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Abstract: In order to overcome the problems of poor obstacle avoidance  
path selection, low success rate, and long time in traditional methods, a new 
obstacle avoidance path selection method for autonomous vehicles based on 
multi-dimensional data mining is proposed. The method employs the K-means 
algorithm to process multi-sensor data (including visual cameras, LightLaser 
Detection and Ranging (LiDAR), global positioning system (GPS), and traffic 
flow) for environmental data collection in autonomous vehicles. Based on the 
collected data and constraints, a target function for obstacle avoidance path 
selection of unmanned vehicles is constructed. The optimisation function is 
solved using the whale optimisation algorithm (WOA), and the optimal 
solution obtained is the obstacle avoidance path selection scheme for unmanned 
vehicles. Experimental results show that the proposed method for autonomous 
vehicle lane changing has a relatively large angle and short path, without 
collision problems. The maximum success rate of obstacle avoidance path 
selection is 98.56%, and the minimum time is 0.44 s. 

Keywords: multi-dimensional data mining; autonomous vehicles; obstacle 
avoidance path selection; K-means algorithm; objective function; killer whale 
hunting algorithm. 
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1 Introduction 

With the rapid development of artificial intelligence and automation technology, 

autonomous vehicles have gradually become a hot topic in the automotive industry and 

intelligent transportation system research (Qin et al., 2023). One of the core technologies 

of autonomous vehicles is autonomous navigation, in which obstacle avoidance path 

selection is a crucial part of the autonomous driving process of autonomous vehicles. It 

requires the vehicle to detect and identify obstacles ahead in real time, including static 

obstacles (such as road construction, parked vehicles, etc.) and dynamic obstacles (such 

as pedestrians, other vehicles, etc.), and based on this information, quickly plan a safe 

and feasible driving path (Mamak and Glanc, 2022; Zhou et al., 2022). The selection of 

obstacle avoidance paths is not only related to the safety and efficiency of autonomous 

vehicles, but also the key to their stable operation in complex and changing 

environments. The research on obstacle avoidance path selection can significantly 

improve the safety of autonomous vehicles. By perceiving and predicting obstacles in 

real-time, vehicles can make obstacle avoidance decisions in advance, avoiding collisions 

with obstacles and ensuring the safety of passengers and other traffic participants (Wang 

et al., 2024). Not only that, but it can also reduce the waiting time and delays of 

unmanned vehicles during driving, and improve traffic efficiency. Especially during peak 

hours and on congested roads, autonomous vehicles can utilise more intelligent obstacle 

avoidance strategies to find more efficient driving paths, alleviate traffic pressure, 

promote the overall development of intelligent transportation systems, and achieve more 

intelligent, efficient, and sustainable modes of transportation. Therefore, researching 

obstacle avoidance path selection methods for autonomous vehicles is of great 

significance. Through intelligent path selection and obstacle avoidance planning, 

autonomous vehicles can more effectively utilise road resources, reduce traffic 

congestion, and improve overall travel efficiency. Obstacle avoidance path selection is 

one of the core components of autonomous driving technology, and related research can 

promote the continuous progress and improvement of autonomous driving technology, 

laying the foundation for future intelligent transportation systems. 

Autonomous vehicles require real-time and accurate perception of surrounding 

environmental information, including road structure, obstacle location, traffic flow, etc. 
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This requires advanced sensor technology and efficient data processing algorithms to 

support. In order to overcome the limitations of traditional methods, a series of new 

obstacle avoidance path selection algorithms have emerged in recent years. Huo and 

Wang (2024) proposed an obstacle avoidance path selection method for autonomous 

vehicles based on the cat swarm algorithm. Build a system error model that can be used 

to simultaneously search for trajectories and target positions, and design an obstacle 

avoidance path selection strategy based on this model. This strategy ensures the 

automatic update rate of online estimation while minimising the length of the path and 

avoiding collisions. By using a specific allocation strategy, the goal of minimising the 

maximum distance travelled is achieved, thereby ensuring the quality of obstacle 

avoidance path selection. However, in actual testing, it was found that due to the limited 

and incomplete data collected, this method has the problem of poor obstacle avoidance 

effect and a large gap between the expected goals. Zhang and Zhang (2022) proposed an 

obstacle avoidance path selection method for autonomous vehicles based on an improved 

ant colony algorithm. Use the grid method to establish a map model of the target 

vehicle’s operating environment. In this map model, the target vehicle is equipped with a 

laser rangefinder, which uses the trilateration method to locate the current position of the 

vehicle body. The A* algorithm is used to guide the search process of the basic ant 

colony algorithm, thereby improving it. After determining the position of the target 

vehicle, this position is set as the starting point. Then, the improved ant colony algorithm 

is used to search for the optimal obstacle avoidance path to the endpoint in the previously 

constructed environmental map, completing the obstacle avoidance path selection. 

However, after testing, it was found that due to the relatively single data collected, it is 

difficult to determine the true traffic status, resulting in a low success rate of obstacle 

avoidance path selection for this method, and the actual application effect is not good.  

Li (2024) proposed an obstacle avoidance path selection method for autonomous vehicles 

based on improved convolutional networks. Construct an accurate kinematic model of a 

vehicle and use it to describe the kinematic characteristics of autonomous vehicles during 

operation. The system detects the target position of obstacles on the road, continuously 

obtains various information of dynamic obstacle targets on the road, and makes 

predictions on the future position and speed of these obstacles. We use an improved 

convolutional network to calculate the loss function of the dynamic obstacle avoidance 

path for autonomous vehicles, which measures the gap between the planned obstacle 

avoidance path and the actual target path. Moreover, the artificial potential field method 

is used to assist in finding the minimum potential energy and obtaining the final obstacle 

avoidance path. Due to the relatively single and poor overall data collected, it is difficult 

to provide important data support for subsequent analysis. And the implementation 

process of this method is relatively complex, resulting in an increase in obstacle 

avoidance path selection time. 

