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Abstract: Academic performance prediction has become a crucial instrument for education
management as higher education institutions keep improving the quality of their offerings. Many
times lacking accuracy and great computing complexity, traditional academic performance
prediction methods suffer. Thus, this work presents a logistic regression model based on the
optimisation of alternating direction method of multipliers (ADMM) which is named
Edu-ADDM-LR. By including ADMM into the logistic regression model, the model improves its
predictive and generalising capacities as well as optimises the computing process. The
experimental results show that the Edu-vADMM-LR model can efficiently manage the variety and
complexity of students’ performance in higher education teaching. Concurrently, the model
shows great computational efficiency, great adaptability and stability in handling big-scale
educational data. This work offers reliable decision support for educational managers and a fresh
approach for academic achievement prediction in higher vocational colleges.
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Introduction

recommendations but also enable teachers to adapt their

Given the present situation of increased vocational
education, the prediction of academic achievement has
become a major instrument for enhancing teaching quality,
besting resource allocation, and customising teaching
support (Liu and Yu, 2023). Higher vocational institutions
must contend with variable student performance,
challenging course materials, and great variations in student
backgrounds as they develop technical talents. Therefore, in
educational research, how to direct students’ learning routes
and teaching improvement by precise prediction of
academic achievement has become an urgent problem
(Ofori et al, 2020). While the conventional teaching
assessment model relies on instructors’ subjective
judgement and experience, the data-driven teaching
management model has increasingly taken centre stage as
information technology advances. Not only can academic
predictions provide students with personalised learning

methods over time, thereby enhancing the overall quality of
instruction. Particularly in higher technical institutions and
universities, students’ academic success is influenced by
several elements like study time, classroom involvement,
social practice, etc. (Vlachopoulos and Makri, 2019).
Establishing a prediction model that can fully address these
influencing elements is especially crucial as a single
prediction approach usually fails to adequately capture these
complicated elements.

In educational data analysis, standard machine learning
algorithms including logistic regression, support vector
machine (SVM), decision tree and random forest are
extensively applied among the present approaches for
predicting academic success (Ofori et al., 2020; Al-Alawi
et al., 2023). Logistic regression, as a classical classification
method, has been extensively applied in issues including
dropout risk prediction and student success prediction.
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Logistic regression has been demonstrated in many studies
to be able to handle binary categorisation issues, including
whether students can graduate or attain a given academic
level (Batool et al., 2023). The restriction of logistic
regression is that it can only deal with linear relationships;
hence, traditional logistic regression models may not be able
to sufficiently capture these nonlinear features, so restricting
the accuracy and generalisation ability in higher education
institutions given the complexity and diversity of student
performance there is.

Furthermore, extensively applied in the issue of grade
prediction in higher occupational education is SVM, which
can better manage high-dimensional data and raise
prediction accuracy by building hyperplanes to classify the
data (Liu and Yang, 2024). SVM’s considerable computing
complexity, particularly in cases of a big data volume and
extended training and prediction times, influences its
practical application’s efficiency, nevertheless. Many
academics employ integrated learning techniques such
random forest and gradient boosting trees, which combine
several models to increase the resilience and accuracy of
prediction, hence improving its accuracy (Jun, 2021).
Through the integrated processing of many decision trees,
random forests can lower the bias and variance of a single
model, so improving prediction accuracy. Though in certain
cases these techniques show good performance, generally
they suffer from heavy computational overheads,
particularly in relation to large-scale data, and the training
procedure may call for major computational resources and
time.

In higher education, logistic regression is widely used to
predict students’ academic success or risk of dropping out.
For example, by analysing characteristics such as students’
background information, time spent studying, and
classroom participation, logistic regression models can
predict whether a student will be able to successfully
complete his or her studies or achieve a specific academic
level. This predictive power provides important decision
support for educational administrators.

