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Abstract: Gene regulatory networks (GRNs) inference appeared as valuable
tools for detecting irregularities in cell regulation. Association rule mining
(ARM) encompasses specific data mining methods capable of inferring
unknown associations between genes. In response to the scarcity of
ARM-based GRN inference, a novel metaheuristic algorithm, DCSA-QAR, is
presented. This algorithm infers quantitative association rules by discretising
the crow search algorithm. A first series of experiments involved comparison
with five metaheuristic algorithms on six datasets. The results showed that,
for Co-citation and YeastNet datasets, our algorithm was first in precision
(100%), specificity (100%) and score (3.75). A second series of experiments
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involved nine information-theoretic algorithms through the DREAM3 and
SOS networks. The average results on DREAM3 datasets are compensated
by the SOS real datasets results: the best in accuracy, and true positives. As
an overall appraisal, DCSA-QAR can be considered as a good candidate for
ARM-based metaheuristic GRNs inference.

Keywords: artificial intelligence; bioinformatics; gene regulatory networks;
GRNs; data mining; soft computing; mining association rules.
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1 Introduction

Gene regulatory networks (GRNs) represent a comprehensive framework for modelling
the complex regulatory interactions among genes within the living cell and are now
considered as an essential tool in bioinformatics and computational biology. Although
gene expression is a complex, multifactorial process, it can be simplified and represented
as a GRN. In this network, each node corresponds to a gene, and the directed edges
signify either the activation or inhibition of a target gene. One of the main issues
addressed by computational biology is to explain the dynamic behaviour of genes
and how they are functionally related. As a result, GRNs inference, also known
as GRNs reconstruction or reverse engineering, is a critical task as it facilitates
the understanding of complex regulatory interactions among genes within biological
systems. GRN inference can sustain biomedical research in identifying GRNs’ behaviour
and could assist in discovering irregularities in cell behaviour in addition to finding
intricate mechanisms governing various cellular processes, including development,
disease, response to environmental conditions, and death. The inference process and its
relevant computational methods will help in leading to specific gene-targeting treatment,
thus inducing a crucial impact on medicine and pharmacy; and public health at large
(Vijesh et al., 2013).

Computationally speaking, GRN inference boils down to developing algorithms
that can analyse cells’ control and regulation of genes’ expressions, on the basis of
experimental conditions such as time series or steady-state information. The design
of effective algorithms for the study of genetic data has received substantial attention
due to the growing volume of biological data, boosted by high-throughput microarray
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technology, profoundly changing the genes processing methods. This innovative
technology has shown its ability of concurrently controlling thousands of genes’
expression; thus making GRNs inference from gene expression profiles readily available
(Zhao et al., 2021). The principal computational issue resides in first finding the genes
that are more relevant and second in identifying the regulatory relationships between
them. Additionally, because of our actual lack of knowledge of the complexities of
dynamic molecular networks, many GRNs are difficult to be accurately represented by
any parsimonious modelling (Chai et al., 2014).

Despite the existence of innumerable algorithms for GRN inference based on
many approaches, only very few considered the model-free approach supplemented
by metaheuristic methods for GRN inference; hence our contribution. Among the
model-free popular approaches that are successfully in use, we find data mining methods
which are predominantly attractive because they offer a way to identify regulatory
mechanisms directly from the input/output data without any apriori model construction.
More specifically, we are interested in finding frequent patterns in genes’ behaviour.
These patterns play an essential role in many data mining tasks. They are used as a basis
for mining interesting relationships in datasets, and consequently applied to association
rules with a great degree of success.

Unlike classification, ARM is an unsupervised learning method. Indeed, the ARM
approach is essentially characterised by its descriptive nature, as it identifies patterns
that elucidate the data. In other words, it is employed to use the attributes of the
data itself, as opposed to forecasting the class of unfamiliar data as proposed by the
classification approach. The foundation of the ARM methodology primarily stems from
the well-known market basket analysis concept. In this scenario, the main objective
revolves around establishing patterns hidden within customer profiles regarding the
concurrent purchase of products (Srikant and Agrawal, 1996).

Since the ARM approach is a highly abstract model-free technique, it only claims
the least amount of data, with an important capability to achieve inferences, leading to
GRNSs inference. Additionally, the simplicity of the ARM approach allows the inference
of large-size models with a higher speed of analysis. In our case, an ARM stands
for inferring existing relationships among genes on the basis of a gene experimental
database.

Furthermore, given that gene expressions are quantified through numerical values,
we rely on a specialised form of association rules, known as quantitative association
rule (QAR). In this framework, either the antecedent or the consequent must encompass
a numerical attribute, reflecting the inherent nature of gene measurements (Zhu, 2009).
The use of QAR as an inference method for GRNs is unfortunately not enough. This
is so because as far as GRNs inference is concerned, not only do we need to generate
sufficient rules, but more importantly, we need to obtain the best possible results
regarding some chosen criteria; hence the use of a metaheuristic approach. This latter is
an improved population-based derivative of the genetic algorithms’ paradigm founded
on randomly generating an initial population of solutions, then using ad hoc operators to
curtail it, and finally keeping only the most suitable solutions according to a prescribed
fitness function. The process is repeated until a prescribed threshold is attained, such as
the number of iterations, or maximum runtime (Liu et al., 2020). Although metaheuristic
methods sometimes require time-consuming parameter tuning and do not guarantee
finding global optima, they nonetheless represent valuable tools in GRN inference due
to their flexibility and ability to tackle complex problems as a whole. As an example
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of metaheuristic optimisation, we chose the crow search algorithm (CSA) because it
has effectively tackled continuous problems and delivered remarkable outcomes. This
approach draws inspiration from the behaviour of crows, which stash away surplus food
in concealed locations and retrieve it as required. As a constraint and using an intelligent
survival tactic, crows have to keep food in safe places in order not to be stolen by other
crows (Askarzadeh, 2016).

Our proposal, subsequently called discrete crow search algorithm for mining
quantitative association rules (DCSA-QAR), is a discrete version of the existing general
purpose continuous CSA algorithm for mining quantitative association rules (Ledmi
et al., 2020). The present paper contributes the following:

e The use of a model-free approach offered by ARM and its incorporation within a
metaheuristic method for GRN inference.

e  The discretisation of the CSA: this process involves employing the
confidence-based unsupervised discretisation algorithm (C-BUDA), aiming to
achieve the optimal split within a numerical attribute interval. This is
accomplished by maximising class prediction.

e  The undertaking of a first series of experiments involving the comparison of our
method with metaheuristic algorithms using the following datasets and
competitors:

a  Expression datasets were sampled and used: (Cho et al., 1998; Someren et al.,
2000; Spellman et al., 1999), along with a subset of 20 well-described genes.

b  True networks (Lee et al., 2007; Dwight et al., 2002; Lee et al., 2004).

¢ Competitors: comparison of our method is done against five state-of-the-art
metaheuristic algorithms including preliminary parameter settings (Soinov
et al., 2003; Nepomuceno-Chamorro et al., 2010; Gallo et al., 2011;
Martinez-Ballesteros et al., 2014).

e  The undertaking of a second series of experiments involving the comparison with
other popular algorithms, such as information-theoretic ones using the following
datasets and competitors:

a  Simulated dataset: dialogue for reverse engineering assessments and methods
challenge (DREAM), namely DREAM3-10, DREAM3-50 (Marbach et al.,
2010), and DREAM3-100 (Margolin et al., 2006)

b  Real dataset: SOS network dataset (Ronen et al., 2002).

¢ Competitors: ARACNE (Basso et al., 2005), CLR (Faith et al., 2007), MI3
(Luo et al., 2008), MIDER (Villaverde et al., 2014), MRNET (Meyer et al.,
2007), MRMSn (Liu et al., 2016), PCA-CMI (Zhang et al., 2011),
RRMRNET (Liu et al., 2017), RWRNET (Liu et al., 2020).

As shown in the experiments, the overall performance of DCSA-QAR yielded
encouraging outcomes. The rest of the paper is structured as follows: Section 2 describes
related works. Section 3 describes the proposed method. Section 4 reports the materials
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and methods used. Section 5 describes the experiments with discussion of the results.
Lastly, in Section 6, the key conclusions and prospects for future work are summarised.

