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Abstract: Academic performance prediction has become a crucial instrument for education 
management as higher education institutions keep improving the quality of their offerings. Many 
times lacking accuracy and great computing complexity, traditional academic performance 
prediction methods suffer. Thus, this work presents a logistic regression model based on the 
optimisation of alternating direction method of multipliers (ADMM) which is named  
Edu-ADDM-LR. By including ADMM into the logistic regression model, the model improves its 
predictive and generalising capacities as well as optimises the computing process. The 
experimental results show that the Edu-ADMM-LR model can efficiently manage the variety and 
complexity of students’ performance in higher education teaching. Concurrently, the model 
shows great computational efficiency, great adaptability and stability in handling big-scale 
educational data. This work offers reliable decision support for educational managers and a fresh 
approach for academic achievement prediction in higher vocational colleges. 
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1 Introduction 
Given the present situation of increased vocational 
education, the prediction of academic achievement has 
become a major instrument for enhancing teaching quality, 
besting resource allocation, and customising teaching 
support (Liu and Yu, 2023). Higher vocational institutions 
must contend with variable student performance, 
challenging course materials, and great variations in student 
backgrounds as they develop technical talents. Therefore, in 
educational research, how to direct students’ learning routes 
and teaching improvement by precise prediction of 
academic achievement has become an urgent problem 
(Ofori et al., 2020). While the conventional teaching 
assessment model relies on instructors’ subjective 
judgement and experience, the data-driven teaching 
management model has increasingly taken centre stage as 
information technology advances. Not only can academic 
predictions provide students with personalised learning 

recommendations but also enable teachers to adapt their 
methods over time, thereby enhancing the overall quality of 
instruction. Particularly in higher technical institutions and 
universities, students’ academic success is influenced by 
several elements like study time, classroom involvement, 
social practice, etc. (Vlachopoulos and Makri, 2019). 
Establishing a prediction model that can fully address these 
influencing elements is especially crucial as a single 
prediction approach usually fails to adequately capture these 
complicated elements. 

In educational data analysis, standard machine learning 
algorithms including logistic regression, support vector 
machine (SVM), decision tree and random forest are 
extensively applied among the present approaches for 
predicting academic success (Ofori et al., 2020; Al-Alawi  
et al., 2023). Logistic regression, as a classical classification 
method, has been extensively applied in issues including 
dropout risk prediction and student success prediction. 
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Logistic regression has been demonstrated in many studies 
to be able to handle binary categorisation issues, including 
whether students can graduate or attain a given academic 
level (Batool et al., 2023). The restriction of logistic 
regression is that it can only deal with linear relationships; 
hence, traditional logistic regression models may not be able 
to sufficiently capture these nonlinear features, so restricting 
the accuracy and generalisation ability in higher education 
institutions given the complexity and diversity of student 
performance there is. 

Furthermore, extensively applied in the issue of grade 
prediction in higher occupational education is SVM, which 
can better manage high-dimensional data and raise 
prediction accuracy by building hyperplanes to classify the 
data (Liu and Yang, 2024). SVM’s considerable computing 
complexity, particularly in cases of a big data volume and 
extended training and prediction times, influences its 
practical application’s efficiency, nevertheless. Many 
academics employ integrated learning techniques such 
random forest and gradient boosting trees, which combine 
several models to increase the resilience and accuracy of 
prediction, hence improving its accuracy (Jun, 2021). 
Through the integrated processing of many decision trees, 
random forests can lower the bias and variance of a single 
model, so improving prediction accuracy. Though in certain 
cases these techniques show good performance, generally 
they suffer from heavy computational overheads, 
particularly in relation to large-scale data, and the training 
procedure may call for major computational resources and 
time. 

In higher education, logistic regression is widely used to 
predict students’ academic success or risk of dropping out. 
For example, by analysing characteristics such as students’ 
background information, time spent studying, and 
classroom participation, logistic regression models can 
predict whether a student will be able to successfully 
complete his or her studies or achieve a specific academic 
level. This predictive power provides important decision 
support for educational administrators. 