A new obstacle avoidance path selection method for autonomous vehicles based on 

multi-dimensional data mining is proposed with the expected goal of solving the 

problems of poor obstacle avoidance path selection performance, low success rate, and 

long time in the above methods. This method introduces multidimensional data mining 

techniques, which can extract valuable information and patterns from massive amounts of 

visual cameras, LightLaser Detection and Ranging (LiDAR), global positioning system 

(GPS), and traffic data, providing data support for obstacle avoidance path selection. The 

technical route of this study is as follows: 
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1 The method employs the K-means algorithm to process multi-sensor data (including 

visual cameras, LiDAR, GPS, and traffic flow) for environmental data collection in 

autonomous vehicles. 

2 Based on the collected data and constraints, a target function for obstacle avoidance 

path selection of unmanned vehicles is constructed. The optimisation function is 

solved using the whale optimisation algorithm (WOA), and the optimal solution 

obtained is the obstacle avoidance path selection scheme for unmanned vehicles. 

3 The effectiveness, success rate, and duration of obstacle avoidance path selection for 

autonomous vehicles were selected as evaluation indicators to validate the practical 

application of this method. 

2 Design of obstacle avoidance path selection method for autonomous 
vehicles 

2.1 Data collection of autonomous vehicle environment based on multi-
dimensional data mining 

1 Visual camera 

Industrial cameras often have characteristics such as high speed, high resolution, and high 

sensitivity, making them suitable for industrial automation, machine vision, autonomous 

vehicles in industrial applications, and other industrial inspection applications. Compared 

with ordinary consumer-grade cameras, industrial cameras have better durability, 

reliability, and stability, a wider range of operating temperatures, and performance 

advantages such as resistance to dust, water, and earthquakes. The technical parameters 

of industrial cameras are detailed in Table 1. 

Table 1 Technical parameters of visual camera 

Technical parameter Parameter value 

Part number BFS-US–16S2C-CS 

Resolving power 1440 × 1080 

Display frame rate 226 

Pixel size 3.45 μm 

Interface USB 3.1 Gen 1 

Power requirements 8~24 V 

2 Laser LiDAR 

LiDAR can accurately calculate the distance between a target object and a vehicle by 

emitting a laser beam and measuring the time it takes for the laser to reflect back. The 

accuracy of this distance measurement is very high, reaching a precision of centimetres or 

even millimetres. For example, when measuring the distance to the vehicles in front, 

LiDAR can accurately determine the distance between two vehicles, providing accurate 

distance information for unmanned vehicles’ following, overtaking, and other operations 

(Matsushita et al., 2022; Wang et al., 2024). Compared to other sensors such as cameras, 
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Camera-based sensors mainly use image recognition to estimate the distance of objects. 

However, this method is easily affected by factors such as lighting, object shape, and 

texture, while the distance measurement of LiDAR is relatively independent of these 

factors and more stable and accurate. Select the multi harness Velodyne-VLP32 LiDAR 

for data acquisition, and its specific technical parameters are shown in Table 2. 

Table 2 Technical parameters of LiDAR 

Technical parameter Parameter value 

Sensor 32 channels 

Measure distance 200 m 

Field of view angle Vertical at 40°, water at 306° 

Rotation rate 5 ~ 20 Hz 

Wavelength 903 nm 

Working voltage 10.5 ~ 18 V 

Single echo About 600,000 points per second 

Double echo About 1.2 million points per second 

3 GPS 

GPS can provide precise latitude and longitude coordinates for autonomous vehicles, 

thereby which allows for the determination of their absolute position on the Earth’s 

surface. This is the foundation for navigation and path planning of autonomous vehicles. 

Compared with traditional map matching based positioning methods, GPS positioning is 

more direct and accurate. In areas without detailed maps or in which map updates are not 

timely, GPS can still determine the location of vehicles and provide basic location 

references for them (Jia, 2022). The working principle of the onboard GPS for 

autonomous vehicles is shown in Figure 1. 

Figure 1 Working principle of vehicle GPS 

 GPS Satellite (Space section)

Ground monitoring system (control part) On-board GPS receiver (User part)
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The car-mounted GPS device uploads the recorded vehicle driving data to the backend 

data management center through the communication network at regular intervals, and 

finally generates the GPS trajectory data of the vehicle. Each vehicle’s GPS data records 

the vehicle’s licence plate number, latitude and longitude coordinates, recording time, 

elevation, and other driving information in detail, which can provide important data 

support for obstacle avoidance path selection for unmanned vehicles (Qian et al., 2023). 

4 Traffic flow data 

Assuming D  represents the set of traffic flow data samples, D L  represents the 

number of road samples, 
iD  represents the flow data samples  ,i iD A V  monitored by 

one of the traffic roads,  1 2, , , mA a a a  represents the set of m  historical traffic flow 

time series datasets, and the length of each time series dataset needs to be pre-set. 
iV N  

represents the main feature set, and h  represents a certain road intersection. 
iD  records a 

total of 10 time units from the start of recording zero time to the end of recording. For 

each time series ia  of road iD , there are h  valid time points. Each valid time point can 

be recorded as 
 ,ai s

t , satisfying 
   , , 1ai s ai s

t t


  (Ma et al., 2020). 

If the unmanned vehicle environment data variable jkV  represents the flow value of 

the jth time series attribute at the kth time point, its function form can be expressed by the 

following formula: 

  ,1k
jk a

V f t  (1) 

Based on the above analysis, the kth time series of iD  can be represented by the 

following formula: 

        ,1 ,2 ,
 

k k k
ik a a a h

TS f t f t f t 
 

 (2) 

The time series corresponding to sample iD  of unmanned vehicle environment data can 

be represented in the form of a traffic local time series data matrix, and the specific 

calculation formula is as follows: 

  

  

  

  

  

  

  

  

  

2 2 2

,1 ,2 ,
1

21 ,1 ,2 ,

,1 ,2 ,

T    

k k k

n n n

i i ia a a h
i

i i i ia a a h

i

in

i i ia a a h

f t f t f t
TS

TS f t f t f t
S

TS
f t f t f t

 
  
  
   
  
  

   
  

 (3) 

5 Multi-dimensional data mining 

Assumption T  represents the preliminary clustering set formed by visual camera data, 

LiDAR data, GPS data, and traffic flow data, and k  represents the number of clusters. 