2 Related work

In this section, we describe key contributions in GRN inference, concentrating on
significant methods that carry widespread importance. We distinguish three types
of methods: model-based, model-free and hybrid. Model-based methods incorporate
Boolean networks, differential equations, and Bayesian networks. Model-free methods,
also referred to as data-driven or similarity-based techniques, comprise correlation-based
strategies, data mining approaches (such as ARM-based, employed in our method),
machine learning techniques (including metaheuristic methods pivotal to our approach,
as well as deep learning), and methods based on information theory. In addition to
these two, hybrid methods have the objective of integrating multiple data sources
by combining different types of omics data, such as gene expression, protein-protein
interactions, and transcription factor binding data, to enhance accuracy. The choice of a
given method depends on the available data, the size of the network, and the available
computational resources. In the context of our work and for immediate relevance, we
focus on the first two types of methods in our subsequent description.

2.1 Model-based methods

Among the earliest popular model-based methods, going as far back as to the late 1960s,
we find the Boolean methods. In a Boolean network model, genes are designated as
either active (1) or inactive (0). This feature allows for assessing the accuracy of inferred
networks, especially when the underlying GRN is unknown, and only time series data
is provided. Although approaches to Boolean inference typically excel in dynamic
accuracy, they tend to exhibit a slightly lower performance in terms of structural
correctness (Pusnik et al., 2022). In addition to these limitations, Boolean methods rely
on arbitrary discretisations of gene expression values, imposing significant assumptions
and constraints on the biological system under consideration. To overcome some of these
challenges, Vengateshkumar et al. (2020) introduced a two-phase process called Boolean
association rule mining (BAR) for inferring gene rules. In the first phase, BAR generates
frequent gene sets by employing logical OR and AND operations. Subsequently, in the
second phase, it uncovers Boolean gene association rules using logical AND and XOR
operations. This approach aims to enhance the efficiency and effectiveness of gene rule
extraction in the context of Boolean association rule mining. The BAR method suffers
from the inherent binary representation that potentially overlooks nuanced patterns
achievable with more varied representations. Moreover, it is inflexible with continuous
data and has poor scalability, with some difficulty in handling imbalanced data and an
absence of quantitative measures.

Within the type of model-based methods, an alternative is the continuous network
representation provided by the differential equation model. This approach demonstrates
proficiency in capturing the intricate dynamics inherent in GRNs. The methodology
involves establishing a model that relies on the interconnections among genes and
regulatory equations, enabling a precise representation of biological phenomena. In
contrast, the Bayesian network model, a prominent probabilistic graphical model,
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delineates gene dependencies using a directed acyclic graph. Although effective in
reducing noise and integrating prior knowledge, the Bayesian network model encounters
challenges related to computational complexity. The study in Cantone et al. (2009)
concluded that GRN inference, based on both differential equations and Bayesian
networks, despite their limitations, are good candidates for correctly inferring regulatory
interactions from experimental data.

2.2 Model-free methods

2.2.1 ARM-based GRN inference

As stressed in the introduction, one of the pillars of our method is the ARM approach,
a model-free method rooted in data mining. In this domain, the majority of classical
techniques rely on the apriori algorithm, supported by its antimonotone property and
employing a generate-and-test approach to uncover frequent patterns (Agrawal et al.,
1993). While apriori-based methods exhibit commendable performance in scenarios
where data is sparse and gene sets are succinct, they tend to be less effective and
occasionally unfeasible when dealing with dense datasets like gene expression data. This
disadvantage is due to the high computational cost of candidate evaluation and testing.
To cope with the exponential expansion of generated frequent gene sets, one strategy is
to exclusively consider closed gene sets. In Martinez et al. (2008), the CLOSE algorithm
(Pasquier et al., 1999) is introduced. This latter employs a generate-and-test strategy
along with a closure mechanism to identify frequent closed gene sets, facilitating the
extraction of association rules from highly correlated data. After acquiring all frequent
gene sets, the generation of association rules entails partitioning each frequent gene
set into two distinct gene sets. For a given frequent gene set I, a total of 2/l —2
association rules can be generated. Hence, confidence plays a role in curbing the number
of association rules by favouring those with higher reliability among rules representing
a specific level of significance, based on support (Alves et al., 2010). An alternative
and effective strategy for managing complexity is to deduce all frequent maximal gene
sets and derive a set of association rules from them. This method is particularly useful
for handling extensive gene sets within dense domains. Nonetheless, it is unsuitable for
rule generation due to the absence of subset counting, as noted by Alagukumar et al.
(2020).

2.2.2  Metaheuristic methods for GRN inference

As previously mentioned, the objective is to extract optimal QARs based on selected
criteria, and metaheuristic algorithms have demonstrated their efficacy as suitable
candidates for this challenging task. Numerous researchers have employed metaheuristic
algorithms, including ant colony optimisation (Manju and Kant, 2015), genetic
algorithms (Kabir et al., 2017), and particle swarm optimisation (Yan et al., 2019),
among others. These algorithms have been utilised to generate sets of association
rules, each exhibiting diverse performance characteristics, achieved by employing search
algorithms to select the highest-quality rules from the pool of candidate solutions. In
Babtie et al. (2021), the authors describe some GRN inference algorithms, comparing
their pros and cons, along with other issues faced by these approaches. In Mitra et al.
(2021), four meta-heuristic techniques are employed, namely binary particle swarm
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optimisation (BPSO), binary differential evolution (BDE), simulated annealing and tabu
simulated annealing. The training of Bayesian Network-modelled GRN is done on gene
expression data. The paper shows the superiority of BDE and BPSO approaches on
the basis of F1 score, as compared with other methods. Nevertheless, the approach is
susceptible to sensitivity to modelling errors.

In Ponzoni et al. (2007), GRNCOP was introduced as a machine-learning
combinatorial optimisation algorithm that avoids making arbitrary or uniform
discretisations of gene expression values. The method calculates dynamic thresholds
using continuous-valued attribute discretisation techniques, similar to those employed
in classification algorithms based on decision trees. A first limitation of GRNCOP is
that the discretisation is applied exclusively to regulatory genes, while the thresholds
for target genes are determined using mean expression values. A second limitation is
that it can only infer rules with a maximum time delay of one unit. These limitations
served as an incentive for the development of GRNCOP2, positioned as the successor
to its predecessor, GRNCOP (Gallo et al., 2011). The GRNCOP2 aim is to find a
set of optimal classifiers that define the potential association rules between a given
gene ¢ and other genes, considered as potential regulators. Basically, 7; is a vector
that represents all the potential regulators of the gene i. Then, the classifiers 7; are
calculated using a constructive approach that explores all possible combinations for each
element of 7;(k) by determining the value that maximises the objective function o,
defined by the product between the sensitivity and specificity of the classifier 7;. A
common constraint shared by both GRNCOP2 and its precursor, GRNCOP, pertains to
the restriction in deducing rules with a maximum time-delay of one unit. Despite this
limitation, GRNCOP2 stands out as a state-of-the-art algorithm worthy of competition.
Hence, we opted for GRNCOP2 as a competitor to be employed alongside our proposed
method.

2.2.3 Information-theoretic methods for GRN inference

Among data-driven methodologies, it is useful to highlight that those based on
information theory stand out as particularly powerful. Their effectiveness lies in their
capability to apprehend intricate nonlinear regulatory relationships, contributing to their
status as a robust approach within the GRN inference domain (Mousavian et al.,
2016). The fundamental principle underpinning the majority of the information-theoretic
methods revolves around mutual information (MI). Initially employed in information
theory for assessing signal similarity, mutual information is later applied in the
biological context to quantify regulatory connections among genes.

The most important among these methods are, in chronological order, relevance
network (RN), algorithm for the reconstruction of accurate cellular networks
(ARACNE), context likelihood of relatedness (CLR), mutual information 3 (MI3),
minimum redundancy network (MRNET), path consistency algorithm based on
conditional mutual information (PCA-CMI), mutual information distance and
entropy reduction (MIDER), maximum-relevance and maximum-significance strategy
(MRMSn), redundancy reduction in the MRNET algorithm (RRMRNET), and finally
random walk with restart network (RWRNET).