The development of optimisation algorithms in recent 
years has given fresh concepts to raise the performance of 
conventional machine learning models (Bian and 
Priyadarshi, 2024). From signal processing to picture 
reconstruction and other domains, ADMM has been 
extensively applied as a potent optimisation tool. ADMM 
has great value in the field of education since it can 
efficiently manage big-scale restricted optimisation issues 
with high computational efficiency and global optimisation 
capacity. It is projected that combining ADMM with 
conventional machine learning models will raise 
computational efficiency and increase the model accuracy. 
Although logistic regression performs well in dealing with 
linear relationships, its prediction accuracy and 
generalisation ability may be limited when confronted with 
complex nonlinear features. To address this issue, we 
propose the Edu-ADMM-LR model, which significantly 
improves the computational efficiency and prediction 

performance of the model by introducing the ADMM 
optimisation method. 

Still somewhat rare, nevertheless, is studies on 
integrating ADMM with logistic regression applied to 
academic performance prediction. Although the work done 
mostly applies ADMM to other forms of regression analysis 
or classification problems, there is no in-depth debate on 
how to improve logistic regression models using ADMM in 
the field of higher education achievement prediction. 
Consequently, this work intends to present a new academic 
achievement prediction model, Edu-ADMM-LR, by 
combining ADMM with logistic regression model, so 
attaining more accurate and efficient accomplishment 
prediction in higher education institutions. 

This paper’s innovations are as follows: 

1 Introducing ADMM combined with logistic regression: 
developed the ADMM-LR integration that 
simultaneously addresses three educational data 
challenges: high dimensionality, sparsity and multi-task 
correlations. The alternating optimisation achieves 
92.3% accuracy, 53.4% faster than SVM. 

2 Optimisation for the characteristics of students’ 
performance in higher vocational colleges and 
universities: students’ performance in higher vocational 
institutions and universities is varied and complicated 
and influenced by several elements including 
background, study time, and classroom behaviour. This 
work aims to better handle these complicated and 
multi-dimensional data features by introducing the 
ADMM optimisation technique, so enhancing the 
accuracy and efficiency of the model implemented in 
higher vocational colleges. 

3 Multifaceted optimisation of model performance: by 
means of ADMM for global optimisation, the  
Edu-ADMM-LR model efficiently reduces the 
overfitting problem during training and enhances the 
accuracy of the model relative to conventional machine 
learning techniques. Simultaneously, the model shows 
great adaptability and stability and can dynamically 
change weights, thereby lowering the inaccuracy and 
bias of the model in the framework of higher education. 

2 Relevant technologies 
2.1 Alternating direction method of multipliers 
Especially in large-scale and high-dimensional datasets, 
ADMM is a fast optimisation method often applied to 
address optimisation problems with constraints (Lin et al., 
2021). See Figure 1 to combine the Lagrange multiplier 
method with splitting technique to alternately optimise 
several variables, therefore approximating the optimal 
solution of the problem. 
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Figure 1 Flow of ADMM (see online version for colours) 
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ADMM’s fundamental concept is to split the limited 
optimisation problem into two (or more) easily controllable 
subproblems (Song et al., 2024). Imagine one is confronted 
with a standard constrained optimisation problem of the 
kind: 

min ( ) . . ( ) 0
x

f x s t g x =  (1) 

where the goal function is f(x) and the constraint function is 
g(x). The ADMM divides the original problem into  
two optimisation problems by adding an auxiliary variable 
z, therefore rendering each subproblem tractable. More 
precisely, an optimisation problem of the following kind 
results by adding a new variable z to replace the constraints 
in the original problem: 

min ( ) . . ( )
x

f x s t g x z=  (2) 

min ( ) . . ( )
z

h z s t g x z=  (3) 

where the objective function about z is h(z). This transforms 
the original problem into two subproblems, one about x and 
the other about z, and which one can separately solve. 

ADMM uses a Lagrange multiplier y and a penalty term 
to handle these two subproblems so guaranteeing that the 
constraints are satisfied. The generated Lagrangian function 
is: 

2( ) ( ) ( ( ) ) (,
2

, )TL x z y f x y g x ρ g x zz− ++ −=  (4) 

where y is a Lagrange multiplier expressing the penalty 
function for the constraint g(x) = z; ρ is a regularisation 
parameter regulating the penalty term’s strength. Three 

components make up this Lagrange function: the objective 
function f(x), the penalty term for the constraint g(x) = z, 
and the penalty term required to guarantee that the 
constraint is rigorously satisfied. 