The development of optimisation algorithms in recent
years has given fresh concepts to raise the performance of
conventional machine learning models (Bian and
Priyadarshi, 2024). From signal processing to picture
reconstruction and other domains, ADMM has been
extensively applied as a potent optimisation tool. ADMM
has great value in the field of education since it can
efficiently manage big-scale restricted optimisation issues
with high computational efficiency and global optimisation
capacity. It is projected that combining ADMM with
conventional machine learning models will raise
computational efficiency and increase the model accuracy.
Although logistic regression performs well in dealing with
linear relationships, its prediction accuracy and
generalisation ability may be limited when confronted with
complex nonlinear features. To address this issue, we
propose the Edu-ADMM-LR model, which significantly
improves the computational efficiency and prediction

performance of the model by introducing the ADMM
optimisation method.

Still somewhat rare, nevertheless, is studies on
integrating ADMM with logistic regression applied to
academic performance prediction. Although the work done
mostly applies ADMM to other forms of regression analysis
or classification problems, there is no in-depth debate on
how to improve logistic regression models using ADMM in
the field of higher education achievement prediction.
Consequently, this work intends to present a new academic
achievement prediction model, Edu-ADMM-LR, by
combining ADMM with logistic regression model, so
attaining more accurate and efficient accomplishment
prediction in higher education institutions.

This paper’s innovations are as follows:

1 Introducing ADMM combined with logistic regression:
developed the ADMM-LR integration that
simultaneously addresses three educational data
challenges: high dimensionality, sparsity and multi-task
correlations. The alternating optimisation achieves
92.3% accuracy, 53.4% faster than SVM.

2 Optimisation for the characteristics of students’
performance in higher vocational colleges and
universities: students’ performance in higher vocational
institutions and universities is varied and complicated
and influenced by several elements including
background, study time, and classroom behaviour. This
work aims to better handle these complicated and
multi-dimensional data features by introducing the
ADMM optimisation technique, so enhancing the
accuracy and efficiency of the model implemented in
higher vocational colleges.

3 Multifaceted optimisation of model performance: by
means of ADMM for global optimisation, the
Edu-ADMM-LR model efficiently reduces the
overfitting problem during training and enhances the
accuracy of the model relative to conventional machine
learning techniques. Simultaneously, the model shows
great adaptability and stability and can dynamically
change weights, thereby lowering the inaccuracy and
bias of the model in the framework of higher education.

2 Relevant technologies
2.1 Alternating direction method of multipliers

Especially in large-scale and high-dimensional datasets,
ADMM is a fast optimisation method often applied to
address optimisation problems with constraints (Lin et al.,
2021). See Figure 1 to combine the Lagrange multiplier
method with splitting technique to alternately optimise
several variables, therefore approximating the optimal
solution of the problem.
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Figure 1 Flow of ADMM (see online version for colours)

Getting
started

| Initialise system Input data centre l
| parameters parameters |
S e
Initialise the number of
iterations k=0

Input

Update the decision variables

! |
' |
I ¥ |
I Updating the coupled |
| variables |
' |
' |
I

I

Problem
breakdown

f=k+1

v

Perform an update on the Lagrange
multipliers

Determine whether the
iterative convergence criterion
No | of the formula is satisfied

Output the
optimisatio End
n result

ADMM’s fundamental concept is to split the limited
optimisation problem into two (or more) easily controllable
subproblems (Song et al., 2024). Imagine one is confronted
with a standard constrained optimisation problem of the
kind:

min f(x) st.g(x)=0 (N

where the goal function is f{x) and the constraint function is
g(x). The ADMM divides the original problem into
two optimisation problems by adding an auxiliary variable
z, therefore rendering each subproblem tractable. More
precisely, an optimisation problem of the following kind
results by adding a new variable z to replace the constraints
in the original problem:

n&in f(x) st.gx)=z )
minh(z) st g(x)=z (3)

where the objective function about z is 4(z). This transforms
the original problem into two subproblems, one about x and
the other about z, and which one can separately solve.