Run the K-means algorithm multiple times, by using different random initial centroids 

each time, and then select the clustering result with the minimum sum of squared errors 

(SSE) as the final solution. This method involves multiple attempts to find a better initial 

centroid. The DB value evaluates clustering performance by calculating the ratio between 
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the separation and compactness of each cluster. It calculates the ratio. The numerator of 

the ratio is the average distance from all points within each cluster to its centroid point. 

The denominator is the average distance between centroids of different clusters. The 

smaller the DB value, the better the clustering effect. Therefore, the optimal number of 

clusters can be determined by minimising the DB value. 

The multi-dimensional data mining process for unmanned vehicle environment based 

on K-means algorithm is as follows: 

Step 1: Calculate the centroid set  1 2, ... kM m m m  of the cluster based on T . 

Step 2: Randomly select k  feature vectors 
1 2, ... kx x x M  from M  as the initial 

clustering centers. 

Step 3: Use standardised Euclidean distance    
2

, 1

it jt

t

n m x

i j t s
d



   to calculate the 

distance from the n  dimensional centroid 
im  to each initial cluster center, and cluster the 

centroid into the nearest cluster to that point 
 ,

mini i j
j

c arg d . 

Step 4: Calculate the average coordinates of all points in each cluster and use this average 

as the new cluster center. The calculation formula is as follows: 

 

 
1

1

1

1

m

i ii

j m

ii

c j m
x

c j













 (4) 

Step 5: Repeat steps 3 and 4 until the clustering center no longer moves widely and 

satisfies the convergence criterion function  
2

1
,

i

m

i ci
J c x m x


  , and output the 

unmanned vehicle environment dataset ''T . 

The data preprocessing step is crucial when obtaining multidimensional data from 

various sensors such as data from visual cameras, LiDAR, GPS, and traffic flow sensors. 

The following is a detailed explanation of data synchronisation and calibration, outlier 

removal or denoising techniques, as well as feature extraction and selection processes: 

1 Data synchronisation and calibration 

For data from different sensors, such as data from visual cameras, LiDAR, and GPS, it is 

necessary to ensure that their timestamps are synchronised. This can be achieved by 

integrating a unified time reference in the data collection system, or using post-

processing software to align the data based on timestamps. In practical applications, 

LiDAR data contains key information such as the time when the laser is emitted and 

received, which can be used for time synchronisation with other sensor data. At the same 

time, GPS data usually contains timestamp information, which facilitates time alignment 

with other data sources. 

2 Data calibration 

Space calibration between sensors is another important step. Since the installation 

positions and angles of different sensors differ, they need to be spatially calibrated to 
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ensure data consistency in space. This typically involves using known physical markers 

or reference points to determine the relative position and angle between sensors through 

measurement and calculation. For visual cameras and LiDAR, spatial calibration can be 

achieved by capturing the same scene and matching feature points. For GPS data, it may 

be necessary to calibrate GPS data by combining map information and satellite signals. 

3 Outlier removal 

Outliers are mainly caused by sensor failures, data transmission errors, or environmental 

interference. In the data preprocessing stage, distance based methods are used to identify 

and remove these outliers. This method can select one or more suitable combinations 

based on the distribution characteristics of the data and actual application scenarios. 

4 Noise reduction technology 

Noise reduction technology is used to reduce noise and interference in data, which 

improves the accuracy and reliability of the data. For visual camera data, image filtering 

algorithms can be used to reduce image noise. For LiDAR data, Kalman filtering can be 

used to reduce noise interference. For GPS data, differential GPS technology or fusion of 

other sensor data can be used to improve positioning accuracy. 

5 Feature extraction and selection 

Feature extraction is the process of extracting key information from raw data that is 

useful for subsequent analysis. For visual camera data, image features such as edges, 

corners, and textures can be extracted. Similarly, for LiDAR data, laser features such as 

distance, angle, and reflection intensity can be extracted. Similarly, for GPS data, 

location features such as longitude, latitude, and velocity can be extracted. Similarly, for 

traffic flow data, traffic characteristics such as traffic flow, vehicle speed, and lane 

occupancy can be extracted velocity can be extracted; For traffic flow data, traffic 

characteristics such as traffic flow, vehicle speed, and lane occupancy can be extracted. 

Feature selection is the process of selecting the most useful subset of features for 

subsequent tasks from the extracted features. When selecting features, factors such as 

correlation, redundancy, interpretability, and computational efficiency need to be 

considered. Through feature selection, the model structure can be simplified, model 

performance can be improved, and the risk of overfitting can be reduced. 

In summary, this method utilises the K-means algorithm to mine multidimensional 

data such as visual cameras, LiDAR, GPS, and traffic flow, enabling the collection of 

environmental data for autonomous vehicles. This provides an important data foundation 

for subsequent obstacle avoidance path selection. 

2.2 Objective function for obstacle avoidance path selection of autonomous 
vehicles 

When we are identifying relevant features and using them to construct the objective 

function, the following points should be noted: 

1 Understanding business requirements: Firstly, it is necessary to clarify the business 

requirements and analysis objectives in order to determine which features are 

relevant to the objectives. 
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2 Feature engineering: Construct a subset of features related to the target by extracting 

and selecting features, and we perform appropriate feature scaling, normalisation, 

and other processing to improve the stability and performance of the model. 