Reducing the Lagrangian function helps the ADMM 
convert the original problem’s solution process into an 
alternately updating x, z and y process. ADMM first fixes 
the other variables and modifies one variable in every 
iteration to progressively approximate the ideal solution 
(Nagata et al., 2021). 

The central ADMM steps consist of: altering x, fixing z 
and y and maximising for x results in: 

2
1 arg min ( ) ( )

2

k
k k

x

ρ yx f x g x z
ρ

+
 

= + − + 
  

 (5) 

where zk and yk are the values of z and y, respectively, 
following the update in the previous step, this step aims to 
update x by minimising the penalty terms of the objective 
function and the constraints. Usually, conventional 
numerical techniques such gradient descent allow one to 
tackle this optimisation issue. 

With each iteration bringing the objective function 
closer to the ideal value, the ADMM steadily improves the 
optimised solution by alternately these three processes, 
therefore satisfying the constraints gradually. Until a 
predefined convergence criterion is satisfied, this process 
might keep on; convergence is typically assessed depending 
on deviations from the restrictions, changes in the objective 
function, or other factors. 

Adjust z. Fix x and y then maximise z to get: 

( )
2

1 1arg min ( )
2

k
k k

z

ρ yz h z g x z
ρ

+ +
 

= + − + 
  

 (6) 

The aim of this stage is to decrease the penalty term and 
objective function linked with xk+1 and yk. Usually convex, 
this optimisation problem can be solved with techniques 
including gradient descent. By use of this procedure, the 
ADMM progressively changes the value of z to provide 
more accurate g(x). 

Modify the y Lagrange multiplier. Fixing x and z and 
updating the Lagrange multiplier y produces: 

( )( )1 1 1k k k ky y ρ g x z+ + += + −  (7) 

This update step aims to change the multiplier y to the 
current xk+1 and zk+1 so that the constraint g(x) = z is better 
satisfied. This stage is a feedback mechanism that helps to 
modify the constraint deviation such that, in next iterations, 
they are more precisely satisfied. 

Moreover, in many cases, especially when the objective 
and constraint functions are convex, the convergence of 
ADMM has been theoretically shown. ADMM can ensure 
convergence to the global optimal solution inside a limited 
number of iterations by selecting the regularisation 
parameter ρ suitably. 

Particularly in issues involving large-scale optimisation, 
ADMM’s adaptability and efficiency are rather beneficial 
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(Gholami et al., 2023). By decomposing a complex 
constrained optimisation problem into simpler sub-problems 
and solving them through an alternating update technique, 
the alternating direction method of multipliers (ADMM) 
proves to be a highly powerful and effective optimisation 
tool. In addition to demonstrating excellent theoretical 
convergence, it excels in practical applications, particularly 
when tackling high-dimensional problems and large 
datasets. 

2.2 Logistic regression 
Although the name includes the word regression, logistic 
regression is a frequently used statistical model for binary 
classification problems; its main purpose is to do 
classification chores (Tripathy et al., 2024). By means of 
input data, the model forecasts the likelihood of an event. 

Logistic regression’s basic concept is to weigh and sum 
the input data through a linear model and translate the result 
to the interval from 0 to 1 using the sigmoid function 
(logistic function), therefore producing the probability of an 
event occurring. The sigmoid function has as its 
mathematical form: 

1( 1| )
1 Tw x

P y x
e−

= =
+

 (8) 

where wTx is the dot product of the feature vector and w is 
the weight vector; x is the input feature vector; e is the base 
of the natural logarithm. This feature helps one to 
understand the model output result as the likelihood that the 
input data falls into category 1. This probability indicates 
category 1 if it is higher than 0.5; else, it indicates category 
0. 

Maximum likelihood estimation helps one estimate the 
model parameter w. Maximum likelihood estimation seeks 
to maximise the log-likelihood function derived from the 
sample data (Czajkowski and Budziński, 2019). The  
log-likelihood function resembles this: 

( )

( ) ( )( )
1

( ) log 1

1 log 1 1

m

i i i
i

i i i

l w y P y x

y P y x
=

= =

+ − − = 


 (9) 

where m is the sample count; yi is the actual label of the ith 
sample; and is the likelihood, the model will find the sample 
falls into category 1. Maximising the log-likelihood 
function helps one to determine the ideal weights w. 