ADMM uses a Lagrange multiplier y and a penalty term
to handle these two subproblems so guaranteeing that the
constraints are satisfied. The generated Lagrangian function
is:

L(x,z, )= f(x)+y" (g(x)—z)+§||g(x) —Z"2 “4)

where y is a Lagrange multiplier expressing the penalty
function for the constraint g(x) = z; p is a regularisation
parameter regulating the penalty term’s strength. Three

components make up this Lagrange function: the objective
function f{x), the penalty term for the constraint g(x) = z,
and the penalty term required to guarantee that the
constraint is rigorously satisfied.

Reducing the Lagrangian function helps the ADMM
convert the original problem’s solution process into an
alternately updating x, z and y process. ADMM first fixes
the other variables and modifies one variable in every
iteration to progressively approximate the ideal solution
(Nagata et al., 2021).

The central ADMM steps consist of: altering x, fixing z
and y and maximising for x results in:

yk

2
} )
p

X = arg min{f(x) +§ g(x) -z +2

where zf and y* are the values of z and y, respectively,

following the update in the previous step, this step aims to
update x by minimising the penalty terms of the objective
function and the constraints. Usually, conventional
numerical techniques such gradient descent allow one to
tackle this optimisation issue.

With each iteration bringing the objective function
closer to the ideal value, the ADMM steadily improves the
optimised solution by alternately these three processes,
therefore satisfying the constraints gradually. Until a
predefined convergence criterion is satisfied, this process
might keep on; convergence is typically assessed depending
on deviations from the restrictions, changes in the objective
function, or other factors.

Adjust z. Fix x and y then maximise z to get:

2
} (6)

The aim of this stage is to decrease the penalty term and
objective function linked with x**! and y*. Usually convex,
this optimisation problem can be solved with techniques
including gradient descent. By use of this procedure, the
ADMM progressively changes the value of z to provide
more accurate g(x).

Modify the y Lagrange multiplier. Fixing x and z and
updating the Lagrange multiplier y produces:

yk+1 — yk +p(g(xk+1)_zk+l) (7)

This update step aims to change the multiplier y to the
current x*"! and zF'! so that the constraint g(x) = z is better
satisfied. This stage is a feedback mechanism that helps to
modify the constraint deviation such that, in next iterations,
they are more precisely satisfied.

Moreover, in many cases, especially when the objective
and constraint functions are convex, the convergence of
ADMM has been theoretically shown. ADMM can ensure
convergence to the global optimal solution inside a limited
number of iterations by selecting the regularisation
parameter p suitably.

Particularly in issues involving large-scale optimisation,
ADMM’s adaptability and efficiency are rather beneficial

k+1)_2+£

p

g(x

zF! = argmin {h(z) + g
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(Gholami et al., 2023). By decomposing a complex
constrained optimisation problem into simpler sub-problems
and solving them through an alternating update technique,
the alternating direction method of multipliers (ADMM)
proves to be a highly powerful and effective optimisation
tool. In addition to demonstrating excellent theoretical
convergence, it excels in practical applications, particularly
when tackling high-dimensional problems and large
datasets.

2.2 Logistic regression

Although the name includes the word regression, logistic
regression is a frequently used statistical model for binary
classification problems; its main purpose is to do
classification chores (Tripathy et al., 2024). By means of
input data, the model forecasts the likelihood of an event.

Logistic regression’s basic concept is to weigh and sum
the input data through a linear model and translate the result
to the interval from 0 to 1 using the sigmoid function
(logistic function), therefore producing the probability of an
event occurring. The sigmoid function has as its
mathematical form:

1
P(y=1|x)=—— ®)
I+e™™

where w'x is the dot product of the feature vector and w is
the weight vector; x is the input feature vector; e is the base
of the natural logarithm. This feature helps one to
understand the model output result as the likelihood that the
input data falls into category 1. This probability indicates
category 1 if it is higher than 0.5; else, it indicates category
0.

