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Abstract: In this paper, an early warning system of cigarette process quality 
combined with intelligent sensing technology is proposed to improve the 
quality of cigarette process production. A PCA multi-block modelling 
algorithm based on autoencoder feature extraction is proposed to extract 
autoencoder features from each sub-block, and the statistics of all sub-blocks 
are fused by Bayesian inference to make the monitoring results more intuitive. 
Compared with the traditional PCA and AE-PCA detection methods, the  
AE-MPCA algorithm proposed in this paper improves the abnormality 
detection accuracy of the drum leaf drying production process, and realises the 
accurate alarm of quality abnormalities, thus providing technical support for the 
early warning of subsequent cigarette process quality. In the subsequent 
process of cigarette process quality control, the application scope of intelligent 
sensing technology can be further improved to promote the effect of cigarette 
process quality control. 

Keywords: intelligent perception; cigarettes; process quality; early warning. 
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1 Introduction 

In the tobacco manufacturing industry, from tobacco leaves to cut tobacco, cigarette silk 
making has formed a relatively perfect technological process. However, the traditional 
cigarette silk-making process requires high manpower, and there are many external 
factors affecting tobacco quality, which leads to the difficulty of tobacco quality control. 
The use of intelligent control can not only improve the accuracy of feeding, temperature 
control, material ratio and other work, but also effectively guarantee process quality 



   

 

   

   
 

   

   

 

   

   4 R. Zhang et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

through intelligent supervision. Therefore, it is very important to strengthen the research 
of intelligent control to promote the development of cigarette silk making technology. 

In the process of cut tobacco manufacturing, intelligent control can monitor the 
working conditions of different processes in real-time during the processing, such as 
colour humidity, cutting effect, etc., and detect the problems existing in cut tobacco 
manufacturing in time, so as to reasonably adjust the related work. Under intelligent 
control, for cut tobacco with different quality requirements, intelligent control can 
combine preset values to make different evaluations and feedbacks on the quality of cut 
tobacco in different production lines, so as to ensure that the problems existing in the 
quality of cut tobacco in different production lines can be found in time. Compared with 
the traditional manual inspection, the inspection effect and inspection efficiency of the 
inspection work under intelligent control are better (Chong, 2023). 

On the premise of applying intelligent control, it is necessary to upgrade and improve 
the cigarette silk making system in an all-round way, build an information base and 
install intelligent control device. These will have a direct impact on the silk making 
process and further improve the level of silk making process. In recent years, some 
tobacco processing and manufacturing enterprises have built intelligent control systems, 
used modern technology to replace traditional technology, and used intelligent 
technology to discover the problems existing in traditional technology and improve the 
technology, thus comprehensively promoting the upgrading of silk making technology. 
With the continuous upgrading and development of intelligent control technology, 
control technology will further promote the modernisation of tobacco quality control (Du 
et al., 2023). 

At present, intelligent control has been applied to the facilities and equipment of 
cigarette silk making. Through intelligent control of facilities and equipment, it can 
effectively ensure that operators know the operation of the equipment at the first time and 
realise automatic adjustment and control. Intelligent control of facilities and equipment is 
the prerequisite for achieving precise control. In the intelligent control of cigarette silk 
making field equipment, it is necessary to prepare the hardware facilities required for 
intelligent control, including on-site distributed control box, sensor detection mechanism 
equipment and power distribution circuit cabinet, etc., and install supporting intelligent 
control software. At the same time, it is necessary to use bus network or industrial 
Ethernet for information transmission, install intelligent control devices on the 
equipment, including induction devices and control devices, etc., and ensure that the 
intelligent control devices establish contact with the main system (Gang et al., 2021). 

Intelligent control can not only improve various operational processes, but also play 
an important role in on-site quality supervision and management, and has been applied in 
tobacco enterprises. The intelligent control of supervision and management includes 
discovering the problems existing in each link of silk making by combining each 
induction device, and comprehensively analysing the problems found in the recent silk 
making work by using data. In the intelligent control of supervision and management, 
relevant preparations need to be made, including setting up monitoring servers and 
monitoring computers, Ethernet network equipment and application servers. The software 
platform is the basic supervision and management intelligent control. The supervision 
and management system adopts the client-server mode, which can establish the 
connection with the database of production and processing system, so as to realise the 
collection and analysis of production information and material scheduling information. 
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2 Related works 