Gradient descent is a common tool used in search of the 
ideal parameters (Hassan et al., 2023). Gradient descent is 
fundamentally a method for iteratively updating the gradient 
information of the model parameters depending on the loss 
function, hence approximating the optimal solution. The 
negative of the log-likelihood function is used here. 
Gradient descent’s updating rule is: 

( )1k k k
ww w η J w+ = − ∇  (10) 

where ∇wJ(w) is the gradient of the loss function J(w) about 
the parameter w and η is the learning rate. The parameter w 
will progressively converge to the ideal value after several 
repetitions. 

Logistic regression frequently adds a regularisation term 
to avoid overfitting issues. L1 regularisation (lasso) and L2 
regularisation (ridge) are two common regularisation 
techniques; L1 regularisation controls the sparsity of the 
model parameters by introducing λ//w//1, whereas L2 
regularisation prevents the parameters from being too large 
by means of 2

2|| || .λ w  The loss function of the model 
provides the loss function following regularisation. 
Following regularisation the loss function is: 

( )

( ) ( )( )
1

2
2

( ) log 1

1 log 1 1 || ||

m

i i i
i

i i i

l w y P y x

y P y x λ w
=

= − =

+ − − = +


 (11) 

Including a regularising term helps the model not only 
prevent overfitting but also enhances new data prediction. 

Often used to further direct the learning process to 
guarantee the best performance of the model, the  
second-order derivative matrix of the loss function (Hessian 
matrix) is (Meng et al., 2021). In logistic regression, the 
Hessian matrix is: 

( ) ( )( )
1

( ) 1 1 1
m

T
i i i i i i

i

H w P y x P y x x x
=

= = − =  (12) 

By allowing one to find the curvature in every direction in 
the parameter space, this matrix accelerates the parameter 
optimisation. Fast convergence to an optimal solution can 
be accomplished with Newton’s method grounded on the 
Hessian matrix. 

Simplicity and interpretability of logistic regression are 
its advantages. Important for many practical uses including 
risk assessment and medical diagnostics, the model not only 
forecasts the categories but also offers the likelihood that 
every sample belongs to each group (Albahri et al., 2023). 
Furthermore, the parameter w of logistic regression can 
clearly show how each characteristic influences the 
classification outcomes, enabling researchers and engineers 
to grasp natural data patterns. 

Logistic regression has several limitations as well. First, 
it assumes a linear relationship between features and 
categories; therefore, if the data exhibits a complex 
nonlinear relationship, the predictive power of logistic 
regression may be insufficient. Second, logistic regression is 
more sensitive to outliers. Consequently, during data 
preparation, it is generally advisable to standardise the data 
or employ other processing techniques to improve the 
stability and robustness of the model. 

Finally, as a mathematical model, logistic regression 
offers a great spectrum of practical value in higher 
vocational instruction. By means of methodical learning, 
students can not only get a thorough awareness of the 
fundamental ideas in data analysis and machine learning but 
also learn how to use mathematical models for classification 



 Logistic regression mathematical algorithms based on alternating direction method of multipliers 5 

problems. Logistic regression helps students enhance their 
mathematical thinking and application skills as well as 
offers a solid basis for their later understanding of more 
difficult algorithms. 

3 Edu-ADMM-LR model construction and 
optimisation: an ADMM-based logistic 
regression approach 

With an aim to offer an effective solution to the data 
classification and prediction difficulties in higher education 
teaching, this chapter presents the Edu-ADMM-LR model, 
which combines ADMM and logistic regression methods, 
see Figure 2. In the realm of higher education teaching, 
issues including assessment of course participation and 
student grade prediction frequently arise with the difficulties 
of sparse data and high-dimensional data. Although they 
perform better in some situations, traditional logistic 
regression methods may suffer from processing inefficiency 
and sluggish convergence in high-dimensional and  
large-scale data. This research suggests an original method 
based on ADMM to maximise logistic regression models to 
solve these difficulties. 

Figure 2 Edu-ADMM-LR model (see online version for colours) 

 

The Edu-ADMM-LR model achieves efficient classification 
and prediction of educational data by combining the 
ADMM optimisation method with logistic regression. 
ADMM progressively approximates the optimal solution by 
alternately optimising multiple variables and decomposing 
the complex optimisation problem into multiple manageable 
sub-problems. In logistic regression, the ADMM 
optimisation process significantly improves the training 
efficiency and prediction performance of the model by 
minimising the objective function and alternately updating 
the weight parameters, auxiliary variables and Lagrange 
multipliers. 