3 Model construction: Select appropriate machine learning algorithms or deep learning 

models based on business requirements and data characteristics, and use the 

processed features as inputs to construct the objective function. 

4 Model evaluation and optimisation: Use cross validation, A/B testing, and other 

methods to evaluate and optimise the model to ensure its accuracy and reliability. 

Also need to pay attention to the overfitting and underfitting issues of the model and 

make appropriate adjustments and improvements. 

In the objective function of obstacle avoidance path selection for autonomous vehicles, 

acceleration cost is an indicator used to measure the cost or impact of acceleration 

changes when the vehicle travels along a potential path. Acceleration is a physical 

quantity that describes how quickly an object’s velocity changes. For autonomous 

vehicles, the magnitude and frequency of acceleration can affect various aspects such as 

driving comfort, safety, and energy consumption. In the path planning of autonomous 

vehicles, the acceleration cost needs to be included in the objective function to ensure 

that the planned path is the one that the vehicle can actually travel safely and stably. The 

calculation formula for acceleration cost is as follows: 

1 1
  

0 0

T

acc accC u u
 

  
 

 (5) 

In the formula, acc  represents the weight coefficient of acceleration, Tu  represents 

acceleration, and u  represents acceleration. 

For autonomous vehicles, in the objective function of obstacle avoidance path 

selection, the yaw angle cost is an indicator measuring the cost or impact of yaw angle 

changes when the vehicle travels along a specific path. Yaw angle refers to the angle 

between the longitudinal axis of a vehicle and its direction of travel, which reflects how 

much the vehicle steers during travel. The calculation formula for the cost of yaw angle is 

as follows: 

0 0
  

0 1

T

yaw yawC z z
 

  
 

 (6) 

In the formula, yaw  represents the weight coefficient of the yaw angle, 
Tz  represents the 

yaw angle, and z  represents the yaw acceleration (Hu et al., 2020). 

In the path planning of autonomous vehicles, the reference line is a pre-set ideal 

driving route. It is usually constructed based on map information (such as high-precision 

maps), including the basic geometric shape of roads, lane information, road boundaries, 

etc. The reference line provides a rough direction and path framework for the vehicle. 

Further process the results obtained from the mixed A* search that account for speed 

limit constraints, as shown in Figure 2, by directly discarding the trajectory points after 

the end of the speed limit zone. At the same time, we set the reference information of the 

last point on the planned trajectory as the information of the speed limit zone to ensure 

that the planned trajectory strictly complies with traffic regulations. 
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Figure 2 Schematic diagram of the reference line cost of time vs. its approach 
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The calculation formula for the reference line cost is as follows: 

   
T

ref ref ref ref refC x x Q x x    (7) 

The kinematic constraints of unmanned vehicles adopt a vehicle kinematic model based 

on the bicycle model, where the state quantity is , , ,
T

x yx p p v     , and the vehicle 

kinematic constraints are as follows: 

cos

sin

tan

v

v

x v

v

L







 
 
 

  
 
 
  

 (8) 

In the formula,   represents the front wheel steering angle, indicating that the kinematic 

model of autonomous vehicles is a nonlinear constraint. If the ILQR algorithm is used to 

linearise the state transition equation to handle this nonlinear constraint, the following 

relationship holds: 

     

 

,, , ,

,

ˆ
ˆ ˆ ˆ ˆ

ˆ
x u

x x
f x u f x u f x u

u u

x
f x u F

u


 



  
   

  


 
  

 

 (9) 

In the formula, x  and u  respectively represent the initial state quantity and control 

quantity of the unmanned vehicle system, and x̂  and û  respectively represent the current 

state quantity and control quantity of the unmanned vehicle system (Li et al., 2023). 

The obstacle avoidance constraints during the movement of autonomous vehicles are 

as follows: 
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    0h x h x   (10) 

In the formula,  h x  represents the geometric distance between the trajectory point and 

the origin (Ren and Liu, 2022),  h x  represents a continuously differentiable function, 

and  0,1   represents a constant. 

Based on the above analysis, the objective function for obstacle avoidance path 

selection of autonomous vehicles is as follows: 

 
0 1

1

,...,
0

min
2 2N

N
T

acc yaw ref k k
u u

k

Ch xx
J C C C cu r







  
     

  
  (11) 

In the formula, C  represents the quadratic coefficient matrix, c  represents the quadratic 

coefficient matrix, 
T

ku  represents the weight matrix of the unmanned vehicle state 

variables, and 
kr  represents the weight matrix of the unmanned vehicle control variables. 

In summary, by considering acceleration cost, reference line cost, vehicle kinematics 

constraints, obstacle avoidance constraints, etc., building an objective function for 

obstacle avoidance path selection of autonomous vehicles can provide an important 

foundation for subsequent analysis. 

2.3 Solution of obstacle avoidance path selection objective function based on 
killer whale hunting algorithm 

The objective function of obstacle avoidance path selection for autonomous vehicles is 

subject to multiple constraints, and the innovation of the killer whale hunting algorithm 

lies in its ability to effectively handle these complex constraints. Compared with 

traditional algorithms, it can integrate these constraints into optimisation mechanisms that 

mimic the behaviour of killer whale swarms, which makes the process of solving the 

problem more in line with the actual operating environment of autonomous vehicles and 

improves the feasibility of path selection. 
Assuming there are N  killer whales in the population, they can operate in one, two, 

or even multiple dimensions. Based on different numbers and dimensions of killer 

whales, a mathematical model is then constructed as follows: 

 

1,1 1,2 1,

2,1 2,2 2,

1 2

,1 ,2 ,

, , ,         

D

D

N

N N N D

x x x

x x x
X x x x

x x x

 
 
  
 
 
  

 (12) 

In the formula, X  represents the killer whale population corresponding to all obstacle 

avoidance path selection objective function candidate solutions, Nx  represents the 

position of the Nth killer whale individual corresponding to the candidate solution, and 

,N Dx  represents the position of the Nth killer whale in the Dth dimension. 