2.1 Laser scanning technology 

The laser scanning volume calculation includes a hardware system and a software 
system. The hardware system is mainly a laser scanner for obtaining point cloud data on 
the object surface and a computer for data processing. The software system includes the 
combination of point cloud filter data pre-processing, 3D reconstruction and volume 
calculation algorithm. ‘Clean and effective’ point cloud data is the guarantee of the 
accuracy of 3D reconstruction and volume calculation. Using 3D laser scanning to obtain 
point cloud data has the characteristics of fast acquisition speed and high sampling 
frequency, but there are also some problems such as high redundancy, missing 
information and noise of point cloud data. This can affect the accuracy and quality of 
data, reduce the reliability of modelling or analysis, and thus affect subsequent analysis 
and application (Gong et al., 2023). The point cloud obtained by the sensor will 
inevitably be polluted by noise, including the inherent noise of the acquisition equipment, 
the reflection properties of the surface of the measured object, and special outliers. 
Therefore, it is necessary to perform a ‘cleaning’ operation on the original point cloud, 
that is, filter the point cloud, remove noise, outliers, and smooth the point cloud to 
improve the data quality to obtain an accurate point cloud suitable for further processing. 
Domain-based filtering techniques are the most common methods, which exploit the 
similarity of a point with its neighbourhood to determine the filtering position (Guo and 
Hu, 2022). Hu et al. (2024) designed a method based on domain connectivity to judge 
glitch noise by laser scanning building point cloud, and then used clustering method to 
further remove smaller dense noise. This shows that when selecting filtering methods, 
factors such as data characteristics, noise types, application requirements, etc. need to be 
considered. Usually, better results can be achieved by using multiple filtering methods 
comprehensively or adjusting parameters. Since sensors can only scan within their 
limited field of view, point cloud data may come from different sensors, devices, or 
points in time when scanning large targets. The main purpose of registering these datasets 
into the same coordinate system is to achieve spatial consistency between point cloud 
data collected from different sources or at different times, so that they can be compared, 
fused, analysed or subsequently applied in the same coordinate system. Most existing 
registration methods alternately perform the two processes of correspondence search and 
transformation estimation until the set projection error is minimum (Liu, 2023). At 
present, common registration methods include iterative nearest point (ICP), feature 
matching, feature descriptor, transformation model, etc. Liu et al. (2023) used a laser 
scanner to obtain the three-dimensional point cloud information of the workpiece and the 
fixture, and used the iterative nearest point algorithm based on particle swarm search to 
register the coordinates with high accuracy, so as to establish the three-dimensional 
spatial coordinates of the workpiece and the machine tool. 

Point cloud volume calculation is to estimate the volume of an object through point 
cloud data. The basic idea of point cloud volume calculation is to map the points in point 
cloud data to three-dimensional space, and then estimate the volume on this basis. At 
present, many volume calculation methods have been studied, including slice method, 
projection method, mesh method and convex hull method (Mu et al., 2022). Different 
calculation methods will have different applicable scenarios and accuracy, but no matter 
what kind of volume calculation method, its core is based on the idea of integration. 
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2.2 Stereo vision technology 

In addition to laser detection technology, the application of stereo vision technology as a 
non-contact measurement method in the field of material volume measurement is an 
important development direction in the field of automation and intelligent measurement 
in recent years. Stereoscopic vision, also known as binocular vision, refers to the use of 
two or more cameras to shoot the same scene from different angles. By simulating the 
human binocular vision mechanism, it can recover depth information and calculate  
three-dimensional information of objects. The core challenge is to determine the best 
method to map the difference between images to the difference of the detection 
environment (Rui et al., 2023). 

The core of stereo vision measurement system is stereo matching algorithm, which 
calculates the position of these points in three-dimensional space by analysing the 
corresponding points in the pictures taken by two cameras. New methods and 
technologies to solve this problem are developing every year, and there is a trend of 
improvement in accuracy and time consumption. This process involves complex 
geometric transformations and optical principles, and requires accurate camera 
calibration to ensure the accuracy of measurement results (Wang et al., 2022a). Stereo 
vision systems usually include hardware components such as cameras, lenses, lighting 
equipment, computer processing units, and software algorithms such as camera 
calibration, image processing, stereo matching, and 3D reconstruction. In the application 
of material volume measurement, stereo vision technology can handle various objects 
with complex shapes and irregular surfaces, and has the advantages of low cost, simple 
operation and easy popularisation (Wang and Zhang, 2023). Wang et al. (2022b) used 
binocular vision technology to obtain the image of the material and obtain the  
three-dimensional coordinate information of the belt conveyor under no-load and  
full-load scenes, and proposed a method to improve the accuracy of material volume 
calculation based on pixel coordinates. The test results show that the improved material 
volume calculation accuracy reaches more than 95%. Wang et al. (2024) proposed an 
accurate measurement method of droplet volume based on stereo vision, which obtains 
high-resolution images through stereo vision, and proposed an accurate binocular droplet 
image segmentation algorithm to segment images with different ambiguity. According to 
the contour obtained by binocular droplet image segmentation algorithm, the droplet is 
reconstructed and the droplet volume is calculated. The experimental results show that 
the measurement accuracy of this algorithm is ± 3%. Wang et al. (2021) proposed a 
method to detect the volume of mouse feed based on binocular stereo vision. The 
coordinates of these dense points are formed into a point cloud, and then the volume of 
the point cloud is calculated by projection method, and finally the volume of mouse feed 
is obtained. Moreover, the experimental validation is performed using the stereo 
matching dataset provided by the Middlebury evaluation platform. The results show that 
the average error between the calculated volume and the actual volume is 7.12%. In 
stereo vision measurement system, its core is stereo matching algorithm between images, 
which is also a research hotspot in recent years. However, the application of stereo vision 
technology in material volume measurement also faces some challenges. For example, 
factors such as changes in lighting conditions, differences in camera viewing angles, and 
reflections from object surfaces can affect the accuracy of measurements. Therefore, 
researchers are working hard to continuously optimise the stereo matching algorithm and 
improve the robustness and adaptability of the system (Wei et al., 2024). 
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3 Monitoring method of cigarette production process based on AE and 
PCA 