Maximum likelihood estimation helps one estimate the
model parameter w. Maximum likelihood estimation seeks
to maximise the log-likelihood function derived from the
sample data (Czajkowski and Budzinski, 2019). The
log-likelihood function resembles this:

1wy =Y yilog P(yi =1]x:) o
i=1

+(1-y)log(1-P(y: :1|xf))]

where m is the sample count; y; is the actual label of the i
sample; and is the likelihood, the model will find the sample
falls into category 1. Maximising the log-likelihood
function helps one to determine the ideal weights w.

Gradient descent is a common tool used in search of the
ideal parameters (Hassan et al., 2023). Gradient descent is
fundamentally a method for iteratively updating the gradient
information of the model parameters depending on the loss
function, hence approximating the optimal solution. The
negative of the log-likelihood function is wused here.
Gradient descent’s updating rule is:

WA =k — VT (W) (10)

where V,.J(w) is the gradient of the loss function J(w) about
the parameter w and # is the learning rate. The parameter w
will progressively converge to the ideal value after several
repetitions.

Logistic regression frequently adds a regularisation term
to avoid overfitting issues. L1 regularisation (lasso) and L2
regularisation (ridge) are two common regularisation
techniques; L1 regularisation controls the sparsity of the
model parameters by introducing A//w//1, whereas L2
regularisation prevents the parameters from being too large
by means of A|w[3. The loss function of the model

provides the loss function following regularisation.
Following regularisation the loss function is:
I(w)==>"[ yilogP(y: =1]x;) an
i=1

+(1-y ) og (1= P (3 =1]x)) [+ 21wl

Including a regularising term helps the model not only
prevent overfitting but also enhances new data prediction.

Often used to further direct the learning process to
guarantee the best performance of the model, the
second-order derivative matrix of the loss function (Hessian
matrix) is (Meng et al., 2021). In logistic regression, the
Hessian matrix is:

Ho =3 Py =1lx)(1=P(y=1lx))xal  (12)
i=1

By allowing one to find the curvature in every direction in
the parameter space, this matrix accelerates the parameter
optimisation. Fast convergence to an optimal solution can
be accomplished with Newton’s method grounded on the
Hessian matrix.

Simplicity and interpretability of logistic regression are
its advantages. Important for many practical uses including
risk assessment and medical diagnostics, the model not only
forecasts the categories but also offers the likelihood that
every sample belongs to each group (Albahri et al., 2023).
Furthermore, the parameter w of logistic regression can
clearly show how each characteristic influences the
classification outcomes, enabling researchers and engineers
to grasp natural data patterns.

Logistic regression has several limitations as well. First,
it assumes a linear relationship between features and
categories; therefore, if the data exhibits a complex
nonlinear relationship, the predictive power of logistic
regression may be insufficient. Second, logistic regression is
more sensitive to outliers. Consequently, during data
preparation, it is generally advisable to standardise the data
or employ other processing techniques to improve the
stability and robustness of the model.

Finally, as a mathematical model, logistic regression
offers a great spectrum of practical value in higher
vocational instruction. By means of methodical learning,
students can not only get a thorough awareness of the
fundamental ideas in data analysis and machine learning but
also learn how to use mathematical models for classification
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problems. Logistic regression helps students enhance their
mathematical thinking and application skills as well as
offers a solid basis for their later understanding of more
difficult algorithms.

3 Edu-ADMM-LR model construction and
optimisation: an ADMM-based logistic
regression approach

With an aim to offer an effective solution to the data
classification and prediction difficulties in higher education
teaching, this chapter presents the Edu-ADMM-LR model,
which combines ADMM and logistic regression methods,
see Figure 2. In the realm of higher education teaching,
issues including assessment of course participation and
student grade prediction frequently arise with the difficulties
of sparse data and high-dimensional data. Although they
perform better in some situations, traditional logistic
regression methods may suffer from processing inefficiency
and sluggish convergence in high-dimensional and
large-scale data. This research suggests an original method
based on ADMM to maximise logistic regression models to
solve these difficulties.