Three key components define the Edu-ADMM-LR 
model: data preparation and feature extraction; model and 
optimisation process; prediction module. Every component 
is developed in line with the real needs in higher vocational 

education to guarantee the relevance and efficiency of the 
model in the instruction of data. 

3.1 Data preprocessing and feature extraction 
module 

In this study, the data we analysed included students’ 
demographic information (e.g., gender, grade level, etc.), 
academic performance indicators (e.g., course grades, 
classroom participation, etc.), and other relevant variables. 
Data preprocessing steps included standardisation, missing 
value filling and feature selection. The standardisation 
process, i.e., is standardised by equation (14) to eliminate 
the effect of different feature scales on model training. 
Missing value filling uses mean interpolation by  
equation (15) to fill in the missing values. Feature selection 
is done by calculating the correlation of each feature with 
the final score by equation (16) and selecting the most 
correlated feature with the score to be used for modelling. 
Assuming every student’s data feature is xi, xi may be 
written as: 

[ ]1 2, , ,i i i ip
Tx x x x=   (13) 

where p is the number of features. 
Every feature is normalised with this formula to remove 

the impact of varying feature magnitudes on model training: 

ij j
ij

j

x μ
x

σ
∗ −

=  (14) 

where ijx∗  is the standardised eigenvalue; xij is the jth 
eigenvalue of the ith student; μj is the mean of the jth 
eigenvalue; σj is the jth eigenvalue standard deviation. 

Mean interpolation may be applied for missing value 
interpolation (Zhu et al., 2020). The filled value is assuming 
a feature xij of student i is missing and the mean value of 
this feature among all students is μj: 

fill
jijx μ=  (15) 

Calculating the correlation of every feature with the final 
grade (labelled as yi) helps one choose the features most 
pertinent to the grades for modelling. One calculates the 
Pearson correlation coefficient, for instance: 

( ) ( )cov ,
,

ij

ij
ij

x y

x y
ρ x y

σ σ
=  (16) 

Standard deviation of the jth feature and the final grade 
determines cov(xij, y), which is the covariance between ijxσ  
and σy. By means of correlation analysis, the most pertinent 
characteristics for academic success are eliminated for 
model development. 

3.2 Optimisation module 
Following feature extraction comes the training phase of 
Edu-ADMM-LR model. Combining ADMM with the 
logistic regression method, the optimisation process of the 
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model solves the challenges in the training of  
high-dimensional data and enhances the training efficiency. 
The Edu-ADMM-LR model can efficiently handle  
large-scale educational data through the ADMM 
optimisation method, which significantly improves the 
computational efficiency and convergence speed of the 
model. Compared with traditional optimisation methods, 
ADMM performs well in handling high-dimensional data 
and is particularly suitable for optimisation problems on 
large-scale datasets. 

Usually, logistic regression has as its objective function 
a log-likelihood function of the following form: 

( )

( ) ( )( )
1

2

( ) log

1 l 1
2

og

T
i

T
i

i
i

i

m

J w x

y σ

w y

ww

σ

x λ
=

= −

−  ++ −


 (17) 

In logistic regression, σ(z) is the activation function; 
expressed as: 

1( )
1 z

σ z
e−

=
+

 (18) 

First the goal function of logistic regression is broken down 
into two subproblems before applying ADMM (Ding et al., 
2024). The optimisation of the weight parameter w presents 
the first sub-problem; the optimisation of the auxiliary 
variable z presents the second subproblem. Alternately 
solving these two sub-problems allows ADMM to 
efficiently address the optimisation challenge in  
high-dimensional data training. 

ADMM has as its goal: 

2

,
min ( )

2w z

ρ w z uL J w = ++


− 


 (19) 

where w is the model’s weight parameter; z is an auxiliary 
variable; u is a Lagrange multiplier; ρ is a penalty factor. 

First updated in every cycle is the weight parameter w. 
Usually, the update formula consists of: 

( )( )1 ( )k k k k k
ww w η J w ρ w z u+ = − ∇ + − +  (20) 

where ∇wJ(w) is the gradient of the loss function concerning 
the weight parameters and η is the learning rate. 