The production process of leaf silk has strong coupling characteristics among multi-
variables. Because univariate statistical process monitoring does not consider the 
correlation between process variables, and the data are diversified, univariate statistical 
methods are increasingly unable to meet the needs of process monitoring. 

The multi-block modelling strategy solves the problem of inaccurate monitoring of 
global modelling in complex industrial processes, and also takes into account the huge 
advantages of deep learning in data nonlinear feature extraction. 

3.1 Algorithm principle 

Feature extraction is a key step in process monitoring. In fact, cigarette production 
process data is nonlinear and non-Gaussian. Traditional PCA method can express the 
linear features of data well, but it does not have strong nonlinear expression ability. 

Autoencoder is an unsupervised learning algorithm. This network has the advantage 
of nonlinear dimensionality reduction, which can extract deep nonlinear features of data 
and maximise the representation of original data information. As shown in Figure 1, the 
network includes a three-layer network structure: an input layer, an intermediate hidden 
layer and an output layer. The network is completely data-driven, does not require prior 
knowledge, and can encode and decode data independently of labels. Its network output 
layer and input layer have the same size. A complete autoencoder contains an encoder, a 
decoder, and a loss function. The encoder compresses the input information x through the 
neural network to extract the important features h of the data, and then the decoder 
decompresses it to obtain the reconstructed data x. The model can transmit it in reverse 
by minimising the reconstruction error of the input and output data, update the network 
parameters, gradually improve the accuracy of the model, and make the output as close to 
the input as possible to ensure better expression of the hidden layer. 

Figure 1 AE network structure 
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The intermediate hidden layer obtained by the encoder learns the latent representation of 
the original data. The latent feature is the essence of the input data. For the input x, the 
encoding process is expressed as (Xu et al., 2023): 

 e eh f W x b   (1) 

The decoding process of hidden layer features is expressed as: 

 ' d dx f W x b   (2) 

In the formula, f is the activation function, We and Wd are the weight matrices of the 
hidden layer and the output layer, respectively, and be and bd are the deviations of the 
hidden layer and the output layer, respectively. AE iteratively optimises the parameter set 
C = {We, Wd, be, bd} through the back propagation algorithm until the reconstruction error 
is minimised, so that the output of the network is as close to the input as possible. 

Commonly used activation functions are Sigmoid, Tanh, ReLU and their variants, and 
the Sigmoid and PReLU activation functions are used. 

Principal component analysis is the most commonly used statistical method to solve 
multivariate problems. From the perspective of dimensionality reduction, it replaces the 
original variables with a new set of variables. The new data is the combination of the 
original data and contains the maximum amount of information of the original data. From 
a mathematical point of view, PCA projects data into principal component space and 
residual space, removes redundant information, and extracts irrelevant latent variables 
through orthogonal linear transformation to represent data changes. When monitoring 
modelling, for a standardised data matrix XRmn, n is the number of samples and m is 
the number of variables. The matrix X can be decomposed by PCA into the following 
form (Xu et al., 2022): 

TX TP E   (3) 

T XP  (4) 

 TE X I PP   (5) 

In the formula, T is the principal component score matrix, P is the load matrix, and E is 
the residual matrix. The original data space is decomposed into principal component 
space and residual space, and the number k of principal components that can represent 
85% of the information of the original data is retained in this paper. 

For a new sample xRm, the 1  k-dimensional principal component score vector t, 
the estimated value x  and the residual e of x can be calculated. 

Tt P x  (6) 

Tx Pt PP x   (7) 

 Te x x I PP x     (8) 

Using the above information for statistical hypothesis testing, including the hotelling-T2 
statistics in the principal component space and the Q statistics in the residual space, it can 
be determined whether there are abnormal working conditions in the production process. 

