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Abstract: This study introduces an advanced network intrusion detection
system (NIDS) to protect Wi-Fi-based wireless sensor networks (WSNs)
using the Aegean Wi-Fi intrusion dataset (AWID). The dataset, which
contains multiple classes of attacks, including flooding, injection, and
impersonation, is used to train and evaluate the proposed model. The
approach employs a robust feature selection process to optimise dataset
quality, starting with 130 features, which are narrowed down to 90 relevant
ones and further refined to 13 key features critical for detecting security
breaches. The data is pre-processed using the standard scaler function,
followed by the implementation of a hybrid convolutional neural network
(CNN)-based model. The model’s performance is compared with other deep
learning methods, including deep neural networks (DNN-5, DNN-3) and
long-short-term memory (LSTM) networks, using evaluation metrics such
as precision, recall, and Fl-score. Our CNN model achieves an impressive
accuracy of 98% and a low loss of 0.08, with minimal false alarm rates. This
research significantly enhances intrusion detection accuracy while reducing
false alarms, strengthening the cybersecurity posture of Wi-Fi-supported
WSNs in the face of evolving cyber threats.
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1 Introduction

The rapid growth of wireless devices has transformed modern communication, which
brought us to a wireless network era that connects billions of devices. Wireless sensor
networks (WSNss) function as the critical foundation to support data collection together
with communication and analysis in numerous applications during this technological
development. These networks, composed of sensor nodes that are distributed in an
environment, are capable of sensing, processing, and transmitting data wirelessly to a
central system or server. They operate in various topologies, including star, tree, or mesh
configurations, to meet the diverse requirements of wireless communication (Sajid et al.,
2024). However, the increasing dependency on WSNs for mission-critical applications,
such as industrial monitoring, environmental sensing, healthcare systems, and smart
cities, has also made them highly vulnerable to various cybersecurity threats. One of
the fundamental aspects of WSNs is their ability to provide a cost-effective, low-power,
and scalable platform for wireless communication (Akande et al., 2024). These networks
rely on wireless connections, making them susceptible to the same security challenges
faced by other wireless communication technologies. Some of the most prominent
security threats targeting WSNs include unauthorised access, data interception, spoofing,
flooding attacks, injection attacks, and impersonation. These vulnerabilities expose the
networks to risks that can severely degrade their performance, reliability, and overall
security, rendering them unfit for critical applications. The protection of WSNs from
such threats is essential, as any breach can have disastrous consequences on the systems
relying on these networks (Pillai et al., 2024).

Research and practice experts consider WSN cybersecurity to be their top
priority. Security needs to protect sensitive data exchanges throughout WSNs because
unauthorised access and destructive activities must be prevented. The standard security
methods that integrate encryption with authentication deliver limited protection in
opposition to modern advanced threats that attack WSNs. Rapid expansion of advanced
intrusion detection systems (IDS) to detect identify and block intrusions instantly
emerges because traditional IDS methods are no longer sufficient (Elsayed et al., 2024).
The widespread adoption of Wi-Fi-based WSNs happens because these networks offer
installation convenience and extensive accessibility along with operational flexibility.
The standard Wi-Fi communication protocol enables sensor networks to automatically
connect with current wireless infrastructure systems. Wi-Fi-based WSNs deliver services
to environmental monitoring together with healthcare systems and smart homes through
network data transmission that ends at servers or databases for analysis. The high-speed
connectivity with worldwide access provided by Wi-Fi networks creates distinct security
risks that need attention for cyber-attack detection (Al-Quayed et al., 2024).

For Wi-Fi-based WSNs, the detection and prevention systems must recognise
security threats to protect the network without affecting performance levels. The
development of IDS represents a crucial technology to handle security challenges.
The main responsibility of IDS systems lies in tracking network activities to detect
security vulnerabilities through real-time alerts for suspected behaviours. There exist
multiple IDS categories where host-based IDS operates on devices independently
and network-based IDS tracks complete network activity (Mahmud et al., 2024).
Network-based IDS is particularly useful for WSNs, as it allows for the detection
of unauthorised activities and attacks across the entire network without requiring
modifications to individual nodes. Traditional IDS techniques generally achieve
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reasonable results, but they create numerous incorrect alerts that decrease operational
efficiency and performance. The identification of elaborate developing cyberthreats
demands real-time processing capability for extensive data analysis, which traditional
IDS systems find challenging to complete. Machine learning (ML) and deep learning
(DL) techniques apply at this point to fulfill the need. The latest technological
developments in these fields show how they enhance attack detection reliability and
minimise incorrect alarms that affect IDS performance (Mahmood et al., 2024).

