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Appearance design of art exhibits combined with 
computer vision rendering technology 
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Abstract: In order to improve the appearance design effect of art exhibits, this 
paper uses the improved StyleGAN architecture to generate high-fidelity  
three-dimensional objects. This paper maps the image to the feature space 
through VAE, and then reconstructs the three-dimensional properties of the 
shape and surface from the well-decoupled latent vectors through the improved 
StyleGAN architecture. The visual-audio-to tactile (VA2T) algorithm directly 
generates tangential friction force and normal force data in the time domain, 
serving multi-dimensional data-driven tactile rendering. Combined with the 
experimental analysis, the VA2T algorithm based on time series force tactile 
data proposed has certain effects. In addition, combined with experimental 
analysis, it can be seen that the model proposed in this paper has a certain effect 
in the design of art exhibits, which can effectively improve the design effect of 
art exhibits and enhance the actual experience of visitors. 
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1 Introduction 

Due to the continuous update of technology and concepts in display design, on the one 
hand, people have gradually adapted and demanded that the ways of receiving knowledge 
and information can be diversified and diversified. As the role of information 
transmission designer, display design grasps and leads the latest presentation and 
transmission methods, and keeps pace with the times and brings forth the new, which is 
the fundamental requirement and task entrusted to every practitioner by the times and the  
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industry. The presentation of exhibits and display methods is two important elements in 
display design, and it is also two key nodes in the development and application of related 
technologies, which has led to the attention and research on virtual exhibits and 
interactive displays. On the other hand, as the core carrier of exhibition content, the value 
of exhibits determines the quality of exhibition design to a considerable extent. Due to 
the development and application of virtual interaction technology, visitors’ experience 
expectations for exhibition design are constantly improving, and endless new problems 
and challenges emerge from time to time. In addition, the value of exhibits plays a vital 
role in facing problems and challenges, and the extension of the value of exhibits benefits 
from the development of technology. It also has a broader extension space (Yan et al., 
2022). 

With the rapid development of digital technology, virtual exhibits and interactive 
display have become an important part of modern exhibition design. These technologies 
can not only provide a more immersive exhibition experience for the audience, but also 
increase the accessibility and malleability of the exhibition. Combining virtual exhibits 
and interactive displays, it presents diversified display methods, and at the same time 
displays multiculturalism and works of art in different historical periods, so as to help 
visitors better understand and appreciate cultural diversity (Mohanto et al., 2022). 

In order to improve the appearance design effect of art exhibits, this paper uses the 
improved StyleGAN architecture to generate high-fidelity three-dimensional objects. 
This paper proposes an algorithm [visual-audio-to tactile (VA2T)] that combines visual 
images and audio to generate time-series force tactile data. The VA2T algorithm directly 
generates tangential friction force and normal force data in the time domain, serving 
multi-dimensional data-driven tactile rendering. 

2 Related works 

2.1 Display of art exhibits 

At present, there are not only neuroscientists who provide research help in body and brain 
science, but also designers and artists who explore tactile experience works. Walton et al. 
(2021) put forward that ‘touch is not only done by hands’, and adopted a broader 
perspective to discuss touch-it, and believed that touch includes the ontological and 
interoceptive experience of the whole body. Kuang et al. (2022) took real plants as 
exhibits in the exhibition space, constructed a space close to the natural environment, 
allowed the audience to personally contact real plants, and carried out popular science 
education on plants and ecology in a large natural green space. It not only provides 
people with natural experience, but also meets people’s learning and social needs. 
Therefore, the design concept is very pioneering. 

Sitzmann et al. (2021) summarised the information of common exhibits in museums, 
and put forward some thoughts: how to really make the exhibits ‘alive’? The exhibits are 
the ‘hearts’ of the exhibition planners, and the exhibits themselves are telling their own 
stories. Scalera et al. (2021) proposed that people can experience the information 
transmission brought by touch through hands and feet, skin, behavioural movement and 
emotional communication, and emphasised that tactile experience in space is an excellent 
design way. 
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To sum up, the research on the experience design of touchable exhibits in the 
exhibition space is more systematic and scientific, and there are many cases in practical 
application, which are quite effective. In the follow-up research and analysis, this paper 
focuses on the necessity and design methods of touchable experience of exhibits display 
and improving the visiting effect of exhibits through visual rendering. 