The T2 and Q statistic is calculated as follows: 
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2 1 1T T TT tS t xPS P x    (9) 

 T T TQ ee x I PP x    (10) 

In the formula, t is the (1  K)-dimensional principal component score vector, the 
diagonal matrix S = diag(1, 2, …, R) is composed of the first k eigenvalues in the 
covariance matrix of the modelling dataset X, e is the residual vector, and the T2 and Q 
control limits are usually obtained by F distribution and weighted 2 distribution, 
respectively (Zhong et al., 2023): 

 2
2

, ,

1

( ) k n k

k n
T F

n n k  





 (11) 

2
,~ hQ gχ   (12) 

2

v
g

m
  (13) 

22m
h

v
  (14) 

In the formula, Fk,n–k, represents the F distribution under the n–k condition of confidence 
level a and freedom level k, m and v represent the mean and variance of the Q statistic of 
the modelled data respectively. In this paper, the confidence level is taken as 0.99. When 
both statistics T and Q are within the control limits 2T  and Q, it indicates that the 

production process is in a normal state, otherwise it is considered that an abnormal alarm 
has occurred in the process. 

Anomaly detection rate (FDR) and false alarm rate (FAR) are defined as follows: 

   

    

Effective number of alarms
FDR

Total number of abnormal samples
  (15) 

   

    

Number of false alarms
FAR

Total number of normal samples
  (16) 

3.2 Process monitoring method based on AE-MPCA 

A large amount of process data obtained online in actual industrial large-scale production 
has the characteristics of nonlinearity and strong coupling between variables. Global 
modelling can’t extract local characteristics of the process, which leads to the reduction 
of detection accuracy of abnormal working conditions. In order to solve this problem, 
firstly, the variables are divided into b sub-blocks with appropriate rules, and multiple 
local models are established to improve the monitoring effect. Common blocking 
methods mainly include unsupervised clustering, mutual information, etc. However, these 
methods are based on data characteristics and do not consider the knowledge of process 
mechanism, which will lead to differences between the blocking results and the actual 
process. Therefore, this paper starts from the process principle of drum drying machine 
and implements a reasonable blocking strategy for the process in combination with the 
actual process. 
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Under the above multi-block modelling framework, the flow of AE-MPCA process 
monitoring algorithm is shown in Figure 2. 

Firstly, the hidden features of each sub-block are extracted by autoencoder, and the 
hidden features are used as new observation variables to establish a sub-PCA model. 
Finally, the monitoring results of multiple subspaces are fused by Bayesian inference (BI) 
to obtain the overall monitoring index (Zhu et al., 2021). 

Figure 2 Flow chart of AE-MPCA process monitoring 

 

The specific steps are as follows: 

3.2.1 Offline modelling 

1 A normal dataset X after standardisation. 

2 According to the actual process principle of the drum drying machine, the process 
variables are divided into b sub-blocks from the angle of material and machine. 

3 Each sub-block is trained with an autoencoder model, and the latent feature h of each 
sub-block are extracted according to equation (1), and b feature datasets h1, h2, …hb 
are obtained. The feature data represents the original data information to the 
maximum extent. 

4 h1, h2, …hb is used as the new dataset for each sub-block. According to equation (3), 
the PCA model of each sub-block can be expanded as: 

, [1, ]T
i i i iX T P E i b    (17) 
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According to equation (11) and equation (12), the control limits 2
,i limT  and Qi,ion of each 

sub-PCA model statistic are calculated. 

3.2.2 Online monitoring 

1 For new test samples, a standardised dataset X is obtained through data  
pre-processing, and the process variables are divided into b sub-blocks using the 
same block strategy 

2 Based on the trained autoencoder model, the hidden features h of each sub-block are 
extracted. The hidden features of each block are used as a new observation dataset to 
establish b sub-PCA models, and the monitoring statistics T2 and Q of the first PCA 
model are calculated: 

2 1 T T
i i i i i iT x PS P x  (18) 

 T T
i i i i iQ x I PP x   (19) 

3 Each sub-block of multi-block modelling has monitoring results, and for more sub-
blocks, an overall monitoring index cannot be obtained intuitively, which is not 
conducive to the final decision of abnormal working conditions. Moreover, the 
statistics and control limits of each sub-block are different, so it is difficult to directly 
fuse these results. BI strategy can construct the overall monitoring index. Taking T2 
statistics as an example, the failure probability of a sample X in the first sub-block 
can be expressed as follows: 

   
 

2 2

2

2

,

,
,

* ( )test iT T
test iT

test iT

P X F P F
P F X

P X
  (20) 

     2 2 2 2 2, , ,( ) ( )test i test i test iT T T T T
P X P X N P N P X F P F   (21) 

The specific expression of conditional probability  2 ,test iT
P X N  and  2 ,test iT

P X N  is as 

follows: 

  2 2
,lim

2

/
,

i iT T
test iT

P X N e  (22) 