Abstracting the behaviour of killer whales communicating and driving away schools 

of fish through sonar as the chase phase of OPA. The chase phase is divided into two 

parts: driving away the fish swarm and surrounding the fish swarm, with parameters 1p  

and v set as random constants between [0,1]. When the random value is greater than 1p , 
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it will drive away the school of fish, otherwise it will surround the school of fish. When 

driving away a school of fish, killer whales need to drive it to the surface of the water. 

There are two situations based on the size of the school of fish. In the first situation, when 

the school of fish is small or the trapping space is relatively simple, killer whales can 

easily locate the school of fish. In the second scenario, when the school of fish is large or 

the enclosure space is complex, the killer whale population approaches the school of fish 

by having individual members take the lead and controls the position of the centre of the 

group to avoid deviation. Set a fixed parameter of q , use the first method when the 

random number is greater than q , otherwise choose the second method. In the stage of 

driving away fish schools, the speed and position update formula of killer whales is as 

follows: 

  ,1,

,2,

t t t t

chase i best i

t t t

chase i best i

v a d x F b M c x

v e x x

        


  

 (13) 

,1, ,1,

,2, ,2,

   

   

t t t

chase i i chase i

t t t

chase i i chase i

x x v if rand q

x x v if rand q

   


  

 (14) 

In the formula, a, b, and d represent random values between [0,1], e  represents random 

values between [0,2], 2F  , 0.9q  , 
t

bestx  represents the optimal position of the killer 

whale, and 
t

ix  represents the current position of the killer whale. 

When herding the school of fish, individual killer whales communicate with each 

other to determine their next position. The formula for adjusting the position of the killer 

whale at this time is as follows: 

 ,3, , 1, 2, 3,

t t t t

chase i k j k j k j kx x u x x     (15) 

In the formula, 1j , 2j  and 3j  represent three randomly selected different killer whales. 

After successfully surrounding the school of fish, the killer whales hunt and consume 

the fish in an orderly manner, and then returned to their original positions. The process of 

exchanging positions with the next killer whale is called the attack stage. The calculation 

formula for the position and speed of killer whales during the attack phase is as follows: 

 ,1, ,/ 4t t t t t t

attack i first second third four chase iv x x x x x      (16) 

, , 1 ,1, 2 ,2,

t t t t

attact i chase i attact i attack ix x g v g v      (17) 

In the formula, , , ,t t t t

first second third fourx x x x  represents the four best positioned killer whales, 

1g  represents a random number between [0,2], and 2g  represents a random number 

between [–2.5, 2.5]. Considering the behaviour of exchanging positions when killer 

whales attack, some of the weaker killer whales give up their positions to those with 

better positions, and there is a certain probability that the positions of other weaker killer 

whales will serve as a reference for determining the lower limit of a variable in the 

calculation. 

The convergence mechanism of the killer whale hunting algorithm in solving the 

objective function of obstacle avoidance path selection is a complex and sophisticated 
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process, involving the combination of global and local search, dynamic parameter 

adjustment, elite retention strategy, and diversity preservation mechanism. Through the 

joint action of these strategies, the algorithm can gradually approach and eventually 

converge to the optimal solution. The steps for solving the objective function of obstacle 

avoidance path selection based on the killer whale hunting algorithm are as follows: 

Step 1: Population initialisation. Determine population size N , dimension D , maximum 

number of iterations _Max iter , selection probabilities 
1p  and 

2p , upper and lower 

limits of search space lb  and ub , and initialise the killer whale population accordingly. 

Step 2: Calculate the fitness function. Evaluate the fitness function values of each killer 

whale and select the best individual and their location. 

Step 3: During the chase phase, killer whales use selection factor 
1p  to drive or surround 

the school of fish to complete the chase process. During this period, they use sonar to 

locate the school of fish and adjust their position. The killer whale updates its position 

according to the formulas (13)–(14). 

Step 4: During the attack phase, killer whales hunt by attacking schools of fish, and their 

position is updated using formulas (16)–(17). 

Step 5: Population update. After the attack phase, the killer whale population updated 

their positions, with some of them being replaced with lb . 

Step 6: Determine whether the current iteration count has reached the maximum iteration 

count. If it has not, terminate the loop and repeat the process of step 2 above. Otherwise, 

output the solution result of the objective function for obstacle avoidance path selection 

of unmanned vehicles. 

In summary, applying the killer whale algorithm to solve the objective function of 

obstacle avoidance path selection aims to obtain the optimal obstacle avoidance path 

selection scheme, laying an important foundation for the further development of obstacle 

avoidance theory for autonomous vehicles. The overall process of obstacle avoidance 

path selection for autonomous vehicles is shown in Figure 3. 

3 Experimental design 

3.1 Experimental scheme 

In order to verify the effectiveness of the obstacle avoidance path selection method for 

autonomous vehicles based on multi-dimensional data mining designed in this paper, 

relevant experiments were conducted. The specific experimental plan is as follows: 

1 Experimental subjects 

A specific type of autonomous vehicle was selected as the research object, and the 

technical parameters of the research object are shown in Table 3. 
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Figure 3 Overall process of obstacle avoidance path selection for autonomous vehicles 
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Using K-means algorithm for 

multidimensional data mining

Building an obstacle avoidance path selection 

objective function for autonomous vehicles

Determine multiple constraint 

conditions

Using killer whale hunting algorithm to solve the 

objective function

Obtain the optimal obstacle 

avoidance path selection scheme

End

 

Table 3 Technical parameters of experimental objects 

Technical parameter Parameter description 

Size 4490 × 2014 × 1980 mm 

Quality 2015 kg 

Peak power 228 kw 

Maximum climbing gradient 30% slope 

Charging performance Capable of fast charging 

Autonomous driving level L4 

The experimental scenario is shown in Figure 4. 