2.2 Planar tactile reproduction rendering method 

Tactile reproduction rendering method is one of the important research contents of tactile 
reproduction technology, which is related to whether the tactile reproduction device can 
present real tactile feedback. The tactile reproduction technology based on friction 
control can better express the tactile information of virtual objects. There are two existing 
tactile reproduction technologies based on friction control: one is to use ultrasonic 
vibration to reduce friction, and the second is to use electrostatic force to increase 
friction. The two technologies have something in common in tactile reproduction and 
rendering. Moreover, both of them control the application of driving signals to generate 
corresponding tactile perception and transmit tactile information of real objects (Wang, 
2021). 

The tactile reproduction technology applied to mobile terminal uses touch screen to 
transmit tactile information feedback, which belongs to planar tactile reproduction 
rendering. Planar tactile rendering methods mainly include the method based on image 
features and the method based on actual measurement. By modelling the microscopic 
geometric features of the image texture surface or extracting some feature information of 
the image, the method based on image features constructs the mapping relationship with 
tactile feedback, and realises the tactile reproduction of virtual graphic images. By 
measuring the tactile-related information data generated in the actual interaction with real 
objects, the method based on actual measurement extracts tactile feature information and 
processes it, and establishes a tactile information mapping model to generate tactile 
feedback (Sun et al., 2021). 

By using different frequency components of the image to represent different texture 
feature information such as roughness, depression degree and contour, Lattas et al. (2021) 
used local Fourier transform method to extract image texture feature information and map 
it with driving signal amplitude. Fan and Li (2020) proposed a rendering method to 
improve 3D shape recognition. This rendering method improves the problem that the 
previous gradient algorithm cannot present a sharp touch to the edge, and adds an edge 
detection algorithm to render the edge, which improves the performance of 3D shape 
recognition. Zhao et al. (2022) proposed a method of jointly rendering the texture 
information of the image by using the amplitude and frequency of the electrostatic force 
driving signal. Firstly, by studying the relationship between tactile perception and driving 
signal, the mapping model of image texture gradient obtained by Roberts filter is 
established. Then, the amplitude of driving signal is used to render the height information 
of image texture, and the frequency of driving signal is used to render the hardness and 
granularity information of image texture. 

Shan and Sun (2021) proposed a new texture rendering method. This method uses 
photometric stereo to capture the optical density of the texture and map it with the height 
information, which can improve the resolution of the model, and then calculate the 
corresponding normal force and tangential force from the height information. Meanwhile, 
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a considerable sense of realism can be achieved when rendering textured objects with 
high compliance or low friction. Based on a haptic display coupled with electrical and 
mechanical vibration stimuli, Guo and Wang (2021) proposed a new three-dimensional 
geometric bump haptic rendering algorithm that can simultaneously generate lateral, the 
mapping relationship between friction force and 3D bump gradient is established. 

Lombardi et al. (2021) proposed to ‘record’ texture, and used texture acquisition tools 
to obtain speed and vibration data during contact, so as to construct a force tactile model 
of texture to reproduce texture tactile information. This algorithm is relatively simple and 
easy to reproduce uniform texture materials. Li et al. (2020) built a tactile acquisition 
system that can collect acceleration, movement position and contact force data. After the 
original time domain tactile signal is converted into frequency domain texture vibration 
signal by linear predictive coding method, the texture tactile sensation can be reproduced 
by voice coil motor actuator. 

Fu et al. (2021) built a tactile information acquisition equipment, which includes slide 
rail, motion controller, accelerometer, etc., and can collect acceleration data under 
different interactive conditions. Neural network is used to process the acceleration data, 
and bilinear interpolation is used to calculate and synthesise the corresponding 
acceleration signals in real-time. Turchet (2023) proposed a data-driven texture rendering 
method for electrostatic force, which obtains and processes the acceleration data when 
the probe slides on the sample surface, and maps it with the voltage amplitude of the 
electrostatic force driving signal to reproduce a virtual texture with similar touch. 

In this paper, a design system of art exhibits with strong visual infection effect and 
tactile feeling is proposed by combining visual rendering technology and time sequence 
force tactile data processing algorithm, which can improve the design effect and display 
effect of art exhibits. 