  2 2
,lim

2

/
,

i iT T
test iT

P X F e  (23) 

In the formula, xtest,i represents the test sample in the 1st sub-block, 2
iT  represents the T2 

statistic of the ith sub-block, 2
,i limT  represents the T2 control limit of the ith sub-block, N 

and F represent normal and abnormal situations, 2 ( )
T

P N  is the prior probability of a 

normal sample, which represents the confidence level , 2 ( )
T

P F  represents the 

confidence degree 1–, which is the prior probability of an abnormal sample. Then, the 
detection results of all sub-blocks are fused, and the obtained 2T

BIC  statistic is the global 

monitoring result. 
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   
 

2 2

2

2

, ,

,
1

m
test i test iT T

mT
i l

test iT
i

P X F P F X
BIC

P X F



 
   
 
 




 (24) 

Similarly, when the Q statistic is Bayesian fused, the failure probability of sample Xtest in 
the first sub-block can be expressed as follows: 

   
 
,

,
,

( )Q test i Q
Q test i

Q test i

P X F P F
P F X

P X
  (25) 

     , , ,( ) ( )Q test i Q test i Q Q test i QP X P X N P N P X F P F   (26) 

The specific expression conditional probability PQ(Xtest,i|N) and PQ(Xtest,i|F) is as follows: 

  ,/
,

i i limQ Q
Q test iP X N e  (27) 

  , /
,

i lim tQ Q
Q test iP X F e  (28) 

In the formula, xtest,i represents the test sample in the ith sub-block, Ql represents the Q 
statistic of the ith sub-block, Qi,lim represents the Q control limit of the ith sub-block, N and 
F represent normal and abnormal situations, PQ(N) is the prior probability of normal 
samples, which represents the confidence level , PQ(F) represents the confidence degree 
1–, which is the prior probability of abnormal samples. Then, the detection results of all 
sub-blocks are fused, and the obtained BICQ statistics are the global monitoring results. 
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b
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i l
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i

P X F P F X
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P X F



 
 
 
 
 




 (29) 

The control limit of the fused statistics is 1–, and when both BIC statistics are within the 
control limit, the process is considered to be in a normal state, otherwise it is considered 
that the process has an abnormal alarm. 

4 Test study 

4.1 Test methods 

Intelligent control can not only improve various operational processes, but also play an 
important role in on-site quality supervision and management, and has been applied in 
tobacco enterprises. The intelligent control of supervision and management includes 
discovering the problems existing in each link of silk making by combining each 
induction device, and comprehensively analysing the problems found in the recent silk 
making work by using data. In the intelligent control of supervision and management, 
relevant preparations need to be made, including setting up monitoring servers, 
monitoring computers, Ethernet network equipment and application servers. Software 
platform is the foundation of supervision and management of intelligent control. The 
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supervision and management system adopts the client-server mode, which can establish 
the connection with the database of production and processing system, so as to realise the 
collection and analysis of production information and material scheduling information. 

Figure 3 Main process links of cigarette silk making 

  

Figure 4 Simulation flow chart 

 

Because the cigarette process is complicated, this paper takes the drying process of 
cigarette straight filament process as an example to analyse. Computer can effectively 
simulate various field distributions in drum dryer. At present, the common numerical 
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simulation tool for drying materials in drum is computational fluid dynamics (CFD). The 
drying process of cut tobacco in drum is simulated by Fluent, and the distribution of 
temperature and humidity field in drum is analysed according to the simulation results. 
The whole process is generally divided into three parts (pre-processing, solution and 
post-processing), as shown in Figure 4, which is the flow chart of simulation calculation. 
Pre-processing mainly uses Solidworks, Proe and other software (or Gambit) to draw and 
model the actual device, and then meshes the built structural model. The solution is 
mainly divided into checking the grid computing domain, inputting relevant physical 
property data and selecting the calculation model, and iterative calculation after 
confirming the boundary conditions. Post-processing is mainly to process and analyse the 
data of the calculation results. 

Because the air flow and cut tobacco mainly exchange heat and mass in the inner 
cylinder, this simulation only studies the inner cylinder flow field of the cylinder. In 
addition, due to the thin thickness of the copying plate, the quality of the mesh will be 
affected in the later mesh division. Proper thickening of the copying plate thickness will 
not obviously affect the flow field analysis. In order to improve the mesh quality, the 
copying plate and guide plate with a thickness of 2 mm are changed to 6 mm. 