Among the diverse array of methods reported, RN remains notable as it represents
one of the pioneering approaches in utilising mutual information for measuring
relationships. Along with updates introduced approximately two decades after its
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initiation, RN maintains its significance in the field, as indicated in Kuzmanovski et al.
(2018). This early algorithm was followed by the ARACNE (Basso et al., 2005) which
was dedicated to removing indirect associations within cellular networks. Later CLR
(Faith et al., 2007) was designed to focus on estimating the likelihood of regulatory
relationships between genes, while the MI3 algorithm (Luo et al., 2008) utilises mutual
information as a key metric in uncovering associations among genes.

The MRNET (Meyer et al., 2007) identifies relevant genes while concurrently
minimising redundancy in the inferred network structure. It operates as a
feature selection method, adopting a strategy for the selection of regulatory
relationships. Despite mutual information’s proficiency in measuring nonlinear
regulatory relationships, MRNET encounters some challenges in distinguishing indirect
regulatory connections (Margolin et al., 2006). To overcome this limitation, Zhang
et al. (2011) proposed PCA-CMI, replacing mutual information with conditional mutual
information (CMI). However, CMI tends to underestimate gene relationships, leading
to the introduction of conditional mutual inclusive information (CMI2) to rectify the
underestimation issue (Zhang et al., 2015). Concurrently, MIDER (Villaverde et al.,
2014) was designed as a comprehensive approach, integrating mutual information,
distance metrics, and entropy reduction to capture intricate relationships within cellular
systems. MRMSn (Liu et al., 2016) was introduced to combine strategies of maximum
relevance and maximum significance for enhanced discriminatory power in the
identification of gene associations. Still further, in the pursuit of heightened accuracy,
Liu et al. (2017) introduced RRMRNET, a refinement of MRNET incorporating
two strategies to eliminate redundant regulatory relationships. RRMRNET successfully
addressed the challenge of redundancy within the MRNET algorithm, and enhanced
the accuracy of the inferred cellular network. Ultimately, the random walk with restart
network (RWRNET) (Liu et al., 2020) was introduced to incorporate a random walk
strategy with restart mechanisms, offering a dynamic approach to capturing network
dynamics over time. Despite their inherent limitations, information-theoretic methods are
acknowledged as robust challengers. Hence, we include them for thorough comparative
analysis alongside our proposed method.

3 DCSA-QAR design

3.1 Preliminaries

In GRN inference, ARM serves as a valuable tool to uncover meaningful correlations
between genes on the basis of their profiles under diverse environmental conditions, as
recorded in a gene experimental database. Moreover, ARM finds utility in identifying
links between environmental circumstances and gene expression, as well as associations
between biological information about genes and gene expression. A general schema
of the ARM process is composed of four steps: discretisation, mining of frequent
patterns, generation and filtering of association rules, and biological evaluation of the
obtained rules (Alves et al., 2010). The starting point of this process is a n X m
matrix of gene expression values with rows representing experimental conditions and
columns representing genes. At the discretisation step, the values of the input matrix are
transformed into discrete values in order to be more adaptable to the processes of the
ARM. Different expression properties could be considered to define the state of a gene
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as under-expression, over-expression, upregulated, downregulated. The primary goal of
the second phase is to identify all frequent gene sets whose level of support surpasses
a user-defined threshold. In the following subsections, we present the DCSA-QAR
method. The flowchart of DCSA-QAR is given in Figure 1. DCSA-QAR takes as input
the gene microarrays expression data that contain N genes and M samples, and returns
an inferred gene regulatory network (GRN) as output.

Figure 1 The flowchart of DCSA-QAR (see online version for colours)
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3.2 Data pre-processing

Gene microarrays expression data often consist of continuous numerical values
representing the intensity of gene expression levels. These continuous attributes can
be extremely high-dimensional, making the discovery of meaningful associations
a challenging task. This stage aims to transform these continuous attributes into
categorical variables by partitioning the expression levels into discrete intervals
or bins. The discretisation is performed through the so-called confidence-based
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unsupervised discretisation algorithm (C-BUDA): built upon a classification framework,
this approach tackles the drawback of conventional discretisation methods, which often
overlook interdependencies and correlations between attributes. Within the context of
DCSA-QAR, the C-BUDA algorithm strives to optimise the division of a numerical
attribute interval, aiming to enhance class prediction performance. For doing so, an
equal-width discretisation is used to obtain a class attribute. Next, for every potential
point of division, an equi-width discretisation is once again implemented on the target
attribute. This process results in the calculation of the average confidence across all
rules. Ultimately, the count of intervals that yields the highest average confidence is
selected and retained.

3.3 Initialising crow’s population
3.3.1 Crow position encoding

During this stage, the DCSA-QAR methodology utilises the discrete encoding that was
previously derived to represent association rules. In this encoded representation, the
positional information of each crow, also referred to as a particle, is transformed into a
vector comprising discrete numerical values, thereby signifying an individual association
rule. Within a group of crows, each crow is defined by both its present position and its
memorised position. These positions, denoting both current state and past reference, are
characterised by a total of 2 x N elements, where N represents the count of attributes
present within the dataset. Consequently, each crow is characterised by a dual set of
vectors, delineating control and parametric attributes. The control attributes exhibit three
potential values: 0, 1, or —1, signifying whether the attribute is absent in the rule, resides
within the antecedent, or pertains to the consequent of the rule, respectively. Conversely,
the parametric attribute is a whole number that signifies the value associated with the
respective attribute. The visualisation of crow positions and memories is presented in
Tables 1 and 2, respectively.

Table 1 Crow position structure with N =9

Xiit A A As; Ay As As Ay As Ay
Ca 0 -1 1 0 -1 1 1 -1 1
Py 5 2 3 8 4 2 1 6

Table 2 Crow memory structure with N = 9

Mt A, A, A; Ay As Ag A; As Ay
Ca 1 -1 1 0 -1 1 -1 1 0
P, 6 1 2 4 2 5 1 3 4

3.3.2 Flock initialisation

The initialisation of the flock is carried out in a randomised manner. The random
initialisation of the flock adheres to predefined criteria, including a minimum attribute
count in both the antecedent and consequent, along with a stipulated rule support
threshold. The process that generates the initial population is listed below:
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e  First, the indexes of attributes which can belong to the rule are randomly selected
according to a maximum number of attributes given by the user.

e For each selected index, the control attribute is randomly selected from values
1,-1,0.

e  Then, the parametric attributes are randomly generated for each selected attribute.

e Finally, the position is accepted if it is fully compliant with the user requirements
(minimum number of attributes in the antecedent and consequent of the rule,
minimum support of the rule).

After generating the initial crow’s positions of flock, initial memory position of each
crow was assigned to its current position. The initialisation of the flock is carried out
in a randomised manner, followed by the evaluation of the fitness function.

3.4 Crow position

3.4.1 Evaluating crows position through fitness function

The definition of the fitness function represents one of the most important steps in all
metaheuristic methods. The ARM process can be conceptualised as a multi-objective
problem wherein the evaluation metrics employed for rule assessment encompass
distinct objectives to be concurrently optimised. Nonetheless, a significant portion of the
algorithms proposed for ARM, categorised as multi-objective methodologies, converge
towards a strategy of incorporating weighted objectives into an aggregated one-objective
fitness function. In the context of DCSA-QAR, the objective to be maximised is
formulated by equation (1).

F(Rule) = wy X supp + we X conf +wy X lift (1)

Here, supp means support, conf represents confidence, and lift stands for lift. The
weights wg, w., and w; are integral components of the fitness function, contributing to
the holistic maximisation approach within the DCSA-QAR.

Although machine learning techniques can optimise weights automatically based on
training data, manual weight setting remains a valuable and widely used approach when
domain expertise and problem-specific customisation are essential considerations in the
decision-making process. Manual weight setting allows domain experts to incorporate
their knowledge, which enhances interpretability. It also aligns the algorithm with
problem-specific needs, provides users with the ability to fine-tune trade-offs, and helps
prevent overfitting.