During the experiment, various experimental scenarios were set up to evaluate 

whether vehicles could travel efficiently and safely, avoiding unnecessary parking and 

waiting, in a low traffic density environment. In high-density traffic environments, the 

ability of vehicles to flexibly avoid obstacles, maintain a safe distance, and effectively 

respond to various emergencies is tested. We considered different types of obstacles, 

including static obstacles (such as buildings, trees, etc.) and dynamic obstacles (such as 

pedestrians, other vehicles, etc.), analysed the obstacle avoidance strategies of vehicles 

under different types of obstacles, and evaluated whether vehicles can effectively identify 

and avoid obstacles while maintaining the optimality of the driving route. While ensuring 

driving stability and safety, we evaluate whether the vehicle can maintain a stable driving  
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state and accurately identify and avoid obstacles ahead on straight roads, and test whether 

the vehicle can smoothly turn and avoid obstacles according to the road geometry on 

curved roads. 

Figure 4 Experimental scene (see online version for colours) 

 

2 Experimental data 

Using laser radar, cameras, millimetre wave laser radar, etc. to obtain relevant 

experimental data, and performing abnormal data removal and deduplication processing 

on the experimental data, providing an important data foundation for subsequent 

experimental verification. The types of data collected are as follows: 

1 Distance data: Distance measurement values from sensors such as LiDAR and 

millimetre wave radar, such as the distance between a vehicle and an obstacle, 

measured in metres. These data are continuous values used to determine the position 

relationship of obstacles. 

2 Speed data includes the vehicle’s own driving speed (obtained by GPS, IMU, or 

vehicle speed sensors), measured in metres per second or kilometres per hour, as 

well as the speed of the target object relative to the vehicle (obtained by millimetre 

wave radar). 

3 Angle data, including the angle of the target object relative to the vehicle measured 

by millimetre-wave radar, the angle information of each point in the LiDAR point 

cloud data, and the steering angle of the vehicle’s steering wheel, is measured in 

degrees or radians and is crucial for determining the vehicle’s travel direction and the 

relative orientation of obstacles. 

4 Image data: 2D or 3D visual image data obtained by a camera. Image data is a 

matrix composed of pixels, each with information such as colour (such as RGB 

values) and brightness. 

5 Lidar point cloud: Three-dimensional point cloud data obtained by scanning with a 

LiDAR. Point cloud data is a collection of a large number of discrete three-

dimensional point coordinates, each point containing x, y, z coordinate information, 

reflecting the spatial position of objects in the surrounding environment of the 

vehicle. 
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3 Experimental indicators 

The effectiveness of obstacle avoidance path selection, the success rate of obstacle 

avoidance, and the time required for obstacle avoidance path selection in unmanned 

vehicles were used as indicators to verify the practical application effects of the method 

in Huo and Wang (2024), the method in Zhang and Zhang (2022), and the proposed 

method. When we applied different methods to the obstacle avoidance path selection 

process of autonomous vehicles, it was found that there were no collisions with obstacles 

during the obstacle avoidance process and the paths were short, which indicates that  

these methods have good effects on obstacle avoidance path selection for autonomous 

vehicles. The success rate index of obstacle avoidance for autonomous vehicles is an 

important parameter for measuring their ability to successfully avoid obstacles  

during driving. It is the ratio of the number of successful obstacle avoidances to the total 

number of tests under specific testing conditions. The higher this value, the higher the 

accuracy of obstacle avoidance path selection. When exploring the effectiveness of 

obstacle avoidance path selection for human-driven vehicles, time index is a crucial 

factor. The time index typically refers to the total time that drivers need to perceive 

obstacles, make decisions, and execute obstacle avoidance operations when they 

encounter obstacles. A shorter time indicates a higher efficiency in obstacle avoidance 

path selection. 

3.2 Experimental result 

The obstacle avoidance path selection effects of unmanned vehicles under the application 

of three methods are shown in Figures 5–7. 

Figure 5 Obstacle avoidance path selection results of Huo and Wang (2024) method: (a) single 
obstacle and (b) multiple obstacles (see online version for colours) 
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Figure 6 Obstacle avoidance path selection results of Zhang and Zhang (2022) method: (a) single 
obstacle and (b) multiple obstacles (see online version for colours) 
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Figure 7 The obstacle avoidance path selection results of the proposed method: (a) single 
obstacle and (b) multiple obstacles (see online version for colours) 
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According to the analysis of the results in Figure 5, the obstacle avoidance process of 

unmanned vehicles using the Huo and Wang (2024) method has a small lane changing 

angle and a long path, so the obstacle avoidance process obstacle avoidance path 

selection is not good. From the analysis of the results in Figure 6, the lane changing path 

during the obstacle avoidance process of unmanned vehicles using the Zhang and Zhang 

(2022) method is relatively long, and collision problems occur in multiple obstacle 

scenarios, resulting in unsatisfactory obstacle avoidance path selection. Compared with 

the Huo and Wang (2024) method and Zhang and Zhang (2022) method, the proposed 

method has a larger lane changing angle and shorter path for unmanned vehicles, and no 

collision problems occurred, indicating that this method has good obstacle avoidance path 

selection effect. 
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The success rates of obstacle avoidance path selection for autonomous vehicles under 

three different methods are shown in Table 4. 