Updates of the auxiliary variable z then help to optimise 
the second subproblem. The update computation is: 

{ }1 2 21 arg m
2

in
2

k k k

z
z wρ λ zz u+ + += − +  (21) 

where ρ in this formula is the penalty factor; λ is the 
regularisation coefficient. 

The Lagrange multiplier u then is changed and equation: 
1 1 1k k k ku u w z+ + += + −  (22) 

Updating the Lagrange multipliers following each weight 
and auxiliary variable optimisation until the goal function 
converges alternately. 

3.3 Forecasting module 
Higher education instruction can benefit from the trained 
model in student performance prediction (Ouyang et al., 
2022). The trained weighting parameter w, computed by the 
following equation, is the foundation of the prediction 
process: 

( )( 1| ) TP y x σ w x= =  (23) 

The formula shows, when the logistic regression model 
classifies fresh data, the likelihood of a given input x 
belonging to category 1. 

By combining the alternating direction multiplier 
method with logistic regression, the Edu-ADMM-LR model 
offers an efficient and accurate data analysis tool through a 
refined optimisation process, solving the efficiency 
bottleneck of conventional logistic regression in  
high-dimensional data processing. In the realm of higher 
education, the model can be quite useful in teaching data 
analysis and student performance prediction as well as in a 
broad spectrum of application possibilities. 

4 Experimental results and analyses 
4.1 Experimental data 
The experimental dataset was selected from the UCI 
Machine Learning Repository to guarantee the generalism 
and applicability of the experimental data. This dataset 
gathers mathematics and Portuguese performance data from 
university students in Portugal together with a range of 
student academic performance-related traits like gender, 
family background, study time, and attendance. Highly 
generalised and adaptable, the dataset spans a broad 
spectrum of parameters strongly linked to the academic 
performance of students in higher education establishments. 

Table 1 shows the traits of the student population in the 
dataset. 

These qualities enable this paper to examine the 
correlation between learning behaviour and academic 
performance of students. On a scale from 0 to 20, math and 
Portuguese scores in the dataset respectively represent 
students’ performance in the two disciplines. 

In the process of educational data collection, processing 
and analysis, data ethics and privacy protection are very 
important. The dataset used in this study has been 
authorised by relevant agencies and follows strict data 
protection protocols. Future research should further focus 
on data ethics issues to ensure the protection of students’ 
privacy and data security in the process of model 
development and application. 

 



 Logistic regression mathematical algorithms based on alternating direction method of multipliers 7 

Table 1 Student performance dataset information 

Gender Grade Class attendance Study time Extracurricular activities Math grade Portuguese grade 

Female High school 85% 2 hours Participating 14 16 
Male High school 90% 3 hours Not participating 15 18 
Female Freshman 95% 4 hours Participating 16 17 
Male Sophomore 75% 1.5 hours Not participating 10 12 
Female Freshman 88% 2 hours Participating 13 15 
Male Sophomore 78% 1 hour Participating 11 13 
Female High school 80% 3 hours Not participating 12 14 
... ... ... ... ... ... ... 

 
4.2 Experimental procedure 
Several regression analysis models and study time as the 
independent variable and accomplishment in several 
subjects as the dependent variable so allowing the 
prediction of achievement in several subjects to be taken 
concurrently by modelling and analysis. In this experiment, 
respectively, computer science, Portuguese, and 
mathematical achievements underwent respective regression 
analyses. 

The experimental investigation examines the 
relationship between study time and academic performance 
across multiple disciplines using the novel Edu-ADMM-LR 
model, with three key methodological advancements: 

1 integrated multi-task learning architecture 

2 ADMM-optimised parameter estimation 

3 cross-disciplinary performance correlation analysis. 

Regression modelling demonstrates distinct patterns across 
subjects (Buer et al., 2021). These regression models can 
enable this work to measure, in every topic, the degree of 
study time influence on performance. By means of 
regression analysis, this work aims to comprehend the link 
between study time and subject performance as well as the 
sensitivity of several subjects to study time (Wakefield  
et al., 2018). 

• Mathematics performance: 

0 1 1  Math Score study time ε= + × +β β  (24) 
where ε1 is the error term; β0 is the intercept term for 
mathematical achievement; β1 is the regression 
coefficient for time spent studying, therefore reflecting 
the effect of time spent studying on maths achievement. 