Figure 5 Architecture design of adaptive learning technology 

 

As shown in Figure 5, combined with the current cutting-edge technologies in the field of 
industrial process monitoring, the following adaptive learning technology solutions that 
can be embedded in the original monitoring system are designed, focusing on solving the 
problems of insufficient manual parameter adjustment and model generalisation ability: 

The adaptive model is a super parameter adaptive structure based on meta learning 
(Figure 6). The meta learning controller is constructed by flexible control analysis 
through dynamic PCA dimension selection. By evaluating the contribution of each 
principal component to the reconstruction error, the reserved principal component score 
is automatically adjusted Establish a double-layer time window mechanism (short-term 
window: 50 batches, long-term window: 500 batches) to automatically balance the impact 
of new and old data By embedding an adaptive learning module, the model can maintain 
stable monitoring performance within the range of ± 15% of process parameter drift, 
while reducing the dependence on the experience of domain experts. In the actual 
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deployment, the synergy effect of each module is verified through historical data 
simulation, and then the online debugging is gradually implemented. 

The advanced regularisation technology for dynamic industrial data is introduced 
(Figure 6). The proposed regularisation technology system enhances the generalisation 
ability of industrial process monitoring model through multi-dimensional constraint 
mechanism. Based on the traditional spectral normalisation, the causal time series 
spectral normalisation introduces an exponential attenuation factor (γ = 0.9), and 
dynamically adjusts the Lipschitz constant of the weight matrix to maintain the temporal 
causality; structured random discarding improves the traditional dropout method and 
adopts block_size = 3 to enhance the decoupling ability of feature space and reduce 
information loss 48; the mutual information bottleneck regularisation is represented by 
the variational approximation constraint hidden layer, and the dynamic balance of feature 
retention and redundancy elimination ( = 0.1) is used to improve the robustness of the 
model to noise interference; The anti gradient matching technology forces the model to 
learn a smoother decision boundary by constraining the gradient consistency of normal 
samples and anti samples (λ = 0.05). 

Figure 6 Regularisation technique 

 

Based on the monitoring requirements of the drum drying process, an integrated learning 
mechanism is introduced into the ae-mpca framework to design a multi-dimensional 
robustness enhancement scheme. This integrated learning model creatively integrates 
heterogeneous self encoder and dynamic regularisation technology to build a multi-level 
robustness enhancement framework for the monitoring requirements of industrial 
processes. Through the parallel reasoning of heterogeneous model pool (five types of 
differentiated ae-mpca, such as uniform/non-uniform blocking, noise injection, timing 
expansion, etc.), combined with the gradient lifting tree dynamic weighted fusion 
module, the multi-dimensional feature complementarity and decision coordination are 
realised; The hierarchical regularisation system (causal time series normalisation, 
structural discarding, mutual information bottleneck and confrontation gradient 
matching) is introduced to optimise the constraint model from four dimensions: time 
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dependence, feature decoupling, information compression and decision smoothing; 
Combined with embedded memory optimisation (block model loading alternately) and 
parameter adaptive mechanism (regularisation strength closed-loop control). 

The introduction of interpretable artificial intelligence (Xai) technology into ae-mpca 
integrated monitoring framework significantly improves the transparency and reliability 
of monitoring results through multi-dimensional interpretation mechanism. The scheme 
dynamically quantifies the contribution weight of key process parameters (such as 
cylinder temperature and wind speed) to the reconstruction error by combining the shap 
value, generates local decision boundary comparison samples by using lime, and 
constructs a causal map to depict the abnormal propagation path between parameters, 
supporting the tracing of the abnormal root from the three levels of feature importance, 
individual sample and temporal correlation; At the same time, a lightweight real-time 
interpretation engine (delay ≤ 35 ms) is designed, which adapts to different user needs 
through two-level interpretation strategies (basic trend chart and expert level hidden layer 
analysis), and cooperates with confidence quantitative evaluation and three-dimensional 
traceability matrix (model version - data distribution – interpretation report). 

The geometric model uses regular tetrahedron to divide the face and volume to obtain 
the mesh, and the divided mesh model is shown in Figure 7. The cell size is set to 4mm, 
and the number of meshes and cells after division are 1012123 and 1356231, 
respectively. 

Figure 7 Mesh model of drum cylinder (see online version for colours) 

 

This paper selects 20 batches of historical data of a tobacco company for simulation 
research. The sampling interval is 10s, and the time is from June 6, 2024 to July 20, 2024. 
Through data screening, this paper selects 11 normal batches of data for monitoring 
modelling, selects another 5 batches of normal operating data to add disturbances as test 
samples, and reselects 3 batches of normal operating data from May 24 to May 25, 2024 
to add disturbances as test samples. After pre-processing the three groups of data, we get 
the modelling dataset (7,346 × 13) and test samples (2,614 × 13) and (2,316 × 13). 

The test environment is as follows: CPU: i9-13000H; RAM: 32.00 GB; Python 
version 39, Pytorch-CPU version 1.11. 0, and PCA uses Matlab software platform. 