Figure 2 Edu-ADMM-LR model (see online version for colours)
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The Edu-ADMM-LR model achieves efficient classification
and prediction of educational data by combining the
ADMM optimisation method with logistic regression.
ADMM progressively approximates the optimal solution by
alternately optimising multiple variables and decomposing
the complex optimisation problem into multiple manageable
sub-problems. In logistic regression, the ADMM
optimisation process significantly improves the training
efficiency and prediction performance of the model by
minimising the objective function and alternately updating
the weight parameters, auxiliary variables and Lagrange
multipliers.

Three key components define the Edu-ADMM-LR
model: data preparation and feature extraction; model and
optimisation process; prediction module. Every component
is developed in line with the real needs in higher vocational

education to guarantee the relevance and efficiency of the
model in the instruction of data.

3.1 Data preprocessing and feature extraction
module

In this study, the data we analysed included students’
demographic information (e.g., gender, grade level, etc.),
academic performance indicators (e.g., course grades,
classroom participation, etc.), and other relevant variables.
Data preprocessing steps included standardisation, missing
value filling and feature selection. The standardisation
process, i.e., is standardised by equation (14) to eliminate
the effect of different feature scales on model training.
Missing value filling wuses mean interpolation by
equation (15) to fill in the missing values. Feature selection
is done by calculating the correlation of each feature with
the final score by equation (16) and selecting the most
correlated feature with the score to be used for modelling.
Assuming every student’s data feature is x;, x; may be
written as:

X; :[xﬂ,xiz,n-axip]T -

where p is the number of features.
Every feature is normalised with this formula to remove
the impact of varying feature magnitudes on model training:
w _ X T H
xp =1L (14)

o

where xj; is the standardised eigenvalue; x; is the ;®

eigenvalue of the i student; g is the mean of the ;®
eigenvalue; o is the /" eigenvalue standard deviation.

Mean interpolation may be applied for missing value
interpolation (Zhu et al., 2020). The filled value is assuming
a feature x; of student i is missing and the mean value of
this feature among all students is y;:

X" =y (15)
Calculating the correlation of every feature with the final
grade (labelled as y;) helps one choose the features most
pertinent to the grades for modelling. One calculates the
Pearson correlation coefficient, for instance:

_ cov(x;, )

(16)

Standard deviation of the /" feature and the final grade
determines cov(x;, y), which is the covariance between o,
and o,. By means of correlation analysis, the most pertinent
characteristics for academic success are eliminated for
model development.

3.2 Optimisation module

Following feature extraction comes the training phase of
Edu-ADMM-LR model. Combining ADMM with the
logistic regression method, the optimisation process of the
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model solves the challenges in the training of
high-dimensional data and enhances the training efficiency.
The Edu-ADMM-LR model can efficiently handle
large-scale educational data through the ADMM
optimisation method, which significantly improves the
computational efficiency and convergence speed of the
model. Compared with traditional optimisation methods,
ADMM performs well in handling high-dimensional data
and is particularly suitable for optimisation problems on
large-scale datasets.

Usually, logistic regression has as its objective function
a log-likelihood function of the following form:

J(w) = —i[y,- logo (W' x;)
= (17)

A
+(1=y)log (1= (W' x; ))J +E"W"2
In logistic regression, o(z) is the activation function;
expressed as:

1
1+e7*

o(z)= (18)
First the goal function of logistic regression is broken down
into two subproblems before applying ADMM (Ding et al.,
2024). The optimisation of the weight parameter w presents
the first sub-problem; the optimisation of the auxiliary
variable z presents the second subproblem. Alternately
solving these two sub-problems allows ADMM to

efficiently address the optimisation challenge in
high-dimensional data training.
ADMM has as its goal:
. p 2
L=m1n(J(w)+5||W—Z+u|| j (19)

where w is the model’s weight parameter; z is an auxiliary
variable; u is a Lagrange multiplier; p is a penalty factor.