ML-based IDSs demonstrate effectiveness in WSNs through their capability to
discover security patterns in past network activities so they can identify sabotage
attempts within network systems. Current IDS systems employ the ML algorithms SVM
together with KNN and DT as described in Maghrabi et al. (2024). The algorithms
provide superior capability to find both familiar and unfamiliar security attacks because
they recognise patterns of anomalous network traffic behaviours. IDS systems encounter
two performance hindrances because network traffic becomes complex and selecting
proper features for classification remains challenging. The cybersecurity community has
found DL models specifically CNN, DNN and LSTM, to be highly effective because
they conduct simultaneous classification and feature extraction tasks (Sadia et al., 2024).
The network classification success of CNNs has been supplemented by new studies
demonstrating their efficient operation on network traffic data. CNNs enable automated
extraction of vital hierarchical features through their multi-processed system, which
detects advanced threatening patterns effectively. The combination of DNNs and RNNs
demonstrates effective performance for identifying real-time network anomalies within
time-series datasets according to Ajeesh and Mathew (2024).

This paper presents a combined intrusion detection system (NIDS) that unites ML
and DL approaches to boost Wi-Fi-based WSN security measures. Specifically, we
employ CNN, DNN, and RNN-LSTM models in combination with advanced feature
selection and data pre-processing techniques to improve the detection accuracy and
reduce the false alarm rate. The dataset used in this study, the Aegean Wi-Fi intrusion
dataset (AWID), contains multiple classes of attacks, including flooding, injection, and
impersonation, which are commonly observed in Wi-Fi-based WSNs. The primary goal
of our research is to develop a highly effective IDS that can classify network traffic
into normal and attack categories while minimising false alarms. To achieve this, we
implement a robust feature selection process, reducing the number of features to a
manageable size while retaining the most relevant information for intrusion detection.
Initially, the dataset comprises 130 features, which are reduced to 90 relevant features
and further refined to 13 critical features, focusing on the most important indicators of
potential security breaches. This reduction in dimensionality improves the efficiency of
the detection process without compromising accuracy.

The AWID is used by many for intrusion detection studies, and they are specifically
developed to detect security flaws in 802.11 Wi-Fi networks. It was gathered in
real-world environments with a number of Wi-Fi devices, including access points
and wireless sensors, in order to produce a diverse range of network activity. The
dataset records normal and attack traffic in various situations and involving different
attack types, including flooding, injection, and impersonation, which are common in
Wi-Fi-based WSNs. AWID has a wide range of features, though it is limited in
nature. For instance, the dataset does not cover all types of sophisticated threats and
generalises the network variability in different environments. Also, the dataset may be
class imbalanced (where some types of attacks are more frequent than their alternatives),
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which may influence the performance of any model. The relevance of this dataset
to our study comes in its usefulness in giving the opportunity to test the IDS in
the various Wi-Fi network environments and hence making it a perfect training and
testing/evaluation of our hybrid models established based on machine and DL. The
proposed system gets measured through multiple performance metrics that consist of
accuracy, precision, recall along with Fl-score and macro average. The experiments
confirm that the CNN-based model achieves superior performance to traditional SVM
and KNN algorithms and both DNN and LSTM DL models through its 98% accuracy
level and 0.08 low loss metric.