3.4.2 Updating crows position

In this stage, the search for a new position is undertaken in the search space. At
iteration it, the new position of a given crow i depends on its current position X*
and the displacement step S!* to displace to the hiding position M ]’ft of its adversary
j. For accurately adapting the algorithm, it was considered appropriate to establish a
relationship between the displacement step of a given crow and the hiding position of
its adversary. This has been done through a new replacement operator and the so-called
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non-zero Hamming distance, calculated between the position vector of a given crow and
the memory vector of its competitor.
As result, the new position Xl-”Jrl is calculated according to equation (2).

XEH o (X, M, int(S1)) @

where > means that the crow i execute int(S!') times the randomly replacement
operation (presented in Algorithm 1) between the vectors X !¢, M j’-t. The function int(a)
calculates the integer value of a given real a. The number S!' is calculated as in

equation (3):
Sit = fli* x nonZHD(M}', X]") @

Where, the nonZH D(M;ft,Xi”) function calculate the non-zero Hamming distance
between two vectors M}* and X/*, and fIi* is the flight length in [0, 1].

Algorithm 1 Replacement operator >4

Input: X, M are vectors
S is an integer
Output: Y is a vector;

Description:
1 Y=X;
2 for (1=1;,1<S;i++) do
3 j =rand(1; N);
4 Y[lvj] :M[Lj];
5| Y[2,5] = M[2,j];
6 end
7 return Y;

The non-zero Hamming distance between two position or memory vectors X and Y,
denoted by nonZHD(X,Y'), is defined as the number of positions where the elements
x; and y; are different and their control attributes C,(x;) and C,(y;) are not null at the
same time. That is,

d
nonZHD(X,Y) = Z(s(l‘i7%‘) “)
i=1
where
0, if (z;=y:))
6(i,yi) = {0, if (Calwi) = 0 A Calys) = 0) )
1, otherwise
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3.5 Generating gene-gene associations

In this stage, the QARs obtained at each iteration, presented as the best solutions, are
used to mine the gene-gene associations as follows:

1 For each obtained QAR:
Separate between antecedent’s gene sets and consequent’s gene sets.
2 To generate gene-gene associations:
Combine each gene in the antecedent with all genes in the consequent.

3 Return rule.

We note that only QARs verifying certain predefined user thresholds such as min_supp,
min_conf and min_acc are qualified to generate gene-gene associations.

Finally, we represent a gene network whereby genes are the graph nodes and
gene-gene associations mined from QARs are the graph edges.

For example, from the following obtained QARs:

1 G1e[-0.33,-0.09] = (G2 € [0.24,1.11] AG4 € [-0.49,-0.20])
2 G62€[1.11,1.981 AG3 € [-0.51,0.05] = G5 € [-0.47,-0.086].

We extract the resulting gene-gene associations:

1 Gl1=G2
2 Gl=0G4
3 G2=G5
4 G3 = Gb.

Figure 2 shows the gene network obtained from resulting gene-gene associations for the
example above.

Figure 2 Gene network from gene-gene associations reported by the example
(see online version for colours)
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4 Materials and methods

Specific materials (i.e., datasets in our case) and methods (i.e., competing algorithms
and performance metrics in our case) are needed in order to undertake experiments.
Our objective is to conduct two major types of experiments: one series involving
meta-heuristic methods and the other series considering other methods such as
information-theoretic methods. For comparison purposes, we rely on different categories
of datasets, benchmarks, and metrics for each series of experiments. This comparison is
instrumental in gauging the effectiveness of our proposed approach within the field of
GRN inference.

4.1 Metaheuristc-based methods

4.1.1 First series competitors

In terms of competitors, we compared our approach against five algorithms:
e a decision-tree-based approach introduced by Soinov et al. (2003)
e RegNet (Nepomuceno-Chamorro et al., 2010), a regression-tree-based technique

e GRNCOP (Gallo et al., 2011) representative of combinatorial optimisation
algorithms

e  GarNet (Martfnez—Ballesteros et al., 2014), a multi-objective evolutionary QARs
algorithm, with two variants, GarNetl and GarNet2, obtained by setting the
minimum support to 0.3 and 0.35, respectively.

4.1.2 First series datasets

We assessed the efficacy of DCSA-QAR using microarray data sourced from Spellman
et al. (1999) and Cho et al. (1998). These datasets were synchronised through three
distinct methodologies: CDC15, CDC28, and alpha-factors. These synchronisation
methods are statistically independent and were sampled at intervals of 10 minutes,
10 minutes, and 7 minutes respectively (Someren et al., 2000). We further rely on
three authentic datasets as true networks. These datasets encompass three true networks
(Lee et al., 2007; Dwight et al., 2002; Lee et al., 2004). For comparative purposes
with prior studies, DCSA-QAR was evaluated on a subset of 20 well-defined genes
responsible for crucial cell-cycle regulatory proteins. The utilisation of these authentic
datasets provides a robust basis for the evaluation of the network quality generated by
DCSA-QAR when compared within established competing algorithms. The genes used
are outlined in Table 3.

4.1.3 First series performance metrics

The comparison is done using five standard performance metrics, namely precision,
sensitivity, specificity, Fl-score, and the number of gene-gene associations. Note that
we have calculated all the metrics, in the same way as Gallo et al. (2011) and
Martinez-Ballesteros et al. (2014), on the basis of the reduced search space defined by
the 20 chosen genes, described in Table 4.
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Table 3 List of genes used in first series experiments

#  Gene name Common name Description

1 YMRI199W CLN1 Cyclin, G1/S-specific

2 YPL256C CLN2 Cyclin, G1/S-specific

3 YAL040C CLN3 Cyclin, G1/S-specific

4  YGR108W CLBI1 Cyclin, G2/M-specific

5  YPRII9W CLB2 Cyclin, G2/M-specific

6 YLR210W CLB4 Cyclin, G2/M-specific

7 YPR120C CLBS Cyclin, B-type

8  YGRI109C CLB6 Cyclin, B-type

9  YMRO043W MCM1 Transcription factor of the MADS box family

10 YLRO79W SIC1 Inhibitor of Cdc28p-Clb protein kinase complex

11  YLRI182W SWI6 Transcription factor, subunit of SBF and MBF factors

12 YBR160W CDC28 Cyclin-dependent protein kinase

13 YDL132W CDCs3 Controls G1/S transition, component of SCF-ubiquitin
ligase complexes

14 YDLOS6W MBP1 Transcription factor, subunit of the MBF factor

15 YDRO054C CDC34 E2 ubiquitin-conjugating enzyme

16 ' YDR146C SWIS Transcription factor

17 YDR328C SKP1 Core component of SCF-ubiquitin ligase complexes

18  YERIIIC SWI4 Transcription factor, subunit of SBF factor

19 YGL116W CDC20 Cell division control protein

20 YGLO003C HCTI Substrate-specific activator of APC-dependent proteolysis

Table 4 Characteristics of potential gene pair-wise associations for first series experiments

YeastNet Co-citation GO . L

# of possible associations
Precision Score Precision Score Precision
51.58% 1.5303 43.68% 1.3487 45.26% 190

4.2 Information-theoretic methods

We follow the same structure as in Subsection 4.1 above, by reporting the competing
algorithms, the datasets and metrics used in this second series of experiments.

4.2.1 Second series algorithms

In terms of competitors, we chose nine information-theoretic algorithms, reported in
Section 2.2.3 above. Indeed, these algorithms are among the most performing in the
domain (Liu et al., 2020). These competitors are cited below in chronological order.

e ARACNE (Basso et al., 2005) which is based on the removal of indirect
associations within cellular networks.

e CLR (Faith et al., 2007) which relies on the likelihood estimation of regulatory
relationships between genes.
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MRNET (Meyer et al., 2007) which identifies pertinent genes while
simultaneously minimising redundancy within the inferred network structure.

MI3 (Luo et al., 2008) which employs mutual information as a primary metric to
reveal connections among genes.