3 Algorithm model construction 

3.1 VA2T algorithm for time sequence force tactile data 

The VA2T network is shown in Figure 1, which consists of an audio encoder, a feature 
extraction and fusion network, and a haptic reconstruction network. The audio encoder 
extracts fixed-dimensional feature vectors from the audio input through the LSTM 
network. The image encoder in the feature extraction and fusion network captures the 
feature vectors in the image, connects the audio feature vectors and the image feature 
vectors, and forms a feature map that fuses the image and audio through the decoder 
module. Finally, the tactile reconstruction network transforms this feature map into 
friction and normal force data in the time domain. 

3.1.1 Audio encoder 
The function of the audio encoder is to extract the embedding vector of the input audio 
data, and represent the input features of the audio data through the embedding vector. The 
audio encoder first converts the audio input into a logarithmic Mel spectrum, denoted as 
(Cetinic and She, 2022): 

( )n
mS Spectrogram A=  (1) 
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Figure 1 VA2T network block diagram (see online version for colours) 

 

Among them, n
mA  represents the nth audio sample of the mth material, S represents the 

logarithmic Mel spectrum, and Spectrogram represents the Mel spectrum conversion 
function. The resulting spectrum S is passed through a three-layer LSTM network with 
hundreds of units in each layer and then projected into a 256-dimensional space. The 
output of the final layer is L2-normalised to create the final embedding vector. 

( )1,i iJ LSTM S J −=  (2) 

( )2 ( 3)E L Normalise Project J=  (3) 

Among them, Ji is the output vector of the ith layer LSTM network, Ji–1 is the output 
vector of the i – 1th layer LSTM network. L2Normalise means normalising the length (or 
norm) of the vector to 1 and keeping the direction of the vector unchanged. J3 is the 
output vector of the third layer LSTM network, and Project projects the output vector of 
LSTM into 256-dimensional space, and E is the final embedded vector. 

The feature extraction and fusion network includes a visual encoder, an attention 
module, and a decoder. The input image is first transformed into an embedding vector 
through a 512-dimensional embedding layer, 

( )n
e mX Embedding I=  (4) 

Among them, n
mI  represents the nth image sample of the mth material, Xe represents the 

embedding vector output by the embedding layer, and Embedding represents the 
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embedding layer. The obtained embedding vector Xe is passed through a stacked module 
containing three convolutional layers to extract features layer by layer. Each 
convolutional layer contains 512 convolution operators with a dimension of 51, and each 
layer is connected to a BN layer and a ReLU, which is expressed as: 

( )conv eX Conv X=  (5) 

Among them, Xconv is the output of the three-layer convolutional neural network, and 
Conv stands for the convolutional layer. The processed vector Xconv passes through a 
bidirectional LSTM layer, and the resulting encoded feature is represented as: 

( )biLSTM convX BiLSTM X=  (6) 

Among them, XbiLSTM is the output of the bidirectional LSTM layer, and Xconv represents 
the bidirectional LSTM network. 

The encoded features XbiLSTM are concatenated with an embedding vector E generated 
by the audio encoder, and then a context vector is generated by the attention module, 
which encapsulates the entire encoded sequence and affects each step of the output of the 
decoder: 

( )( )1, ,t biLSTM tC Attention Concat X E D −=  (7) 

Among them, Ct is the context vector at the moment t and Dt–1 is the decoder state at the 
previous moment. Attention stands for Attention mechanism, which focuses on more 
important features by setting the weights of different regions. The context vector Ct is 
then fed into a decoder, which includes a two-layer LSTM network, a linear projection 
layer and a post-processing network (PostNet). The process is expressed as: 

( )1,t t tD LSTM C D −=  (8) 

Among them, Dt is the LSTM network output at the current moment, and the linear 
projection layer is next used to convert Dt from high-dimensional space to  
low-dimensional space, which is denoted as: 

( )t tL LinearProjection D=  (9) 

Among them, Lt is the low-dimensional feature output by the linear projection layer, and 
LinearProjection represents the linear projection layer. PostNet is used to further process 
the low-dimensional features, which is expressed as: 

( )t tM PostNet L=  (10) 

Among them, Mt is the feature refined by PostNet. PostNet stands for post-processing 
network. Each layer of PostNet contains 512 convolution operators with a dimension of  
5 × 1. Except for the last layer, all layers are batch normalised and activated by tanh 
function. The calculation of tanh activation function is: 

tanh( )
x x

x x

e ex
e e

−

−

−=
+

 (11) 