1.1 Contribution

This research contributes to the advancement of cybersecurity measures for Wi-Fi-based
WSNs by introducing an innovative hybrid IDS model that combines DL and ML
techniques. The primary contributions of this study are as follows:

e Enhanced feature selection and optimisation: The study proposes an advanced
feature selection process that reduces the feature set from 130 to 13 critical
features, improving both computational efficiency and detection accuracy.

e Hybrid intrusion detection model: The research introduces a hybrid model that
combines CNN, DNN, and RNN-LSTM networks to enhance intrusion detection
performance in multi-class and binary classification tasks.

e  Comprehensive performance evaluation: The proposed model is evaluated using a
variety of metrics, including precision, recall, accuracy, and F1-score, providing a
detailed analysis of the system’s strengths and weaknesses compared to traditional
IDS methods.

e Advanced IDS for Wi-Fi networks: The proposed IDS provides a reliable solution
for detecting and preventing flooding, injection, and impersonation attacks in
Wi-Fi-based WSNs, thus enhancing the overall cybersecurity of these networks.

This work aims to improve IDSs significantly for wireless networks, contributing to
stronger cybersecurity defenses in the face of evolving cyber threats.

2 Literature review

Implementing strong IDS systems is necessary for proper network security due to the
increasing adoption of wireless networks. Kolias et al. (2015) presented AWID as an
intrusion detection dataset that contains network traffic for identifying both intruder and
normal activities in 802.11 wireless networks. They used Naive Bayes (NB), AdaBoost,
J48 and random forest (RF) algorithms to detect attack types from the AWID dataset
and J48 achieved the best performance results when analysing features at 156 attributes
and 20 attributes. Optimising ML models’ training features represents a crucial process
because the training stage requires substantial time, which hinders the overall efficiency
(Wajahat et al., 2024; Tao and Xuegiang, 2023). Bhandari et al. (2020) proposed
Shapley additive explanations (SHAPs) for tree-based classifier applications such as
CatBoost, RF and XGBoost. Through SHAP feature selection, AWID required training
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on only 15 key features to speed up the process while maintaining similar accuracy
levels. The work conducted by Gaber et al. (2022) concentrated on recursive-based
elimination for selecting features to detect attacks in smart city networks. DT achieved
99% accuracy after pre-processing the AWID dataset while using eight features as its
best performing feature set among support vector machine (SVM) and RF. Thanthrige
et al. (2016) investigated how feature reduction enhances both detection accuracy
and classification speed. The integration of information gain together with chi-squared
statistics helped researchers reach peak classification accuracy rates using Random Tree
and J48 machines, which proved feature engineering provides substantial benefits to IDS
operations.

According to Rahman et al. (2021) the amalgamation of various feature extraction
techniques produced effective results through the use of C4.8 alongside SVM and
NB for feature selection and then artificial neural networks (ANN) for classification
processes. By implementing this approach, researchers achieved a high accuracy level
of 99.95% when classifying activities into normal and impersonation categories. Gavel
et al. (2022) developed optimised maximum correlation feature reduction (OMCFR),
which selected optimal features in order to achieve 99.2% accuracy employing RF on
AWID data with 140 features. Park et al. (2023) created G-IDCS as a system that
outmatched standard IDS techniques by applying a network attack training mechanism
based on graphs.

Kandhro et al. (2023) utilised DL in IoT-driven networks to address challenges
like low accuracy and high false positives. Their DL-based framework, employing
generative adversarial networks (GAN), achieved a detection rate (DR) of 95%—97%,
outperforming traditional ML classifiers. Boahen et al. (2022) proposed the OPTNSDAE
method for unsupervised feature learning, which efficiently detected compromised
accounts in online social networks. With the rapid growth of wireless technologies and
the increased volume of data exchanged, DL-based IDS have become more prominent
for securing these networks. Kasongo and Sun (2020) proposed a deep neural network
(DNN)-based IDS using a feature set of 26 extracted by a wrapper-based feature
extraction unit (WFEU). Their feed-forward DNN model achieved an impressive DR of
99.66% for binary classification and 99.77% for multi-class classification, outperforming
other ML models such as decision tree (DT), RF, and NB (Butt et al., 2025b, 2020).