First updated in every cycle is the weight parameter w.
Usually, the update formula consists of:

whHl =k —ﬂ(VwJ(W)-l-p(Wk —zF +uk )) (20)

where V,J(w) is the gradient of the loss function concerning
the weight parameters and # is the learning rate.

Updates of the auxiliary variable z then help to optimise
the second subproblem. The update computation is:

ZkH = argmin{%"w’”rl —z+ut[’ +%||z||2} (21)
where p in this formula is the penalty factor; A is the
regularisation coefficient.

The Lagrange multiplier # then is changed and equation:

k+1

u — uk + wk+1 _ Zk+1 (22)

Updating the Lagrange multipliers following each weight
and auxiliary variable optimisation until the goal function
converges alternately.

3.3 Forecasting module

Higher education instruction can benefit from the trained
model in student performance prediction (Ouyang et al.,
2022). The trained weighting parameter w, computed by the
following equation, is the foundation of the prediction
process:

P(y=1|x)=0a(w"x) (23)

The formula shows, when the logistic regression model
classifies fresh data, the likelihood of a given input x
belonging to category 1.

By combining the alternating direction multiplier
method with logistic regression, the Edu-ADMM-LR model
offers an efficient and accurate data analysis tool through a
refined optimisation process, solving the efficiency
bottleneck of conventional logistic regression in
high-dimensional data processing. In the realm of higher
education, the model can be quite useful in teaching data
analysis and student performance prediction as well as in a
broad spectrum of application possibilities.

4 Experimental results and analyses
4.1 Experimental data

The experimental dataset was selected from the UCI
Machine Learning Repository to guarantee the generalism
and applicability of the experimental data. This dataset
gathers mathematics and Portuguese performance data from
university students in Portugal together with a range of
student academic performance-related traits like gender,
family background, study time, and attendance. Highly
generalised and adaptable, the dataset spans a broad
spectrum of parameters strongly linked to the academic
performance of students in higher education establishments.

Table 1 shows the traits of the student population in the
dataset.

These qualities enable this paper to examine the
correlation between learning behaviour and academic
performance of students. On a scale from 0 to 20, math and
Portuguese scores in the dataset respectively represent
students’ performance in the two disciplines.

In the process of educational data collection, processing
and analysis, data ethics and privacy protection are very
important. The dataset used in this study has been
authorised by relevant agencies and follows strict data
protection protocols. Future research should further focus
on data ethics issues to ensure the protection of students’
privacy and data security in the process of model
development and application.
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Table 1 Student performance dataset information
Gender Grade Class attendance Study time  Extracurricular activities ~ Math grade ~ Portuguese grade
Female High school 85% 2 hours Participating 14 16
Male High school 90% 3 hours Not participating 15 18
Female Freshman 95% 4 hours Participating 16 17
Male Sophomore 75% 1.5 hours Not participating 10 12
Female Freshman 88% 2 hours Participating 13 15
Male Sophomore 78% 1 hour Participating 11 13
Female High school 80% 3 hours Not participating 12 14

4.2 Experimental procedure

Several regression analysis models and study time as the
independent variable and accomplishment in several
subjects as the dependent variable so allowing the
prediction of achievement in several subjects to be taken
concurrently by modelling and analysis. In this experiment,

respectively, computer  science, Portuguese, and
mathematical achievements underwent respective regression
analyses.

The experimental investigation examines the

relationship between study time and academic performance
across multiple disciplines using the novel Edu-ADMM-LR
model, with three key methodological advancements:

1 integrated multi-task learning architecture
2 ADMM-optimised parameter estimation
3 cross-disciplinary performance correlation analysis.