Perturbations need to be added to the test set before data normalisation can be done. 
Three variables, namely, the opening of steam valve, the temperature of cylinder wall and 
the opening of moisture discharge damper, which have great influence on the moisture 
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content of leaf silk are selected to add amplitude interference. Different variables have 
different dimensions and different fluctuation forms, which determines the amplitude of 
added interference. The specific form of disturbance is shown in Table 1: 

Table 1 Fault description 

Fault no. Description 

Fault1 Step disturbance signal with amplitude of 2.0% is added to drum drying _ steam 
valve opening 

Fault2 Ramp interference signal with amplitude of 0.008 is added to drum drying _ steam 
valve opening 

Fault3 Step interference signal with amplitude of 0.2% is added to drum drying _ cylinder 
wall temperature 

Fault4 Ramp interference signal with amplitude of 0.001 is added to drum drying _ 
cylinder wall temperature 

Fault5 Step interference signal with an amplitude of 50% is added to the opening of the 
drum drying _ moisture discharge damper opening 

Fault6 Ramp interference signal with an amplitude of 0.1 is added to the opening of the 
drum drying _ moisture discharge damper opening 

4.2 Results 

Iterative calculation is adopted. Firstly, the single-phase simulation is carried out under 
the condition of only hot air. After about 500 steps of calculation, the discrete phase is 
opened, and the convergence of 3,000 steps is calculated. The calculation results are 
processed and analysed. In order to verify the accuracy of the simulation model, the 
simulated humidity field and the experimental value are compared and analysed. As 
shown in Figure 8, the simulated humidity at the central axis of the drum and the 
humidity at five points at the central axis detected by the test under the same working 
condition are close to the overall trend of the simulated value and the experimental value, 
which proves that the simulation results are reliable. 

Figure 8 Comparison of simulation values and experimental values (see online version  
for colours) 
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During the drying process of the drum leaf filament, after the leaf filament is expanded, 
heated and humidified online, the wet material enters the drum through the feed port, 
rolls forward under the rotation of the roller, and all the steam enters the drum copying 
plate through the rotary joint to heat the leaf filament. The other way enters the heat 
exchanger of the hot air system, and the hot air enters the drum from the front chamber 
and fully contacts the leaf filaments, so that the leaf filaments are evenly dried, and the 
whole process is circulated in an orderly manner. Therefore, the drying process is the 
result of the interaction between leaf silk and expansion drying equipment, and it can also 
be said that it is the mutual coupling of material and machine. In order to realise the 
refined modelling of the process, the whole leaf silk drying system is divided into  
sub-blocks of import and export materials and sub-blocks of expansion drying system, 
and the local information of the two links is well considered. The blocking results are 
shown in Table 2. 

Table 2 Block results 

Block1 Block2 

Import and export material sub-block Expansion drying system sub-block 

Leaf filament expansion _ inlet material 
instantaneous flow rate 

Leaf filament expansion _ steam flow rate 

Leaf filament expansion _ inlet material 
moisture 

Drum drying _ cylinder wall temperature 

Leaf filament expansion _ outlet 
temperature 

Drum drying _ steam pressure 

Drum drying _ outlet material temp Drum drying _ steam valve opening 

Drum drying _ hot air steam flow 

Drum drying _ hot air temperature 

Drum drying _ moisture drain damper opening 

Drum drying _ outlet moisture 

Drum drying _ moisture discharge negative 
pressure 

Figure 9 Fluctuation of quality indicators (see online version for colours) 
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Figure 10 Process monitoring diagram of three methods (a) PCA (b) AE-PCA (c) AE-MPCA  
(see online version for colours) 
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(c) 

In order to further verify the monitoring effect of AE-MPCA algorithm, three process 
monitoring models are used to monitor two actual abnormal working conditions, and the 
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alarm rate (FDR) for each abnormal working condition is calculated and a visual 
monitoring diagram is drawn for comparative analysis. By querying the historical data of 
drying production of leaf silk in this enterprise, there is a case shown in Figure 9. There is 
moisture fluctuation in the production process, as shown by the curve in the red circle. 
The abnormal fluctuation is characterised by the fact that the state is different from other 
data distributions within a certain time step, which directly affects the quality of leaf silk. 
In order to improve the quality qualification rate of the whole leaf silk and ensure stable 
production, it is necessary to identify it for operators to judge it in time. 

The process monitoring algorithm proposed in this paper is used to verify that the 
number of principal components of global PCA is 6, the number of principal components 
of AE-PCA is 3, and the number of principal components of two sub-blocks is 3 and 5 
respectively. The specific experimental results are shown in Table 3. 

Table 3 Comparison results of anomaly detection rate FDR (%) of the three methods 

 Q T2 

PCA 32.18 2.39 

AE-PCA 76.60 0.00 

AE-MPCA 90.75 0.00 

In order to better demonstrate the effectiveness of the AE-MPCA method compared to 
the comparative method, the monitoring charts of the three methods for two cases are 
listed in Figure 10. In the figure, the red dashed line represents the control limit of 0.99 
confidence, and the solid line represents the and  statistics of the test set. The blue and 
black solid lines are used to distinguish the abnormal sample points and the normal 
sample points of the test set. Both statistical indicators are within the control limit, 
indicating that the production process is in a normal state, otherwise it is considered that 
the process has an abnormal alarm. 