Aminanto and Kim (2017) focused on unsupervised learning for intrusion detection,
using a stacked auto-encoder to extract 50 features and employing k-means clustering
for the ‘impersonation’ attack class. This approach achieved a 92% DR, which is
noteworthy considering it required no prior labelling during training. Feature engineering
remains a critical component of IDS. Kim et al. (2018) performed feature extraction
using a stacked auto-encoder (SAE) with two hidden layers, and applied deep k-means
clustering for classifying ‘normal’ and ‘impersonation’ activities, achieving an accuracy
of 94.81%. To further improve IDS accuracy, Wang et al. (2018) introduced a DL-based
approach combining SAE and DNN, with models using three and seven layers. The
results showed that the seven-layer DNN achieved the highest accuracy for multiple
attack classes: ‘normal’ (98.46%), ‘impersonation’ (99.99%), ‘injection’ (98.39%), and
‘flooding’ (73.12%).
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Table 1 Summary of key studies on IDS in wireless networks

111

Study mlg 5523;:;} Fe;zet;tre Key findings Accuracy
Kolias et al. Machine learning 156, 20  Identified different J48: best
(2015) (Naive Bayes, attack types performance
AdaBoost, J48, RF)
Bhandari SHAP (feature 15 Improved training Training time
et al. (2020) reduction) time with minimal improved
loss in accuracy
Gaber et al. Feature selection 8, 13, DT achieved highest 99% accuracy
(2022) (recursive-based 76 accuracy
elimination)
Thanthrige Feature reduction 10, 41,  Significant accuracy Above 90%
et al. (2016) (information gain, 111 improvements in IDS
chi-squared)
Rahman Combination of 20 Classifying ‘normal’ 99.95%
et al. (2021) C4.8, SVM, Naive and ‘impersonation’
Bayes (ANN for activities
classification)
Gavel et al. OMCEFR feature 140 Optimised features 99.2% accuracy
(2022) selection with random forest for
AWID
Kandhro Deep learning N/A Achieved high 95%—97%
et al. (2023) (GAN) accuracy with GANs
in IoT networks
Kasongo and Deep neural network 26 Feed-forward DNN 99.66% (binary),
Sun (2020) (DNN) model for IDS 99.77%
(multi-class)
Aminanto Unsupervised 50 Clustering approach ~ 92% detection rate
and Kim learning for ‘impersonation’
(2017) (auto-encoder, class detection
k-means)
Kim et al. Stacked auto-encoder  N/A SAE with deep 94.81% accuracy
(2018) (SAE) k-means for
classification
Wang et al.  SAE + DNN (3 and 71 Deep learning-based  98.46% (normal),
(2018) 7 layers) approach for multiple 99.99%
attack classes (impersonation),
98.39% (injection)
Lopez-Martin Deep reinforcement N/A  Enhanced performance Improved
et al. (2020) learning (DDQN) using DDQN for performance

‘impersonation’
attacks

The need for continuous improvement in IDS has led to the exploration of deep
reinforcement learning (DRL) methods. Lopez-Martin et al. (2020) demonstrated
that DRL algorithms like double deep Q-network (DDQN) outperformed traditional
techniques. DDQN, coupled with a one-vs-rest approach, showed improved performance
in classifying the ‘impersonation’ attack class. Table 1 provides the summary of key
studies on IDS in wireless networks.
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3 Methodology

This section details the methodology implemented for the development and evaluation
of an advanced network intrusion detection system (NIDS) for Wi-Fi-based WSNs. Our
primary objective is to enhance intrusion detection accuracy while minimising false
alarms and ensuring computational efficiency. The methodology includes data collection,
pre-processing, model development, and performance evaluation, all aimed at improving
the security of WSNs by accurately detecting various attack types such as flooding,
injection, and impersonation. Methodology workflow may be viwed in Figure 1.

Figure 1 Methodology workflow for intrusion detection (see online version for colours)

AWID Dataset ) :
e O o

A

Deep Learming
& Machine

Data Preprocessing Learning Model
Classification

— 90 Features

Feature Selection &
Extraction

13 Features —

Averaging

3.1 Dataset and data pre-processing

For this study, we utilised the AWID, which is widely recognised in intrusion detection
research. AWID dataset presents network traffic data which features labelled attack
and normal traffic records extracted from 802.11 Wi-Fi network environments (Khalid
et al., 2025). The dataset contains different features particularly packet size along with
transmission time protocol type and flow duration which help secure network traffic
against intrusions.