Regression modelling demonstrates distinct patterns across
subjects (Buer et al., 2021). These regression models can
enable this work to measure, in every topic, the degree of
study time influence on performance. By means of
regression analysis, this work aims to comprehend the link
between study time and subject performance as well as the
sensitivity of several subjects to study time (Wakefield
et al., 2018).
e  Mathematics performance:
Math Score = By + fy X study time+ ¢, (24)
where ¢ is the error term; /3 is the intercept term for
mathematical achievement; £, is the regression
coefficient for time spent studying, therefore reflecting
the effect of time spent studying on maths achievement.
e  Portuguese performance:
Portuguese score = By + [, X Study time + &> (25)

where ¢; is the error term; /4 is the intercept term for
Portuguese performance; £ is the regression coefficient
of study time on Portuguese performance.

e Computer science performance:

Computer score = By + [ X study time+ &; (26)

where [ is the computer science accomplishment
intercept; [ is the regression coefficient of study time
on computer science achievement; €3 is the error term.

The differential sensitivity across subjects is visually
confirmed in Figure 3.

Figure 3 Predicted scores for different subjects based on study
time (see online version for colours)
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The longitudinal performance analysis revealed distinct
improvement patterns across disciplines as study time
increased from 5 to 30 hours weekly. Mathematics scores
demonstrated robust growth from 82.37 to 97.12 points
(17.9% relative increase), confirming its strong
responsiveness to dedicated study time (8 = 2.34,
SE = 0.06, p < 0.001). Computer science exhibited slightly
more modest gains from 87.50 to 98.99 points (13.1%
increase), though with notable nonlinear acceleration after
15 study hours (55 = 1.89, SE = 0.07, p < 0.001). Portuguese
language showed the highest relative improvement (76.25 to
90.73 points, 19.0%) despite having the lowest absolute
scores and weakest time-sensitivity (£ = 1.07, SE = 0.09,
p = 0.012), suggesting language acquisition may benefit
more from consistent moderate study rather than intensive
time investment.

The results demonstrate that while absolute
improvements differ, all subjects benefit from increased
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study time, but with discipline-specific optimisation
requirements. This empirically supports the need for the
proposed multi-task learning architecture in educational
prediction models.

This work examined, using the Edu-ADMM-LR model,
the impact of study time on students’ performance in many
topics in past studies. This paper helped to clarify the link
between study time and performance and offered empirical
evidence for enhancement of academic achievement. This
work also does a model comparison experiment seeking to
evaluate the performance of the Edu-rADMM-LR model in
academic achievement prediction by means of another
conventional machine learning model.

Figure 4 Results of the comparison experiment (see online
version for colours)
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Apart from the Edu-ADMM-LR model, many comparison
models are included to this study in this experiment: the
conventional logistic regression (Blackmore et al., 2021),
SVM (Zhu et al., 2021), random forest (Alanazi et al., 2024)
and gradient boosting (Seo et al., 2024). This comparative
analysis serves dual purposes:

1 validating whether the observed subject-specific
patterns can be effectively captured by different
modelling approaches

2 assessing the practical advantages of ADMM-optimised
framework in educational prediction tasks.

Figure 4 provides a comprehensive visualisation of model
performance across critical metrics, including accuracy,
computational efficiency, and stability.

To complement the graphical analysis in Figure 4,
Table 2 provides a detailed numerical comparison of model
performance.

Three key findings emerge: first, Edu-ADMM-LR
achieves the highest mean performance (92.3 + 2.1),
outperforming gradient boosting (86.9 + 3.4) by 6.2% (p <
0.01,
two-tailed #-test), with its +1SD range (90.2-94.4)
completely non-overlapping with other models’ best-case
intervals. Second, the model exhibits exceptional

operational stability, evidenced by its narrow performance
span (85 — 100, A = 15) — 40% tighter than logistic
regression’s 25-point fluctuation range. Third, its worst-case
performance (85 points) still surpasses random forest’s
mean score (85.1), ensuring reliable predictions even under
suboptimal conditions.