PCA-CMI (Zhang et al., 2011) which combines path consistency algorithm with
conditional mutual information, offering a nuanced perspective on the
relationships among genes.

MIDER (Villaverde et al., 2014) which is characterised by integrating mutual
information, distance metrics, and entropy reduction to capture intricate
relationships within cellular systems.

MRMSn (Liu et al., 2016) which combines both maximum relevance and
maximum significance strategies to enhance discriminatory power in identifying
gene associations.

RRMRNET (Liu et al., 2017) which focuses on addressing redundancy within the
MRNET algorithm, with the goal of improving the accuracy of the inferred
cellular network.

RWRNET (Liu et al., 2020) which integrates a random walk strategy with restart
mechanisms, providing a dynamic approach to capturing network dynamics over
time.

4.2.2 Second series datasets

We used two types of datasets:

SOS network dataset is a real gene expression dataset with experimental
verification. It often serves as a standard GRN to test the effectiveness of
algorithms. This is a small-scale directed network with nine genes and 24
regulations (Ronen et al., 2002).

DREAM3 dataset: a simulated dataset with three variants incorporating 10, 50 and
100 genes (Marbach et al., 2010; Margolin et al., 2006). DREAM challenges are
typically designed to evaluate and advance the state of the art in various aspects
of computational biology, such as network inference, gene expression prediction,
and other related tasks. In our context, DREAM3-10, DREAM-50 or DREAM-100
genes refers to a set of genes (with 10, 50 or 100 genes, respectively).

Table 5 describes the relevant the datasets characteristics used in second series
experiments.

4.2.3 Second series performance metrics

The standard and well-known performance metrics used in the evaluation phase are
extracted from the confusion matrix. TP: true positive; FP: false positive; TPR: true
positive rate; FPR: false positive rate; Prec: precision; Acc: accuracy.
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Table 5 Descriptions of the second series datasets in our experiments

Datasets Variables  Samples Type Network nodes  Network edges
DREAM3-10 genes 10 10 Simulated 10 10
DREAM3-50 genes 50 50 Simulated 50 77
DREAMS3-50 genes 100 100 Simulated 100 166
SOS 9 9 Real 9 24

5 Experiments and discussion

This section is divided into two complementary sub-sections: first series experiments
and second series experiments, in line with the previous section.

5.1 First series of experiments

5.1.1 Parameter settings and performance

In order to analyse the behaviour of our method for achieving optimal mined solutions,
we have to set the main parameters to some tuned values. This step allows us to identify
the minimum quality thresholds of QAR; i.e., those that give the best possible values
for the quality metrics in gene networks; in a similar standard way as reported in Gallo
et al. (2011) and Martinez-Ballesteros et al. (2014). These parameters are used for each
analysis carried out for further performance evaluation. Table 6 shows DCSA-QAR main
parameters used for the gene expression data experiments.

Table 6 DCSA-QAR parameters used for the gene expression data experiments

Parameter Value
Awareness probability AP 0.1
Flight length f; 2
Support weight w, 0.2
Confidence weight w. 0.4
Lift weight w, 0.4
Size of the population 150
Number of iterations 100

5.1.2  Identifying initial minimum thresholds

We have executed different configurations of DCSA-QAR by modifying the minimum
thresholds of performance measures of the QAR obtained in the first phase. To achieve
that, we vary the minimum threshold for the confidence and accuracy measures from
0.6 to 0.9 with increments of 0.05. However, we modify the minimum values for the
support measure from 0 to 0.3 with increments of 0.05. In this situation, DCSA-QAR
runs (7 X 7 x 7), i.e., 343 times in total. Once the minimum thresholds values are
obtained, it is then possible to use the algorithm in the best possible conditions, thus
allowing a fair comparison with other competitor algorithms.
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Table 7 Average performance metrics of gene networks achieved by DCSA-QAR in YeastNet

D Parameters Precision  Sensitivity  Specificity Score # of
Accuracy Conf Supp (%) (%) (%) associations

1 [0.6-0.9] [0.6-0.9] 0 63.10 51.02 40.50 3.75 102.45
2 [0.6-0.9] [0.6-0.9] 0.05 64.10 44.02 50.55 3.75 87.16
3 [0.6-0.9] [0.6-0.9] 0.1 81.70 20.59 88.38 3.83 33.29
4 [0.6-09] [0.6-09] 0.15 84.21 7.38 96.20 3.71 11.69
5  [0.6-0.9] [0.6-0.9] 0.2 86.01 5.13 97.93 3.53 7.76

6 [0.6-09] [0.6-0.9] 0.25 65.33 1.39 97.93 4.80 3.08

7  [0.6-0.9] [0.6-0.9] 0.3 88.78 1.24 99.50 4.96 1.88

8 [0.6-0.9] 0.6 [0-0.3] 72.21 20.41 78.59 4.01 39.43
9 [0.6-0.9] 0.65 [0-0.3] 73.04 20.18 79.59 3.99 38.49
10 [0.6-0.9] 0.7 [0-0.3] 72.99 19.05 81.41 4.01 35.90
11 [0.6-0.9] 0.75 [0-0.3] 74.23 18.48 82.07 4.11 34.76
12 [0.6-0.9] 0.8 [0-0.3] 79.79 17.80 82.86 4.08 33.39
13 [0.6-0.9] 0.85 [0-0.3] 80.48 17.42 83.23 4.06 32.67
14 [0.6-0.9] 0.9 [0-0.3] 80.48 17.42 83.23 4.06 32.67
15 0.6 [0.6-0.9] [0-0.3] 72.38 26.64 74.63 3.99 49.80
16 0.65 [0.6-0.9] [0-0.3] 72.18 25.34 75.29 3.99 47.73
17 0.7 [0.6-0.9] [0-0.3] 71.41 23.61 75.57 3.98 45.39
18 0.75 [0.6-0.9] [0-0.3] 64.77 18.60 78.27 4.05 37.37
19 0.8 [0.6-0.9] [0-0.3] 71.32 15.64 82.17 4.01 31.14
20 0.85 [0.6-0.9] [0-0.3] 88.83 12.60 89.20 4.07 22.78
21 0.9 [0.6-0.9] [0-0.3] 92.34 8.33 95.86 4.25 13.10

5.1.3 DCSA-QAR evaluation using varied minimum thresholds

The cumulative outcomes from 343 runs are concisely outlined in Tables 7, 8 and 9.
These tables are systematically organised into distinct segments, each associated with
a particular test network. Notably, each run signifies the resultant network achieved
through the intersection of association pairs extracted from QAR, tailored to individual
input datasets that satisfy predefined parameter conditions. Each row within these tables
corresponds to 49 distinct cases. The delineation of each section is elucidated as follows:

e  First segment (rows 1-7): each row in this segment presents the average
performance metrics of the considered gene networks, as obtained from
executions. These executions entail maintaining a constant minimum support
while variably adjusting the minimum confidence (ranging from 0.6 to 0.9) and
minimum accuracy (ranging from 0.6 to 0.9).

e Second segment (rows 8—14): this segment adheres to a similar approach by
maintaining a fixed minimum confidence value, while introducing variations in
the minimum support (ranging from 0 to 0.3).

e  Third segment (rows 15-21): the final segment encompasses executions wherein
accuracy parameters remain fixed, while the minimum support ranges from 0 to
0.3, and the minimum confidence varies from 0.6 to 0.9.
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Table 8 Average performance metrics of gene networks achieved by DCSA-QAR in the
Gene Ontology (GO) dataset

D Parameters Precision  Sensitivity  Specificity # of
Accuracy Conf Supp (%) (%) (%) associations

1 [0.6-0.9] [0.6-0.9] 0 50.38 51.33 43.26 102.45
2 [0.6-0.9] [0.6-0.9] 0.05 51.35 44.98 53.15 87.16
3 [0.6-0.9] [0.6-0.9] 0.1 64.50 21.25 86.54 33.29
4 [0.6-0.9] [0.6-0.9] 0.15 65.73 7.61 95.42 11.69
5 [0.6-0.9] [0.6-0.9] 0.2 61.64 4.62 96.50 7.76