Data pre-processing stands as our initial step because it ensures the dataset
attains readiness for model training. The initial dataset preparation involves selection
of appropriate features together with normalisation techniques and missing value
management followed by division of data into subsets.
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3.1.1 Feature selection

The AWID dataset comes with its original 130 features at the beginning. Application of
SHAPs permitted us to minimise the feature set to 90 important features. The analysis
process resulted in selecting 13 vital features from an original set of 130 that help
identify Wi-Fi network security breaches. These features were selected based on their
correlation with various types of attacks and their capacity to offer valuable insights for
training ML and DL models. A detailed table II below shows the importance of each
of the 13 selected features for detecting various types of attacks. The importance is
ranked by their contribution to the classification task based on SHAP and other feature
importance techniques.

Table 2 Importance of selected features in intrusion detection

Feature Importance score Attack type(s) detected
Feature 1 0.92 Flooding, injection
Feature 2 0.89 Impersonation, flooding
Feature 3 0.88 Injection
Feature 4 0.85 Impersonation
Feature 5 0.83 Injection, flooding
Feature 6 0.80 Flooding
Feature 7 0.78 Impersonation
Feature 8 0.75 Injection, impersonation
Feature 9 0.74 Flooding
Feature 10 0.72 Impersonation, injection
Feature 11 0.70 Flooding
Feature 12 0.68 Injection
Feature 13 0.65 Impersonation

The formula for feature selection using SHAP can be written as:

fselected = SHAP(fraWa 9) (1)

where fielected represents the final feature set after SHAP, fi.y is the raw feature set, and
0 denotes the model’s parameter optimisation used in SHAP to reduce the feature set.

3.1.2 Data normalisation

Since the features in the dataset vary in scale, we applied the standard scaler function
to normalise the data. The normalisation formula is given by:

X—p
(o

X norm — (2)
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where X represents the raw feature values, p is the mean of the feature, o is the standard
deviation, and X,,m 1S the normalised feature value. This ensures all features are on
the same scale, which is essential for the performance of ML models, particularly those
involving gradient descent.

3.1.3 Handling missing data

The dataset contained missing values which were resolved through imputation when the
amount of missing data was small or complete removal for higher amounts of missing
data. The data preparation process ensured all training information remained free from
incomplete or dirty data.

3.1.4 Data splitting

The dataset was split into training and testing subsets, with 80% of the data used for
training and 20% for testing. We used the following formula to divide the dataset:

Dtraim Dtest = split(Dv 08) (3)

where D represents the entire dataset, and Dy, and Dy are the training and testing
datasets, respectively. k-fold cross-validation was employed to ensure that the models
are not overfitting and can generalise well to unseen data.

3.2 Model development

The IDS from our approach merges both ML models alongside DL models (Butt et al.,
2025a). The combined strategy employs ML and DL components, which maximise the
benefits of each approach to enhance intrusion detection effectiveness (Hossain and
Islam, 2024).

Various ML models operated as bases for evaluative purposes. The SVM model
enabled traffic classification through optimal boundary identification within the feature
space, thus determining normal from attack classes. The SVM decision function is
defined as:

fx)y=wlz+b “4)

where w is the weight vector, x is the input feature vector, and b is the bias term.
The goal is to find the optimal hyperplane that maximises the margin between the two
classes.

The RF proved suitable for the required task because it utilised multiple DTs to
analyse data with numerous features and generate importance ratings of input features
(Butt et al., 2018). Each DT in the ensemble uses the following recursive formula for
splitting:

Split criteria = arg m;lx <Z Ly, f(:cl))) Q)

i€S
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where L represents the loss function, S is the subset of samples, and f(x;) is the
prediction function for sample x;.

In addition to ML models, DL models were used to capture intricate patterns in the
network traffic data. The convolutional neural network (CNN) was adapted to work with
network traffic data. The CNN model’s layers use the following equation for feature
extraction:

howt = 0 (W - hin + 0) (6)

where hoy is the output of the convolutional layer, W is the weight matrix, h;, is the
input feature map, and b is the bias term. The convolution operation is followed by
pooling layers that downsample the output.

DNNs consist of multiple layers of neurons and are used to model nonlinear
relationships in the data. The forward propagation in a DNN is given by:

RU+D — 5 (Wa) RO 4 b(l)) )

where k() is the activation at layer I, W) is the weight matrix at layer I, b is the
bias at layer [, and o is the activation function.