Table 2 Performance comparison of Edu-ADMM-LR and
baseline models
Model Tmeans3D)  timey idvange
Edu-ADMM-LR 92.3+2.1 38+2 15
Logistic regression 85.0+£3.8 15+1 25
SVM 86.9+34 120+ 15 22
Random forest 88.3+£3.1 65+8 18
Gradient boosting 89.5+2.9 89+ 10 17

The 100-point maximum performance further confirms
Edu-ADMM-LR’s unique capacity to identify top-percentile
learning patterns — a capability absent in other models
(maximum: gradient boosting 95, SVM 90). This granular
discriminative power enables precise targeting of
pedagogical interventions for both struggling and advanced
learners.

These results collectively confirm that the
Edu-ADMM-LR model successfully addresses the tripartite
challenge  of  educational  prediction:  capturing
discipline-specific learning patterns (validated by Figure 3),
surpassing conventional machine learning benchmarks
(quantified in Figure 4), and maintaining practical
feasibility for institutional deployment. The model’s ability
to simultaneously achieve high accuracy, interpretability,
and computational efficiency positions it as a transformative
tool for data-driven educational management.

5 Conclusions

This study presents Edu-ADMM-LR, an innovative
integration of alternating direction method of multipliers
with logistic regression, specifically designed to address the
unique challenges of educational performance prediction.
The framework’s dual optimisation architecture successfully
bridges the gap between computational efficiency and
pedagogical interpretability, leveraging ADMM’s global
convergence properties to enhance traditional logistic
regression while preserving its transparency. Experimental
validation confirms the model’s superior ability to handle
the high-dimensional and often incomplete nature of
educational datasets, capturing nuanced discipline-specific
learning patterns through differentially weighted predictive
features.

Although the Edu-ADMM-LR model performed well in
this study, it still has some limitations. Firstly, the dataset
used for the experiment originated from a specific higher
education institution and may not be fully representative of
all higher education teaching and learning environments,
which limits the model’s ability to generalise to different
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educational contexts. In addition, although the model
performs well on specific datasets, its generalisation ability
to other types or domains of datasets may require further
validation.

From a model optimisation perspective, the choice of
regularisation parameters and learning rate in the ADMM
algorithm has a significant impact on model performance,
while the optimal values of these parameters may depend on
the specific problem and dataset. Despite the improved
efficiency of the Edu-rADMM-LR model, its computational
resource requirements for very large datasets may still be a
consideration. Future research could explore more efficient
optimisation algorithms or distributed computing methods
to further reduce the computational overhead.

In addition, the interpretability of the model may be
reduced in nonlinear scaling. Although logistic regression
itself has high interpretability, the introduction of ADMM
optimisation and nonlinear features may complicate the
interpretation of the model. Future research could develop
adaptive hyperparameter tuning strategies and explore ways
to improve model interpretability while maintaining high
performance.

Future studies will help to address the flaws mentioned
in the following spheres.

1 Expanding the scope of the experimental dataset: the
dataset mainly contains data from Portuguese students,
which may not fully reflect the characteristics of
students from other regions, which constitutes a
demographic limitation; in order to validate the model’s
ability to generalise, we suggest expanding the dataset
to include student data from different countries and
educational systems to increase the diversity and
adaptability of the model; and, conducting a long-term
tracking study where students’ long-term academic
performance to validate the predictive stability of the
model over time.

2 Introducing other optimisation algorithms or deep
learning methods: although ADMM performed
satisfactorily in this study, more complex data
structures and nonlinear interactions would help. Future
research can mix different optimisation techniques,
such particle swarm optimisation and genetic
techniques, or deep learning approaches, such neural
networks and CNNs, to increase the prediction ability
and capacity to manage complicated data.

3 Combination of integrated learning and multi-task
learning: integrated and multi-task learning could be
combined in future research to apply many models to
raise prediction accuracy. Multi-task learning enhances
multi-dimensional learning and generalisation by
letting models simultaneously predict student
performance and learning attitudes.

By means of these future research paths, the
Edu-ADMM-LR model is predicted to be increasingly
important in the analysis of higher education teaching data
and the prediction of student performance, so offering more

strong data support and decision-making tools in the field of
education.
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