6 [0.6-0.9] [0.6-0.9] 0.25 83.07 2.35 99.17 3.08

7 [0.6-0.9] [0.6-0.9] 0.3 72.45 1.13 99.17 1.88

8 [0.6-0.9] 0.6 [0-0.3] 66.29 21.52 80.09 39.43
9 [0.6-0.9] 0.65 [0-0.3] 66.12 21.01 80.56 38.49
10 [0.6-0.9] 0.7 [0-0.3] 64.81 19.71 81.99 35.90
11 [0.6-0.9] 0.75 [0-0.3] 61.19 18.55 81.99 34.76
12 [0.6-0.9] 0.8 [0-0.3] 64.01 17.73 82.60 33.39
13 [0.6-0.9] 0.85 [0-0.3] 63.35 17.38 83.00 32.67
14 [0.6-0.9] 0.9 [0-0.3] 63.35 17.38 83.00 32.67
15 0.6 [0.6-0-0.9] [0-0.3] 55.77 27.09 74.75 49.80
16 0.65 [0.6-0.9] [0-0.3] 55.41 25.56 75.35 47.73
17 0.7 [0.6-0.9] [0-0.3] 54.33 24.12 76.36 45.39
18 0.75 [0.6-0.9] [0-0.3] 61.37 19.69 80.35 37.37
19 0.8 [0.6-0.9] [0-0.3] 68.30 16.33 83.54 31.14
20 0.85 [0.6-0.9] [0-0.3] 70.17 12.08 88.11 22.78
21 0.9 [0.6-0.9] [0-0.3] 83.78 8.41 94.75 13.10

Figures 3, 4, 5 and 6, which represent graphic illustrations of results obtained in
Tables 7, 8 and 9, show the relationship between different parameters (accuracy,
confidence, and support) and GRNs metrics: precision, sensitivity, specificity, and
the number of gene-gene associations. It can be observed that DCSA-QAR achieves
similar performances among the true networks, except for the precision metric where
DCSA-QAR obtains the best values over Co-citation than GO and YeastNet networks.
From Figure 3, it can be concluded that the precision and specificity metrics of GRN
increase when the accuracy threshold is higher. The precision varies from 54% to 93%,
while the specificity varies from 74% to 96%. However, the sensitivity metric increase
when the accuracy threshold is low; it decreases from 27% to 8%. The score metric has
a similar behaviour as precision and specificity metrics. For a higher accuracy value,
the score metric achieves 4.25 and 3.88 over YeastNet and Co-citation, respectively.
From Figure 5, it can also be concluded that the precision and specificity metrics
of GRN increase when the support threshold is higher. The precision varies from 50%
to 94%, while the specificity varies from 40% to 99%. However, the sensitivity metric
increase when the support threshold is low; it decreases from 51% to 1%. The score
metric follows a parallel pattern to precision and specificity metrics. With an elevated
support value, it attains scores of 4.96 and 4.10 across YeastNet and Co-citation,
respectively. As both accuracy and support thresholds escalate, the network’s complexity
diminishes, as depicted in Figure 6. This reduction in dimensionality corresponds to
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an increase in precision, consequently yielding more coherent gene-gene associations.
[lustrated in Figure 4, the values of the GRNs metrics exhibit negligible fluctuations.
This assertion makes sense since DCSA-QAR obtains association rules with high
confidence by including the confidence measure as part of the fitness function.

Table 9 Average performance metrics of gene networks achieved by DCSA-QAR in
Co-citation

D Parameters Precision  Sensitivity  Specificity Score #of
Accuracy Conf Supp (%) (%) (%) associations

1 [0.6-0.9] [0.6-0.9] 0 66.00 51.76 41.52 3.49 102.45
2 [0.6-0.9] [0.6-0.9] 0.05 66.57 44.30 50.79 3.48 87.16
3 [0.6-0.9] [0.6-0.9] 0.1 84.06 20.66 89.13 3.58 33.29
4 [0.6-0.9] [0.6-0.9] 0.15 90.44 7.70 97.12 3.76 11.69
5  [0.6-0.9] [0.6-0.9] 0.2 94.38 5.52 98.96 3.70 7.76

6 [0.6-0.9] [0.6-0.9] 0.25 87.15 1.90 98.96 3.97 3.08

7  [0.6-0.9] [0.6-0.9] 0.3 88.78 1.20 99.46 4.10 1.88

&  [0.6-0.9] 0.6 [0-0.3] 76.83 20.77 79.29 3.71 39.43
9 [0.6-0.9] 0.65 [0-0.3] 77.76 20.55 80.36 3.70 38.49
10 [0.6-0.9] 0.7 [0-0.3] 77.76 19.33 82.03 3.68 35.90
11 [0.6-0.9] 0.75 [0-0.3] 80.42 18.78 82.74 3.76 34.76
12 [0.6-0.9] 0.8 [0-0.3] 87.34 18.11 83.57 3.76 33.39
13 [0.6-0.9] 0.85 [0-0.3] 88.62 17.75 83.97 3.73 32.67
14 [0.6-0.9] 0.9 [0-0.3] 88.62 17.75 83.97 3.73 32.67
15 0.6 [0.6-0.9] [0-0.3] 79.46 27.07 75.61 3.66 49.80
16 0.65 [0.6-0.9] [0-0.3] 79.33 25.80 76.31 3.64 47.73
17 0.7 [0.6-0.9] [0-0.3] 78.75 24.05 76.45 3.64 45.39
18 0.75 [0.6-0.9] [0-0.3] 74.64 19.08 79.09 3.69 37.37
19 0.8 [0.6-0.9] [0-0.3] 82.55 16.22 83.24 3.69 31.14
20 0.85 [0.6-0.9] [0-0.3] 89.49 12.55 89.19 3.88 22.78
21 0.9 [0.6-0.9] [0-0.3] 93.14 8.29 96.05 3.88 13.10

In summary, the findings presented in Tables 7, 8 and 9, along with Figures 3, 4, 5, 6
and 7 and lead us to the following conclusions. It becomes evident that the outcomes are
notably impacted by the manipulation of accuracy and support thresholds, outweighing
the influence of the confidence threshold. Notably, the analysis underscores that the most
favourable outcomes are observed within the context of the yeast datasets. Additionally,
it becomes apparent that, across the majority of cases, the average outcomes stemming
from adjustments to the accuracy threshold surpass those achieved through modifications
of the support threshold. This highlights the proposition that the extraction of the most
optimal rules is achieved when there’s an elevation in the minimum accuracy criterion
for the mined rules.
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Figure 3 Relationship between the accuracy parameter and GRNs metrics (see online version
for colours)
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Figure 4 Relationship between the confidence parameter and GRNs metrics
(see online version for colours)
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Figure 5 Relationship between the support parameter and GRNs metrics (see online version

for colours)
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Figure 6 Relationship between the number of associations and GRNs metrics
(see online version for colours)
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5.1.4 DCSA-QAR gene networks metrics

When the parameters are set to their best values, our algorithm gives the results
summarised in Table 10. In order to obtain an overall ranking for all algorithms, for any
dataset or across all three datasets we count the total number of best measures obtained
by each algorithm. For example, for Co-citation dataset, our algorithm is the best in
three measures out of five, followed by RegNet and GarNet;, both achieving the best
results in two measures out of five.
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Figure 7 Precision and score values achieved by DCSA-QAR with different parameters,
(a) YeastNet precision (b) YeastNet score (c) Co-citation precision (d) Co-citation
score () GO precision (f) Number of associations (see online version for colours)
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Note: Values of the precision and score metrics achieved by DCSA-QAR with the
support and confidence parameters varying from 0 to 0.3 and from 0.60 to 0.9,
respectively, with the accuracy parameter fixed in 0.85. The number of
associations is also shown.

