represents the number of visible layer nodes and nh denotes the 
number of hidden layer nodes. Then set the number of nodes in the hidden layer 
separately, in this paper we set the number of nodes in the hidden layer as 300-200-100, 
500-300-200, 750-500-250, 1000-500-250, 1200-600-300, 1500-750-350, 1800-900-450, 
2000-1000-500 for experiments. The experimental data is collected from multiple ancient 
building sites, capturing various noise sources such as construction noise, vehicle engine 
noise, and conversational voices. These sounds vary in intensity, frequency, and 
propagation patterns due to the unique spatial structures and materials of ancient 
buildings. 1000-500 are experimented and the results are shown in Table 1 and Figure 2. 
Table 1 Recognition rate of urban environmental noise with different numbers of hidden layer 

nodes in DBN 

Noise type 1 2 3 4 5 6 7 8 
Construction 
noise 

97.79 98.53 97.79 97.06 99.26 97.06 97.79 97.55 

Whistle sound 99.80 99.80 99.49 99.80 99.59 99.49 99.69 99.49 
Vehicle engine 
noise 

92.20 92.88 93.90 92.88 94.24 92.88 92.88 94.35 

Rumor 97.47 96.69 95.53 96.50 95.33 96.69 96.30 94.68 
Music sound 99.34 99.78 99.56 99.34 99.67 99.67 99.01 99.71 
Conversational 
voice 

99.08 99.39 96.32 99.40 99.69 98.47 99.16 99.08 
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Figure 2 Recognition rate of urban environmental noise with different numbers of hidden layer 
nodes in DBN (see online version for colours) 

 

As the number of hidden layer nodes increases, the model's recognition accuracy for 
acoustic noise in ancient buildings initially rises gradually, then fluctuates after reaching 
a peak. This suggests that when the number of hidden layer nodes reaches a certain level, 
the model can better capture the complex features of acoustic noise and improve 
recognition performance. However, when the number of hidden layer nodes is too high, 
the recognition accuracy of some noise types may fluctuate or even slightly decrease. 
This could be due to overfitting, where the model overlearns the noise features in the 
training data, reducing its generalisation ability on test data. Overall, the number of 
hidden layer nodes significantly impacts model performance. A moderate number of 
nodes can balance model complexity and generalisation ability, achieving higher 
recognition accuracy. In contrast, too few or too many nodes may lead to decreased 
model performance. 

In order to study whether the number of RBM iterations affects the classification 
results of urban acoustic signals, this paper analyses the effect of 1~50 iterations of 
experiments on the recognition of urban environmental noise, which are set respectively 
during the unsupervised training of the RBM, where the number of RBM iterations of the 
experiments are 1, 5, 10, 20, 30, and 50. Based on the aforementioned experimental 
outcomes, the hidden layer parameters of the Deep Belief Network are configured to 
1500-750-350, while all other parameters remain constant. The corresponding results are 
presented in Table 2 and Figure 3. 
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Table 2 Recognition rate of urban environmental noise with different RBM iteration times 

Noise type 1 5 10 20 30 50 
Construction noise 99.31 99.21 99.51 99.51 99.51 99.51 
Whistle sound 97.79 99.26 96.32 97.79 96.32 99.26 
Vehicle engine noise 92.88 89.15 95.25 94.58 91.86 94.24 
Rumor 94.94 96.11 95.33 97.67 97.28 96.30 
Music sound 99.89 99.67 99.45 99.45 99.89 99.56 
Conversational voice 98.16 99.69 99.08 98.16 96.01 99.39 

Figure 3 Recognition rate of urban environmental noise with different RBM iteration times  
(see online version for colours) 

 

Through the above experiments, it is found that the best result is achieved when the 
number of RBM iterations is 10, but it can also be seen that DBN is not sensitive to the 
number of RBM iterations in the classification of acoustic noise recognition of ancient 
buildings. 

5 Conclusions 

In this paper, we propose an innovative method that integrates space time joint processing 
and deep learning for the difficult problem of acoustic noise recognition of ancient 
buildings. Traditional noise recognition means are not precise enough for feature 
extraction in complex scenes, and the generalisation ability is insufficient. In this study, 
acoustic signals are processed finely through space time joint processing, and their space 
time correlation features are mined in depth, and then accurate classification and 
recognition is realised with the powerful ability of deep learning models. The 
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experimental results strongly prove the effectiveness and superiority of the method, 
which shows good robustness under different environmental conditions. This not only 
provides strong technical support for the acoustic protection of ancient buildings, but also 
opens up new ideas and methods in the field of cultural heritage protection, which can 
help to carry out the maintenance and repair of ancient buildings more scientifically and 
revitalise them in the modern society, and at the same time, the method has a certain 
degree of universality, which can be a useful reference for the recognition of noise in 
other complex acoustic environments. 
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