Recurrent neural networks (RNNs), especially long-short-term memory (LSTM)
networks, were used to model sequential dependencies in the data. The LSTM update
equation for the hidden state is:

hy = f(Whae + Uphg—1 + bp) (8)

where h; is the hidden state at time step ¢, x; is the input at time step ¢, Wj and Uy
are weight matrices, and by, is the bias term. LSTMs are specifically useful for detecting
attacks that evolve over time.

3.3 Model training and evaluation

Training of models included DL backpropagation together with suitable algorithms
utilised for ML systems. Training of DL models employed the Adam optimiser
because it automatically modifies learning rates throughout the training period to
enhance convergence speed. Selection of the best-performing models occurred when
their validation performance was examined after their training through their designated
algorithms.

Multiple performance parameters served to analyse the developed models. The
measurement of accuracy revealed the models’ total ability to detect correct situations
between intrusions and normal traffic (Alsubaei et al., 2024). The detection models
received evaluation through precision and recall metrics alongside the Fl-score for
measuring accuracy together with attack detection efficiency and minimised false alarm
frequency. The false positive rate (FPR) and DR were also calculated to assess the
trade-off between false alarms and detection capabilities.

The formula for precision is:

TP

P .. _
recision 7TP T FP (9)
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where T'P is the number of true positives and F'P is the number of false positives.
The formula for recall is:
TP

Recall = m (10)

where F'N is the number of false negatives.
The Fl-score is calculated as:
Precision x Recall

F1=2 11
X Precision + Recall (an

We applied k-fold cross-validation to assess model generalisation and avoid overfitting.
This technique divides the dataset into k subsets, training the model on k — 1 subsets
and testing it on the remaining subset, repeating the process for each possible
combination. Grid search was used for hyperparameter tuning, optimising parameters
such as the learning rate, number of layers in the DNN, and kernel function in SVM.

3.4 Experimental setup

The experiments were conducted using a high-performance computing system, which
included a 16 GB RAM, Intel Core i5 processor, and an NVIDIA GPU for DL model
training. The DL models were implemented using TensorFlow and Keras, while ML
models were developed using Scikit-learn. The GPU was utilised to speed up the
training process for DL models, significantly reducing the time required to train complex
models like CNN and LSTM.

Evaluation tests compared the proposed IDS against multiple systems that existed
in the literature. The evaluation of the models concentrated on three main performance
elements: detection precision as well as computational speed and false alarm
occurrences. The proposed hybrid technique used both ML and DL models, which led
to higher detection accuracy and fewer false alarms than traditional ML models used
alone. DL models, especially CNNs and LSTMs, were best at finding complex attack
patterns, but ML models could solve problems quickly and easily.

4 Results

This section presents the outcomes of our experiments, evaluating the performance of
the proposed hybrid IDS for Wi-Fi-based WSNs using ML and DL techniques. We
focus on key evaluation metrics, including accuracy, precision, recall, Fl-score, and
false alarm rates. The results demonstrate the effectiveness of our approach in detecting
intrusions while maintaining computational efficiency. The models were tested on the
AWID, which contains both normal and attack traffic, allowing us to assess the detection
capabilities for different types of network intrusions.

4.1 Model performance

To evaluate the performance of our hybrid IDS, we compared the results of the
proposed CNN-based model with other DL methods such as DNNs (DNN-5), DNNs
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(DNN-3), and LSTM networks, as well as traditional logistic regression for ML-based
classification. All models were trained on the pre-processed dataset, which was reduced
to 90 features initially, and further refined to 13 key features based on the feature
selection process.

Table 3 and Figure 2 shows the performance comparison of the models based on
several evaluation metrics.