5.1.4.1 Co-citation dataset

Compared with competitors’ algorithms, our algorithm comes first in the Co-citation
dataset, outperforming all competitors since it gives the best precision (100%), the best
specificity (100%) and score (3.75). DCSA-QAR is followed by RegNet giving the
same precision and specificity as DCSA-QAR while GarNet; gives the best sensitivity
and accuracy. The other three algorithms are lagging and produce no best result in any
measure.
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Table 10 Values for the gene networks metrics achieved by the best settings of DCSA-QAR
against GarNet; o, GRNCOP, RegNet, and Soinov et al.

Networks Measures DCSA-QAR GarNet, GarNet; GRNCOP RegNet ° O’Z?V
YeastNet Precision 100 100 93.75 93.33 100  50.00
Sensitivity 14.40 20.40 15.31 14.29 7.14 3.06
Specificity 100 100 98.91 98.91 100 96.74
Accuracy 43.68 58.94 55.79 55.27 52.11 4841
Score 3.79 2.89 2.82 3.04 324 1.84
Co-citation Precision 100 95.00 93.75 93.33 100  50.00
Sensitivity 13.95 22.89 18.07 16.87 8.13 3.6l
Specificity 100 99.07 99.07 99.07 100 97.20
Accuracy 41.58 65.79 63.68 63.16 5842 56.29
Score 3.75 2.92 3.09 3.26 3.51 1.85
GO Precision 72.22 70.00 75.00 73.33 71.43  50.00
Sensitivity 13.13 16.28 13.95 12.79 581  3.49
Specificity 94.51 94.23 96.15 96.15 98.08 97.12
Accuracy 52.11 58.96 58.95 58.42 56.32 5475
Average number of associations 18 20 16 15 7 6

5.1.4.2 YeastNet dataset

Our algorithm performs similarly as for the Co-citation dataset and is best in the same
three previous measures (i.e., precision, specificity and score). However, DCSA-QAR
comes second after GarNety, which achieves the best results in four out of five measures.
RegNet comes after DCSA-QAR and achieves similar results as for the Co-citation
dataset. The other tree algorithms produce no best result in any measure.

5.1.4.3 GO dataset

Although our algorithm achieves no best result for GO dataset, it is not far from
other algorithms. Indeed, DCSA-QAR comes third after GarNet; and GRNCOP in
precision, and third in sensitivity after GarNet; and GarNet,. We notice that the
favourable outcomes achieved by our method on the Co-citation and YeastNet datasets
are counterbalanced by the comparatively modest results observed on the GO dataset.
The inherent complexity of the GO dataset is a significant contributing factor to
the suboptimal performance of our proposed method. Indeed, unlike the Co-citation
and YeastNet datasets, the GO data presents relatively more complexity with its
hierarchical and multifaceted relationships between genes. The intricate patterns within
the GO dataset may require additional method refinement to effectively capture them,
particularly when contrasted with the simpler pairwise relationships found in the other
datasets. This can be considered as a limitation of the proposed method.

5.1.4.4 GRN graph and gene networks metrics across all datasets

Table 11 reports an example of gene associations as inferred by different algorithms. The
GRN inferred by DCSA-QAR is described in Figure 8, showing 18 associations; and
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some of these are shared with other algorithms. The number of these shared associations
can be read in the second line of Table 11. For example, in comparison with GarNet;,
3/20 means that there are 3 associations (i.e., SWI5-CLB1, CLB1-CLB2, CLN1-CLBI)
shared with DCSA-QAR, out of 20 associations generated by GarNet;. Table 12 gives
a summary of rankings of all algorithms and the metrics which they perform best with,
for each dataset, on the one hand, and across all datasets, on the other hand.

Table 11 Gene—gene associations mined by DCSA-QAR

GarNet1 GarNets GRNCOP RegNet Soinov et al.

Id DCSA4-0AR (3/20) (3/16) (3/15) (2/7) (2/6)

CDC28-CLB6
MBP1-SWI6
CDC34-CLB6
SWI5-CLBI1 v v v v
SWI4-SIC1
HCT1-CDC20
CLB1-CLB2 v v v v v
SICI-CLB6
SWI6-CLB6
SWI6-CLB5
CLB4-CLB1
CLB4-CLB2
13 CLNI1-CLBI v
14 CLN1-CLB5
15 CLN2-CDC28
16 CLBS5-CDC53 v
17 CLB5-SWI4
18 CLB5-CLN2 v v

O 0 N O L bW N

[ —
—_ o

—
\S)

Figure 8 Gene association network obtained by DCSA-QAR (see online version for colours)
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Table 12 Algorithms overall ranking for all datasets

a Ranking of algorithms when using Co-citation dataset

Ranking 1 2 4-6
Algorithm  DCSA-QAR  GarNet; RegNet  GRNCOP Soinov et al.  GarNets
Best metric  Precision Sensitivity ~ Precision None
achieved Specificity =~ Accuracy  Specificity
Score

b Ranking of algorithms when using YeastNet dataset

Ranking 1 2 3 4-6
Algorithm GarNet; DCSA-QAR RegNet  GRNCOP Soinov et al.  GarNeto
Best metric  Precision Precision Precision None

achieved Specificity ~ Specificity =~ Specificity
Sensitivity Score
Precision

¢ Ranking of algorithms when using GO dataset

Ranking 1 2 4-6

Algorithm GarNet;  Soinov et al. GarNeta DCSA-QAR GRNCOP RegNet
Best metric ~ Sensitivity ~ Specificity  Precision None

achieved Accuracy

d Ranking of algorithm by average number of mined associations

Ranking 1 2 3 4 6
Algorithm GarNet; DCSA-QAR  RegNet GarNeta GRNCOP  Soinov et al.
Number of 8 6 4 1 1 0

times where
best metrics
is achieved

e Ranking of algorithms across all 3 datasets

Ranking 1 2 3 4 5 6
Algorithm GarNet; DCSA-QAR GarNetz ~ GRNCOP RegNet  Soinov et al.

5.2 Second series experiments

In this section, we present the datasets and evaluation metrics employed to assess
the performance of DCSA-QAR. In this second series of experiments, we conducted
a comparative analysis with various information-theoretic methods, presented in
Section 2.2.3, including ARACNE, CLR, MI3, MIDER, MRMSn, MRNET, PCA-CMI,
RRMRNET, and RWRNET. The datasets are the DREAM3 dataset of simulated type
of network and SOS network as a real type. Table 5 shows the details of datasets used
in the second series of experiments.

5.2.1 Results with DREAM3 dataset

Tables 13, 14 and 15 summarise the results given by all competitors on DREAM3-10,
DREAM3-50 and DREAM3-100 gene dataset, respectively.
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Table 13 Comparison of the different methods’ performances in the Dream3-10 gene dataset

P FP TPR FPR Precision Accuracy

CLR 6 10 0.6 0.286 0.375 0.689
ARACNE 6 6 0.6 0.171 0.5 0.778
MRNET 6 12 0.6 0.343 0.333 0.644
MI3 8 6 0.8 0.171 0.571 0.822
MIDER - - - - - -

MRMSn 9 1 0.9 0.029 0.9 0.956
RRMRNET 10 0 1 0 1 1

PCA-CMI 9 1 0.9 0.029 0.9 0.956
RWRNET 8 1 0.8 0.029 0.889 0.933
DCSA-QAR 6 2 0.6 0.057 0.75 0.867

Table 14 Comparison of the different methods’ performances in the Dream3-50 gene dataset

TP FP TPR FPR Precision Accuracy
CLR 19 165 0.247 0.144 0.103 0.818
ARACNE 13 125 0.169 0.109 0.094 0.846
MRNET 21 215 0.273 0.187 0.089 0.779
MI3 21 68 0.273 0.059 0.236 0.899
MIDER 4 79 0.052 0.069 0.048 0.876
MRMSn 21 17 0.273 0.015 0.553 0.94
RRMRNET 38 56 0.494 0.049 0.404 0.922
PCA-CMI 25 19 0.325 0.017 0.568 0.942
RWRNET 29 16 0.377 0.014 0.644 0.948
DCSA-QAR 10 65 0.130 0.057 0.133 0.892

Table 15 Comparison of the different methods’ performances in the Dream3-100 gene dataset