Table 4 Success rate of obstacle avoidance path selection 

Number of experiments 
Huo and Wang 

(2024) method/% 
Zhang and Zhang 
(2022) method/% Proposed method/% 

10 75.41 80.15 98.56 

20 71.27 84.78 97.48 

30 75.89 81.33 98.11 

40 69.74 85.64 97.18 

50 68.54 87.15 95.87 

60 74.18 83.33 97.48 

70 75.66 87.29 95.22 

80 74.13 79.68 98.47 

90 71.28 78.47 95.88 

100 76.39 77.45 97.91 

According to the results in Table 4, as the number of experiments increases, the success 

rates of obstacle avoidance path selection for unmanned vehicles using all three methods 

show a significant trend. Among these success rates, the maximum success rate of 

obstacle avoidance path selection for unmanned vehicles in the Huo and Wang (2024) 

method is 75.89%, and the Zhang and Zhang (2022) method is 87.29%. The proposed 

method is 98.56%, which is 22.67% and 11.27% higher than those in the Huo and Wang 

(2024) method and Zhang and Zhang (2022) method, respectively. The minimum success 

rate of obstacle avoidance path selection for autonomous vehicles using the Huo and 

Wang (2024) method is 68.54%, the Zhang and Zhang (2022) method is 77.45%. The 

proposed method is 95.22%, which is 26.68% and 19.77% higher than the Huo and Wang 

(2024) and Zhang and Zhang (2022) methods, respectively. After comparison, the 

proposed method has a higher success rate in obstacle avoidance path selection for 

autonomous vehicles and better practical application effects. 

The obstacle avoidance path selection time of unmanned vehicles under the 

application of three methods is shown in Table 5. 

According to the analysis of the data in Table 5, the maximum obstacle avoidance 

path selection time for the Huo and Wang (2024) method is 1.97 s, the Zhang and Zhang 

(2022) method is 2.54 s. The proposed method is 0.91 s, which is 1.06s and 1.63s lower 

than the Huo and Wang (2024) method and the Zhang and Zhang (2022) method, 

respectively. The minimum obstacle avoidance path selection time for unmanned 

vehicles in the Huo and Wang (2024) method is 1.06 s, the Zhang and Zhang (2022) 

method is 1.68 s. The proposed method is 0.44 s, which is 0.62 s and 1.24 s lower than 

those in the Huo and Wang (2024) method and the Zhang and Zhang (2022) method, 

respectively. After comparison, the proposed method has a shorter obstacle avoidance 

path selection time for autonomous vehicles, which can ensure that the autonomous 

vehicles can quickly complete the obstacle avoidance action. 
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Table 5 Obstacle avoidance path selection time 

Number of experiments 
Huo and Wang 
(2024) method/s 

Zhang and Zhang 
(2022) method/s Proposed method/s 

10 1.58 2.11 0.63 

20 1.24 2.45 0.55 

30 1.17 1.96 0.47 

40 1.06 1.68 0.86 

50 1.38 1.94 0.48 

60 1.69 2.13 0.91 

70 1.57 2.54 0.58 

80 1.31 2.17 0.47 

90 1.21 2.36 0.59 

100 1.97 2.18 0.44 

Based on the above analysis, the multidimensional-data-mining-based obstacle avoidance 

path selection method for autonomous vehicles has shown significant advantages. This 

method effectively mines multi-dimensional data from sources such as visual cameras, 

LiDAR, GPS, and traffic flow information through the K-means algorithm, enabling 

comprehensive environmental data collection for autonomous vehicles. On this basis, an 

objective function for obstacle avoidance path selection was constructed based on the 

collected data and constraints, and the optimal obstacle avoidance path selection scheme 

was obtained by solving the objective function using the killer whale algorithm, fully 

demonstrating the reliability and efficiency of this method in practical applications. This 

method pioneers the application of multidimensional data mining techniques in obstacle 

avoidance path selection for autonomous vehicles, achieving comprehensive collection 

and analysis of environmental data. At the same time, by constructing the objective 

function and using advanced optimisation algorithms for solving, this method can obtain 

more accurate obstacle avoidance path selection schemes. This innovation not only 

improves the safety of autonomous vehicles, but also provides strong technical support 

for the development of future intelligent transportation systems. The scientific 

significance of this method lies in its combination of multidimensional data mining and 

advanced optimisation algorithms, providing new ideas and methods for obstacle 

avoidance path selection of autonomous vehicles. By comprehensively collecting and 

analysing environmental data, this method can more accurately reflect the actual road 

conditions and make more reasonable obstacle avoidance decisions. In addition, the 

application of killer whale hunting algorithm makes the process of solving the problem 

more efficient and can obtain the optimal solution in a short period of time. 

The scalability of the multidimensional-data-mining-based obstacle avoidance path 

selection method for autonomous vehicles needs to be comprehensively considered when 

facing different traffic complexities and environmental challenges in the real world. In 

high-density traffic environments, algorithms need to swiftly and accurately process 

dynamic information, adapt to diverse traffic rules and driver behaviours, and cope with 

environmental challenges such as severe weather and complex road geometries. To 

reduce computational overhead, to ensure real-time algorithm response, optimisation 

algorithms and parallel computing techniques should be adopted. In terms of hardware, 
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high-quality sensor configurations and high-performance computing platforms are key to 

enhancing environmental perception and decision-making capabilities. In addition, 

algorithm optimisation strategies, including the incorporation of machine learning 

techniques, can bolster adaptability and robustness; Hardware upgrades, encompassing 

redundant design and fault detection mechanisms, aim to enhance system reliability and 

safety. Data fusion of multiple sensor information, as well as collaborative 

communication with other vehicles and transportation infrastructure, further optimises 

obstacle avoidance path selection. In this process, it is crucial to strengthen data security 

and privacy protection, comply with relevant laws and regulations, and ensure the safety 

and compliance of autonomous vehicles. In summary, expanding the multidimensional-

data-mining-based obstacle avoidance path selection method for autonomous vehicles 

requires comprehensive consideration of multiple factors such as algorithm optimisation, 

hardware upgrades, data fusion and collaboration, security and privacy protection. 

4 Conclusion 

The rapid development of autonomous vehicle technology results from technological 

advancements in multiple fields, including sensor technology, artificial intelligence, 

machine vision, control theory, etc. The integration of these technologies enables 

autonomous vehicles to perceive the surrounding environment in real time, understand 

traffic rules, predict the behaviour of other traffic participants, and make decisions based 

on the information gathered, achieving autonomous navigation and obstacle avoidance. 