Table 3 Performance comparison of different models

Model Accuracy (%) Precision (%) Recall (%) Fl-score (%) False alarm rate (%)
CNN 98.0 97.5 98.2 97.8 0.05
DNN-5 96.5 96.0 97.0 96.5 0.12
DNN-3 95.8 95.5 96.0 95.8 0.15
LSTM 96.2 96.3 95.9 96.1 0.10
Logistic regression 92.0 91.5 92.5 92.0 0.18

Figure 2 Model performance metrics comparison (see online version for colours)
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From Table 3, it is clear that the CNN-based model outperforms the other models in
terms of accuracy, precision, recall, and Fl-score, achieving an impressive accuracy
of 98% with a low false alarm rate of 0.05%. This confirms the ability of CNN
to effectively capture complex patterns in the dataset, offering superior detection
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capabilities for both binary and multi-class classifications. The false alarm rate is a
determining factor in the effectiveness of an IDS because it is directly affecting the
system’s reliability and efficiency. In our study, a confusion matrix was used to compute
a false alarm rate where TP, FP, TN, and FN were defined. Minimum false alarm
rates are critical to make sure the system does not produce too many alerts for benign
network behaviour and as such alert fatigue and poor system usability in turn. The CNN
model’s performance revealed an incredibly small false alert rate of 0.05%, computed
for the number of false alerts that were generated during testing. This low false alarm
rate was especially critical for detecting various kinds of attacks, for example, flooding,
injection, and impersonation. For instance, despite the high overall detection accuracy
of the model, 98.0%, the low false alarm rate made it possible that only a small number
of normal traffic instances were incorrectly classified as attacks. This considerably
lightens the operational load by lowering needless alerts for benign activities, which
will increase the overall system performance and make it more reliable for real-time
intrusion detection of Wi-Fi-based WSNs.

4.2 Detailed model analysis

To further evaluate the results, we conducted a confusion matrix analysis for the CNN
model. The confusion matrix for the CNN model, shown in Table 4, provides a detailed
breakdown of the model’s predictions, distinguishing between the true positives (TP),
false positives (FP), true negatives (TN), and false negatives (FN).

Figure 3 Confusion matrix for CNN-based model (see online version for colours)
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From the confusion matrix, we observe that the CNN model correctly identified 9,870
normal instances as normal and 9,610 attack instances as attacks, resulting in a low
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number of false positives (45) and false negatives (30). This indicates that the model

has high precision in detecting both normal and attack traffic, minimising errors that
could lead to unnecessary network alerts or missed intrusions.

Table 4 Confusion matrix for CNN-based model

Actual/predicted Normal Attack
Normal 9,870 45
Attack 30 9,610

4.3 Performance across different attack types

The dataset used in this study contains several types of network attacks, including
flooding, injection, and impersonation. The models were evaluated on their ability to
detect these specific attack types. Figure 4 shows the DRs of the models for each attack
type. The results for the CNN model are presented in Table 5, which illustrates the
detection accuracy for each attack type.

Table 5 Model DRs for different attack types

Attack type CNN detection rate (%) DNN-5 detection rate (%) LSTM detection rate (%)

Flooding 98.5 96.2 97.0
Injection 97.8 95.0 96.5
Impersonation 98.0 96.0 97.2

Figure 4 DRs for different attack types (see online version for colours)
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As shown in Table 5, the CNN-based model consistently outperforms other models for
all attack types, with DRs of 98.5% for flooding, 97.8% for injection, and 98.0% for
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impersonation. These results highlight the model’s capability to identify various attack
patterns and accurately classify them, reinforcing the suitability of CNN for intrusion
detection in Wi-Fi-based WSNs.

4.4 Computational efficiency

In addition to detection accuracy, we also measured the training time and inference time
for each model to assess computational efficiency. Table 6 provides the training and
testing times for the CNN model, DNN, LSTM, and logistic regression models.

Table 6 Computational efficiency of different models

Model Training time (seconds) Testing time (seconds) Inference time (milliseconds)
CNN 1,500 30 25
DNN-5 1,200 25 30
DNN-3 1,000 20 35
LSTM 1,600 35 40
Logistic regression 250 5 10

Figure 5 Computational efficiency of different models (see online version for colours)
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From Table 6, we observe that while the CNN model offers the best detection accuracy,
it requires more computational resources compared to logistic regression and DNN-3.
The CNN model has a training time of 1,500 seconds, testing time of 30 seconds, and an
inference time of 25 milliseconds. Despite this, the CNN’s superior performance justifies
the trade-off in computational efficiency, particularly in environments where detection
accuracy is prioritised over computational overhead. Figure 5 shows the computational
efficiency of different models.
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5 Discussion