4.3 Analysis and discussion 

Figure 8 shows the cross-sectional humidity field with x = 0. It can be seen that the 
ambient humidity of the whole humidity field in the cylinder gradually increases in the 
horizontal direction (along the z-axis), and the humidity in the field gradually increases 
from 0 to 3.81% from the inlet end to about 0.2 m along the cylinder. There is a humidity 
block at the wall under the cylinder, which is quite different from the surrounding 
humidity. The reason may be that cut tobacco is deposited at the bottom of the cylinder. 
The colour block gradient of humidity in the field changes obviously between 0.2 m and 
1.1 m along the horizontal direction of the drum (along the z axis), and the humidity in 
the field increases along the drum, and increases from top to bottom in the longitudinal 
direction (along the y axis), and the humidity near the lower side of the drum wall is 
higher. It can be seen that the environment in the cylinder is in the drying stage of 
increasing speed at about 0.4 m ~ 0.75 m, and the water on the surface of cut tobacco 
quickly volatilises to the environment in the cylinder. In addition, 0.75 m ~ 1.1 m is in 
the decreasing stage, and the moisture inside the cut tobacco gradually flows to the 
surface of the cut tobacco and evaporates into the air until the humidity in the field along 
the drum 1.1 m ~ 1.5 m decreases slightly, showing a stable trend, but the humidity at 
both ends near the drum wall at the outlet is slightly higher than that at the middle. In this 
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section, the inner cylinder environment is also in the deceleration stage, the heat and mass 
transfer of air flow and cut tobacco tend to be stable, and the humidification rate of the 
inner cylinder environment decreases to zero. 

The reason for the change in Figure 9 is that during the production process, the 
moisture at the inlet of the leaf silk did not change obviously, and the outlet temperature 
of the leaf silk from the previous process gradually increased. During this period, the 
temperature of the cylinder wall was low, the difference between the temperature of the 
leaf silk and the ambient temperature in the drum became smaller, and the water 
evaporation of the leaf silk was slow, resulting in the increase of the moisture at the outlet 
of the leaf silk. After being regulated to the 60th sampling point, the system gradually 
returned to stability. 

In Table 3, the three algorithms can detect the process abnormal fluctuations of two 
batches of data to varying degrees, and from PCA to AE-PCA and AE-MPCA, the alarm 
rate of abnormal data gradually increases. The AE-MPCA algorithm has the highest 
alarm rate in both cases. 

As can be seen from Figure 10, the alarm rate of the traditional PCA method for case 
2 is 91.07%, and after AE feature extraction, the alarm rate reaches 92.86%. Although a 
relatively large range of alarms has been achieved, the proposed AE.MPCA method can 
still increase the alarm rate to 98.21%, and accurately alarm the later stage of abnormal 
working conditions. 

The above examples show that compared with the traditional PCA and AE-PCA 
detection methods, the AE-MPCA algorithm proposed in this paper improves the 
abnormality detection accuracy of drum leaf drying production process, and realises 
accurate alarm for quality abnormalities. Early detection of abnormal phenomena in 
actual production is the premise of early prevention and early solution. This block 
modelling method can lay a foundation for operators to accurately locate the causes of 
abnormal working conditions from material and machine in the next step, further provide 
accurate production status information, minimise the influence of abnormal working 
conditions on the quality of leaves on the production line as much as possible, and help to 
ensure the stability of production process and improve the stability of product quality. 

5 Conclusions 

With the increasing complexity of production equipment, the drying system of tobacco 
industry is increasing, which leads to the probability of failure in the production process 
increasing. At the same time, the difficulty of control of the system increases, so the 
diagnosis of failure and the control of the system are widely concerned. This paper 
proposes a PCA multi-block modelling algorithm based on autoencoder feature 
extraction, extracts autoencoder features for each sub-block, and regards the feature 
information as a new observation variable to establish a PCA monitoring model. The 
results show that the monitoring results are more intuitive by fusing the statistics of all 
sub-blocks through Bayesian reasoning. Moreover, compared with the traditional PCA 
and AE-PCA detection methods, the AE-MPCA algorithm proposed in this paper 
improves the anomaly detection accuracy of the drum leaf drying production process and 
realises accurate alarm for quality anomalies. 

When training autoencoder, it is often necessary to adjust parameters and overfitting 
phenomenon. Therefore, how to improve the model so that it can adaptively adjust 
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parameters and be better suitable for anomaly detection based on drum leaf drying 
process can be further studied. 
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