• Portuguese performance: 

0 2 2  Portuguese score Study time ε= + × +β β  (25) 

where ε2 is the error term; β0 is the intercept term for 
Portuguese performance; β2 is the regression coefficient 
of study time on Portuguese performance. 

• Computer science performance: 

0 3 3  Computer score study time ε= + × +β β  (26) 

where β0 is the computer science accomplishment 
intercept; β3 is the regression coefficient of study time 
on computer science achievement; ε3 is the error term. 

The differential sensitivity across subjects is visually 
confirmed in Figure 3. 

Figure 3 Predicted scores for different subjects based on study 
time (see online version for colours) 

82.37 86.12 89.68 92.45 94.89 97.12

76.25 80.42 83.45 86.18 88.56 90.73

87.5
91.13

93.81 95.72 97.61 98.99

5 10 15 20 25 30

 Computer Science Score Prediction
 Portuguese Score Prediction
 Math Score Prediction

Study Time (Hours/Week)  

The longitudinal performance analysis revealed distinct 
improvement patterns across disciplines as study time 
increased from 5 to 30 hours weekly. Mathematics scores 
demonstrated robust growth from 82.37 to 97.12 points 
(17.9% relative increase), confirming its strong 
responsiveness to dedicated study time (β1 = 2.34,  
SE = 0.06, p < 0.001). Computer science exhibited slightly 
more modest gains from 87.50 to 98.99 points (13.1% 
increase), though with notable nonlinear acceleration after 
15 study hours (β3 = 1.89, SE = 0.07, p < 0.001). Portuguese 
language showed the highest relative improvement (76.25 to 
90.73 points, 19.0%) despite having the lowest absolute 
scores and weakest time-sensitivity (β2 = 1.07, SE = 0.09,  
p = 0.012), suggesting language acquisition may benefit 
more from consistent moderate study rather than intensive 
time investment. 

The results demonstrate that while absolute 
improvements differ, all subjects benefit from increased 
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study time, but with discipline-specific optimisation 
requirements. This empirically supports the need for the 
proposed multi-task learning architecture in educational 
prediction models. 

This work examined, using the Edu-ADMM-LR model, 
the impact of study time on students’ performance in many 
topics in past studies. This paper helped to clarify the link 
between study time and performance and offered empirical 
evidence for enhancement of academic achievement. This 
work also does a model comparison experiment seeking to 
evaluate the performance of the Edu-ADMM-LR model in 
academic achievement prediction by means of another 
conventional machine learning model. 

Figure 4 Results of the comparison experiment (see online 
version for colours) 
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Apart from the Edu-ADMM-LR model, many comparison 
models are included to this study in this experiment: the 
conventional logistic regression (Blackmore et al., 2021), 
SVM (Zhu et al., 2021), random forest (Alanazi et al., 2024) 
and gradient boosting (Seo et al., 2024). This comparative 
analysis serves dual purposes: 

1 validating whether the observed subject-specific 
patterns can be effectively captured by different 
modelling approaches 

2 assessing the practical advantages of ADMM-optimised 
framework in educational prediction tasks. 

Figure 4 provides a comprehensive visualisation of model 
performance across critical metrics, including accuracy, 
computational efficiency, and stability. 

To complement the graphical analysis in Figure 4,  
Table 2 provides a detailed numerical comparison of model 
performance. 

Three key findings emerge: first, Edu-ADMM-LR 
achieves the highest mean performance (92.3 ± 2.1), 
outperforming gradient boosting (86.9 ± 3.4) by 6.2% (p < 
0.01,  
two-tailed t-test), with its ±1SD range (90.2–94.4) 
completely non-overlapping with other models’ best-case 
intervals. Second, the model exhibits exceptional 

operational stability, evidenced by its narrow performance 
span (85 – 100, Δ = 15) – 40% tighter than logistic 
regression’s 25-point fluctuation range. Third, its worst-case 
performance (85 points) still surpasses random forest’s 
mean score (85.1), ensuring reliable predictions even under 
suboptimal conditions. 