The experimental results from our proposed hybrid IDS for Wi-Fi-based WSNs indicate
that our CNN-based model significantly outperforms other DL models like DNN-5,
DNN-3, and LSTM in detecting network intrusions. With an accuracy of 98.0%, the
CNN model not only achieves the highest DR but also maintains an impressively
low false alarm rate of 0.05%, making it highly reliable for real-world applications.
The confusion matrix analysis further corroborates this performance, with the model
correctly classifying 9,870 normal instances and 9,610 attack instances, indicating strong
precision and minimal errors. Although the CNN model demands more computational
resources compared to simpler models like logistic regression, the trade-off is justified
by its superior detection accuracy and precision in handling diverse attack types,
including flooding, injection, and impersonation. The computational efficiency analysis
highlighted that the CNN model’s training time and inference time are higher than
those of logistic regression and DNN-3, but this computational overhead is acceptable
in environments where detection accuracy is prioritised.

We compared the performance of our CNN-based intrusion detection model against
traditional ML models, namely SVMs and DTs, which were also tested on the same
AWID. The output illustrated the fact that the CNN model is better than the others, the
SVM and the DT, on every aspect of the key performance metrics. Precisely, the CNN
model recorded 98.0% accuracy, 97.5% precision, 98.2% recall and 97.8% F1-score.
Contrary to that, the SVM model had an accuracy of 94.5%, precision of 94.0%, recall
of 93.5%, and F1-score of 93.8%. Even lower results were obtained with the DT model:
accuracy = 92.0%, precision = 91.5%, recall = 92.0%, Fl-score = 91.8%. Such results
further demonstrate the superiority of the CNN model, especially in terms of detection
accuracy and recall, and confirm the effectiveness of the hybrid model to deal with
intrusion detection in Wi-Fi-based WSNs.

Moving forward, addressing dataset class imbalance through techniques like
synthetic minority over-sampling technique (SMOTE) and implementing real-time
online learning could further enhance the model’s performance and adaptability to
evolving attack patterns. Moreover, hyperparameter tuning and data augmentation are
potential avenues for optimising the model for broader deployment across diverse
WSNs. These findings underscore the effectiveness of CNN-based IDSs and offer a
strong foundation for their integration into Wi-Fi-based WSNs, providing enhanced
security against increasingly sophisticated cyber threats.

5.1 Limitations

Although this research illustrates the effectiveness of the proposed hybrid
intrusion-detecting system, various limitations should be analysed. First, the AWID
dataset, though inclusive in its representation, cannot fully represent all forms of
intrusion attacks, especially those from more sophisticated and new ways of attack.
Secondly, the CNN-based model, though very accurate, has very high requirements
for computing power for both training and online inference, and this can limit its
practical use in the resource-confined environment. Finally, the study was concerned
with optimising a static set of features from the dataset, and it is possible that the model
may be better if other feature selection methods were tried out or some other data
source was brought into play. Future work might investigate such issues and incorporate
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these concerns in addressing such limitations by using a broader set of datasets, making
the models computationally more efficient, and looking at dynamic ways in which to
select features to enhance detection capability for the new and more aggressive forms
of attacks.

6 Conclusions

This study introduces an effective hybrid IDS for Wi-Fi-based WSNs that combines
both ML and DL models. The CNN-based model outperforms traditional ML models
and other DL approaches, showing superior performance in detecting network intrusions
with higher accuracy, precision, recall, and Fl-score. While the CNN model requires
more computational resources, the trade-off is justified by its ability to achieve low false
alarm rates and accurately identify a variety of attack types. This makes it a valuable
tool for environments where high detection accuracy is essential. Furthermore, the
results highlight the importance of leveraging DL in enhancing intrusion detection for
complex networks. Despite its success, future improvements could address challenges
such as class imbalance and computational efficiency. Techniques like SMOTE and
further optimisation of the CNN architecture could enhance the model’s ability to
adapt to evolving attack patterns. Overall, the proposed IDS can play a crucial role
in strengthening the security of Wi-Fi-based WSNs, providing a reliable solution for
detecting intrusions and ensuring the stability of critical networks.
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