P FP TPR FPR Precision Accuracy

CLR 39 713 0.235 0.149 0.052 0.830
ARACNE 20 417 0.121 0.087 0.046 0.886
MRNET 49 984 0.295 0.206 0.047 0.778
MI3 27 165 0.163 0.035 0.141 0.939
MIDER 13 80 0.078 0.017 0.140 0.953
MRMSn - - - - - -

RRMRNET 92 238 0.554 0.05 0.28 0.937
PCA-CMI 70 64 0.422 0.013 0.522 0.968
RWRNET 65 50 0.392 0.01 0.565 0.969
DCSA-QAR 5 64 0.030 0.013 0.072 0.955

5.2.1.1 Discussion

DREAM3-10 gene dataset: In terms of TP, and TPR, DCSA-QAR archives the
same results as CLR, ARACNE and MRNET. In FP, FPR, precision, and
accuracy, DCSA-QAR is better than CLR, ARACNE, MRNET and MI3.
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e DREAM3-50 gene dataset: In terms of TP and TPR, DCSA-QAR archives better
results than MIDER. In FP and FPR, DCSA-QAR achieves better results than
CLR, ARACNE, MRNET, MI3 and MIDER. In precision, DCSA-QAR achieves
better results than CLR, ARACNE, MRNET and MIDER . In accuracy,
DCSA-QAR s third, just after RWRNET and PCA-CMI.

e DREAMS3-100 gene dataset: The worst results obtained here by DCSA-QAR in
TP and TPR are compensated by the second best results in FP and FPR, just after
RWRNET. In precision, DCSA-QAR is better than CLR, ARACNE, MRNET.
Furthermore, DCSA-QAR is third in accuracy, just after RWRNET and PCA-CMI.

5.2.2 Results with SOS dataset

Table 16 gives the performance analysis of all competing methods, on SOS dataset.
The acceptable results obtained by DCSA-QAR on the DREAM3 dataset above are
compensated by better results on the SOS dataset. The proposed approach outperforms
other methods in terms of accuracy, yielding the best results only seconded by
PCA-CMI. Additionally, our method exhibited the highest performance in terms of
TPR, suggesting that our approach infers more true positive associations. Additionally,
DCSA-QAR demonstrated the second best performance in terms of true positives, after
PCA-CML

Real networks typically possess intricate structures and closely interconnected
regulatory relationships, making their inference challenging. Despite these complexities,
the proposed method performed well in the SOS network, particularly in identifying true
regulatory relationships. This outcome shows the effectiveness of our method, making
it well-suited for inferring real networks better than simulated ones.

Table 16 Comparison of the different methods’ performances in the SOS dataset

P FP TPR FPR Precision Accuracy

CLR 12 5 0.5 0.417 0.706 0.528
ARACNE 7 3 0.292 0.25 0.7 0.444
MRNET 17 6 0.708 0.5 0.739 0.639
MI3 9 5 0.375 0.417 0.643 0.444
MIDER - - - - - -

MRMSn 10 2 0.417 0.167 0.833 0.556
RRMRNET 10 2 0.417 0.167 0.833 0.556
PCA-CMI 19 3 0.920 0.250 0.84 0.778
RWRNET 15 1 0.625 0.083 0.938 0.722
DCSA-QAR 21 5 0.875 0.417 0.808 0.778

5.2.3 Examples of GRN inference with DCSA-QAR
5.2.3.1 GRN obtained for DREAM3-10 gene dataset

Figure 9 shows the GRN obtained with DREAM3-10 genes. It shows the inference of
6 true associations out of 10 with 2 false ones. DCSA-QAR discovers 60% of the true
associations.
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Figure 9 Gene association network obtained by DCSA-QAR from Dream-10 gene dataset
(see online version for colours)

e True relationship
—— Missed relationship
- -~ False relationship

5.2.3.2 GRN obtained for SOS dataset

Figure 10 shows the GRN obtained with the SOS dataset. It shows the inference of 19
true associations out of 22 with only 5 false ones. DCSA-QAR discovers 86% of the

true associations.

Figure 10 Gene association network obtained by DCSA-QAR from SOS dataset
(see online version for colours)

=== True relationship
= Missed relationship
=== False relationship

5.3 Discussion of dataset influence on GRN inference results

Our current understanding suggests that there is no existing theory that can reliably
forecast how a particular GRN inference algorithm will behave on a given dataset.
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In this context, tangible insights and results are achievable solely through empirical
experiments and practical testing. From the results reported above, we concluded that
our method gave mitigated results: excellent on some datasets (Co-citation, YeastNet,
SOS), and average on others (GO and DREAM3). Here, we outline some factors that
could influence the performance of GRN inference algorithms, as far as datasets are
concerned.

1 On the algorithm side

a  Parameter tuning and optimisation parameters: as our method involves
parameter tuning, the optimal parameter settings may vary for different
datasets. To maintain a fair and equitable comparison with other competitors,
and in order to promote transparency and impartiality in our evaluation, we
have employed uniform parameters consistently across all datasets. The
experimental findings indicate that while these parameters are appropriate for
specific datasets (Co-citation, YeastNet, SOS), their efficacy is diminished
when applied to others (GO and DREAM3), leading to suboptimal
performance.

b Algorithm sensitivity: GRN inference methods are based on different
underlying assumptions. The appropriateness of these assumptions can vary
across datasets, affecting the performance of the method. For example, some
methods assume linear relationships between genes, while others account for
nonlinear interactions, undirected vs. directed edges, pairwise vs. multiple
genes, among others (Kontio et al., 2020).

2 On the data side

a  Sample size: GRN inference methods might face challenges with small
datasets, as they may not accurately capture the complexity and diversity of
gene expression patterns. Additionally, small sample sizes can result in
overfitting, where the model excels on the training data but struggles to
generalise to new datasets.

b  Batch effects: variations in experiments or technical biases observed across
diverse datasets, commonly referred to as batch effects, have the potential to
introduce systematic errors, influencing the efficacy of GRN inference
methods.

As a result, developing a profound understanding of a dataset’s characteristics, the
biological context, and the strengths and limitations of various GRN inference methods
is crucial. Such knowledge is essential for making informed decisions in selecting an
appropriate approach and for effectively interpreting the outcomes. Given the absence
of a universal method that excels across all datasets, it is advisable to undertake
an evaluation of multiple methods. Additionally, considering ensemble approaches is
recommended to further strengthen the robustness of GRN inference methods when
dealing with datasets of diverse nature. This approach not only acknowledges the
complexity of biological data but also contributes to the advancement of reliable and
applicable GRN inference practices not only within the field of GRN inference methods
but in data mining and bioinformatics at large.
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6 Conclusions

To address the limited availability of ARM-based algorithms in GRN inference, a new
metaheuristic algorithm is introduced: DCSA-QAR. It highlights the utilisation of the
model-free approach provided by the ARM, integrated into a metaheuristic method.
Specifically, the metaheuristic CSA is discretised using the C-BUDA. This latter
aims to optimally split numerical attribute intervals by maximising class prediction.
Starting with the formulation of the fitness function, we subsequently fine-tune the
algorithm’s initial parameter settings to ascertain the minimal thresholds necessary
for the extracted QARs. Thereafter, the application of our algorithm is extended to
prominent datasets encompassing gene information derived from microarray data. Two
series of experiments are undertaken involving the comparison with metaheuristic
methods, on the one hand, and information-theoretic methods, on the other hand. In the
first series of experiments, DCSA-QAR occupies the following overall ranking positions
w.r.t. five state-of-the-art algorithms:

e DSCA-QAR is the best for Co-citation dataset
e second best for YeastNet dataset
e second best across all datasets combined

e second best in average number of mined associations.
In the second series of experiments, the DCSA-QAR presents the following results:

e average results in DREAM3 datasets

e  best results in accuracy and true positives, on SOS real dataset.

It can be concluded that the proposed method yields commendable outcomes across
various facets of performance, encompassing widely recognised quality metrics of
network assessment, achieving overall good performance while scaling well in GRNs
inference in comparison with state-of-the-art algorithms. As a future work, an additional
layer incorporating embedded prior knowledge and relevant molecular data might
improve the proposed tool.
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