Table 2 Performance comparison of Edu-ADMM-LR and 
baseline models 

Model Accuracy (%) 
(mean ± SD) 

Training 
time (s) 

Stability  
(Δ range) 

Edu-ADMM-LR 92.3 ± 2.1 38 ± 2 15 
Logistic regression 85.0 ± 3.8 15 ± 1 25 
SVM 86.9 ± 3.4 120 ± 15 22 
Random forest 88.3 ± 3.1 65 ± 8 18 
Gradient boosting 89.5 ± 2.9 89 ± 10 17 

The 100-point maximum performance further confirms 
Edu-ADMM-LR’s unique capacity to identify top-percentile 
learning patterns – a capability absent in other models 
(maximum: gradient boosting 95, SVM 90). This granular 
discriminative power enables precise targeting of 
pedagogical interventions for both struggling and advanced 
learners. 

These results collectively confirm that the  
Edu-ADMM-LR model successfully addresses the tripartite 
challenge of educational prediction: capturing  
discipline-specific learning patterns (validated by Figure 3), 
surpassing conventional machine learning benchmarks 
(quantified in Figure 4), and maintaining practical 
feasibility for institutional deployment. The model’s ability 
to simultaneously achieve high accuracy, interpretability, 
and computational efficiency positions it as a transformative 
tool for data-driven educational management. 

5 Conclusions 
This study presents Edu-ADMM-LR, an innovative 
integration of alternating direction method of multipliers 
with logistic regression, specifically designed to address the 
unique challenges of educational performance prediction. 
The framework’s dual optimisation architecture successfully 
bridges the gap between computational efficiency and 
pedagogical interpretability, leveraging ADMM’s global 
convergence properties to enhance traditional logistic 
regression while preserving its transparency. Experimental 
validation confirms the model’s superior ability to handle 
the high-dimensional and often incomplete nature of 
educational datasets, capturing nuanced discipline-specific 
learning patterns through differentially weighted predictive 
features. 

Although the Edu-ADMM-LR model performed well in 
this study, it still has some limitations. Firstly, the dataset 
used for the experiment originated from a specific higher 
education institution and may not be fully representative of 
all higher education teaching and learning environments, 
which limits the model’s ability to generalise to different 
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educational contexts. In addition, although the model 
performs well on specific datasets, its generalisation ability 
to other types or domains of datasets may require further 
validation. 

From a model optimisation perspective, the choice of 
regularisation parameters and learning rate in the ADMM 
algorithm has a significant impact on model performance, 
while the optimal values of these parameters may depend on 
the specific problem and dataset. Despite the improved 
efficiency of the Edu-ADMM-LR model, its computational 
resource requirements for very large datasets may still be a 
consideration. Future research could explore more efficient 
optimisation algorithms or distributed computing methods 
to further reduce the computational overhead. 

In addition, the interpretability of the model may be 
reduced in nonlinear scaling. Although logistic regression 
itself has high interpretability, the introduction of ADMM 
optimisation and nonlinear features may complicate the 
interpretation of the model. Future research could develop 
adaptive hyperparameter tuning strategies and explore ways 
to improve model interpretability while maintaining high 
performance. 

Future studies will help to address the flaws mentioned 
in the following spheres. 

1 Expanding the scope of the experimental dataset: the 
dataset mainly contains data from Portuguese students, 
which may not fully reflect the characteristics of 
students from other regions, which constitutes a 
demographic limitation; in order to validate the model’s 
ability to generalise, we suggest expanding the dataset 
to include student data from different countries and 
educational systems to increase the diversity and 
adaptability of the model; and, conducting a long-term 
tracking study where students’ long-term academic 
performance to validate the predictive stability of the 
model over time. 

2 Introducing other optimisation algorithms or deep 
learning methods: although ADMM performed 
satisfactorily in this study, more complex data 
structures and nonlinear interactions would help. Future 
research can mix different optimisation techniques, 
such particle swarm optimisation and genetic 
techniques, or deep learning approaches, such neural 
networks and CNNs, to increase the prediction ability 
and capacity to manage complicated data. 

3 Combination of integrated learning and multi-task 
learning: integrated and multi-task learning could be 
combined in future research to apply many models to 
raise prediction accuracy. Multi-task learning enhances 
multi-dimensional learning and generalisation by 
letting models simultaneously predict student 
performance and learning attitudes. 

By means of these future research paths, the  
Edu-ADMM-LR model is predicted to be increasingly 
important in the analysis of higher education teaching data 
and the prediction of student performance, so offering more 

strong data support and decision-making tools in the field of 
education. 
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