Therefore, this paper proposes a new obstacle avoidance path selection method for 

autonomous vehicles based on multi-dimensional data mining. The experimental results 

show that the proposed method for autonomous vehicle lane changing has a relatively 

large angle and short path, without collision problems. The maximum success rate of 

obstacle avoidance path selection is 98.56%, and the minimum time is 0.44s. The 

obstacle avoidance selection results are reliable. This paper studies ways in which 

autonomous vehicles can better adapt to complex traffic environments, reduce the 

occurrence of traffic accidents, improve road traffic capacity, and offer safer, more 

convenient, and efficient transportation modalities to people. Although the 

multidimensional-data-mining-based obstacle avoidance path selection method for 

autonomous vehicles has shown great potential, it still faces the challenges of relying on 

high-quality sensor data and dynamic traffic scenarios. To overcome these limitations, 

future research directions should focus on incorporating more real-time adaptive 

functionalities, such as using advanced machine learning algorithms to augment vehicles’ 

abilities to comprehend and anticipate complex traffic environments, and 

comprehensively evaluating vehicle performance through extensive testing under varying 

climatic conditions, diverse road types, and different traffic density levels. At the same 

time, improving sensor data quality and fusion capabilities is also key, including 

enhancing sensor design to improve their adaptability to harsh environmental conditions, 

and optimising data fusion algorithms to integrate information from different sensors, 

thereby enhancing the accuracy and reliability of environmental perception. These efforts 

will collectively facilitate the continuous advancement and refinement of autonomous 

driving technology. 

 

 



   

 

   

   

 

   

   

 

   

    An obstacle avoidance path selection for autonomous vehicles 21    
 

    

 

   

   

 

   

   

 

   

       
 

Conflicts of interest 

All authors declare that they have no conflicts of interest. 

References 

Hu, C., Zhao, L., Cao, L., Control, M.P. and Observer, E.S. (2020) ‘Steering control based on 
model predictive control for obstacle avoidance of unmanned ground vehicle’, Measurement 
and Control, Vol. 53, Nos. 3–4, pp.501–518. 

Huo, N. and Wang, Y.Q. (2024) ‘Prediction and obstacle avoidance detection algorithm based on 
driverless’, Computer and Digital Engineering, Vol. 52, No. 2, pp.411–415. 

Jia, Z.C. (2022) ‘Vehicle obstacle avoidance path planning method based on deep data mining’, 
Advances in Transportation Studies, Vol. S2, No. 1, pp.12–22. 

Li, S.P. (2024) ‘Dynamic obstacle avoidance path planning method for autonomous vehicles based 
on improved convolutional networks’, New Technology and New Products of China, Vol. 3, 
No. 3, pp.15–17. 

Li, W., Wang, Y., Zhu, S.X., Chen, J.P., Guo, S.J., Ren, J.L. and Wang, D.B. (2023) ‘Path tracking 
and local obstacle avoidance for automated vehicle based on improved artificial potential 
field’, International Journal of Control, Automation, and Systems, Vol. 21, No. 5,  
pp.1644–1658. 

Ma, Y., Mao, Z., Wang, T., Qin, J. and Meng, X. (2020) ‘Obstacle avoidance path planning of 
unmanned submarine vehicle in ocean current environment based on improved firework-ant 
colony algorithm’, Computers and Electrical Engineering, Vol. 87, No. 1, pp.106773–106784. 

Mamak, K. and Glanc, J. (2022) ‘Problems with the prospective connected autonomous vehicles 
regulation: finding a fair balance versus the instinct for self-preservation’, Technology in 
Society, Vol. 71, No. 1, pp.1–7. 

Matsushita, T., Chida, Y. and Tanemura, M. (2022) ‘Obstacle avoidance path generation and 
following control for a vehicle-type weeder’, Proceedings of the Japan Joint Automatic 
Control Conference, Vol. 12, No. 1, pp.216–222. 

Qian, Y., Sun, H. and Feng, S. (2023) ‘Obstacle avoidance method of autonomous vehicle based on 
fusion improved A*APF algorithm’, Bulletin of the Polish Academy of Sciences. Technical 
Sciences, Vol. 71, No. 2, pp.15–26. 

Qin, H., Yu, B., Dun, Y. and Bai, Y. (2023) ‘Effect of cognitive experiences and attitudes on 
commuters’ travel choice behavior for autonomous vehicles’, Journal of Urban Planning and 
Development, Vol. 149, No. 2, pp.1–13. 

Ren, Y. and Liu, J. (2022) ‘Automatic obstacle avoidance path planning method for unmanned 
ground vehicle based on improved bee colony algorithm’, Jordan Journal of Mechanical 
and Industrial Engineering, Vol. 16, No. 1, pp.11–18. 

Wang, L., Jing, H., Zhong, G., Wang, J. and Wang, T. (2024) ‘Research on autonomous vehicle 
obstacle avoidance path planning with consideration of social ethics’, Sustainability (2071-
1050), Vol. 16, No. 11, pp.1–10. 

Wang, Y., Xing, Y. and Cong, Y. (2024) ‘Motion control of autonomous vehicles after a tyre blow-
out based on differential-flatness-MPC’, International Journal of Vehicle Design, Vol. 94, 
Nos. 3–4, pp.252–273. 

Zhang, X.Y. and Zhang, X.J. (2022) ‘Research on obstacle avoidance path selection of AGV based 
on improved ant colony algorithm’, Automation and Instrumentation, Vol. 21, No. 6,  
pp.52–56. 

Zhou, D., Ma, Z., Zhang, X. and Sun, J. (2022) ‘Autonomous vehicles’ intended cooperative 
motion planning for unprotected turning at intersections’, IET Intelligent Transport Systems, 
Vol. 16, No. 8, pp.1058–1073. 