The haptic reconstruction network is responsible for generating haptic data in the time 
domain. The network has autoregressive nature, and the generation of each haptic data 



   

 

   

   
 

   

   

 

   

    Appearance design of art exhibits combined with computer vision 7    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

sample depends on all previous samples, forming an autoregressive process. The input 
features Mt are processed by an extended causal convolutional layer and are expressed as: 

( )1,t t tY CausalConv M Y −=  (12) 

( ),t tZ DilatedConv Y d=  (13) 

Among them, CausalConv represents causal convolution, DilatedConv represents dilated 
convolution, and the superposition of the two is called dilated causal convolution. Dilated 
causal convolution, as the core component of the tactile reconstruction network, will be 
described in detail in the next section. Yt is the output of the causal convolution layer at 
time t, Yt–1 is the output of the previous time, Zt is the output of the dilated convolution 
layer at time t, and d is the dilation rate. In the network, the dilated convolution layers are 
arranged according to the exponentially increasing dilation rate. 

The last extended convolutional layer uses two extended convolutions to generate 
frictional force and normal force features respectively, the output of this layer contains 
two channels, and a gated activation unit is set to process the output of the extended 
convolutional layer to enhance the representation capability of the network (Ettalibi et al., 
2024). 

( ) ( )tanht f f g tG W Y σ W Y= ∗ ∗  (14) 

Among them, Wf and Wg are the weights of the convolution layer, * represents the 
convolution operation,  represents the element-wise multiplication, tanh(·) represents 
the tanh activation function, and σ(·) represents the Sigmoid function. The output Gt then 
passes through a Softmax layer to obtain the probability distribution of the next tactile 
sample value: 

( )t tO Softmax G=  (15) 

According to the probability distribution Ot of the output, tangential friction force and 
normal force data are generated in two channels by random sampling: 

( )1t tx Sample O+ =  (16) 

Among them, xt+1 is the force tactile data sample generated at the moment t + 1. The 
generated samples are then used as inputs at the next moment, thereby iteratively 
constructing complete time-domain force haptic data. This autoregressive method can 
predict the next sample based on the previously generated tactile data samples, and step 
by step construct the whole time domain tactile data. Each prediction relies on the history 
of all past samples, ensuring the temporality of the generated force tactile data. 

For force tactile data x1, x2, …, xT, each data sample is conditioned based on all 
previous samples, and the VA2T network decomposes the joint probability of the tactile 
signal into a series of conditional probabilities, which is expressed as: 

( )1 11
( ) , ,

T
t tt

p x p x x x −
=

= ∏   (17) 

Extended causal convolution is an advanced convolution technology, which adds 
expansibility to the traditional causal convolution, and its structure is shown in Figure 2. 
This convolution method has a broad acceptance domain, can effectively maintain and 
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identify remote dependencies in the data, and guarantee the timing of haptic data in the 
whole modelling process. 

Figure 2 Schematic diagram of extended causal convolution structure (see online version  
for colours) 

 

This paper assumes that the input sequence is x1, x2, …, xT, where T is the length of the 
sequence, and the output sequence is y1, y2, …, yT. The output yt of the causal convolution 
at time t can be expressed as: 

1

0

, 1, 2, ,
K

t k t k
k

y f x t T
−

−
=

= ⋅ =   (18) 

Among them, yt is the output at time t, fk is the value of the convolution kernel at position 
k, causal convolution is ideal for dealing with long time series and is very fast to train due 
to the absence of cyclic connections. However, it requires increasing the receiving 
domain by setting many layers or using a large number of convolution operators, which 
will increase the computational cost of the network. 

The dilated convolution is implemented by adding a margin to the stride of the 
standard convolution operator, which effectively allows the network to operate at a 
coarser scale than normal convolution. The output ty′  of the dilated causal convolution at 
the tth time step is expressed as: 

1
'

.
0

, 1, 2, ,
K

t k t d k
k

y f x t T
−

−
=

= ⋅ =   (19) 

Among them, ty′  is the output at time t, fk is the value of the convolution kernel at 
position k, d is the dilation rate, and xt–d,k is the value of the input sequence at time t – d, 
k. The dilation rate u controls the spacing of the elements in the convolution kernel. To 
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maintain causality, xt–d,k is set to 0 when t – d, k – 1. In this way, the dilated causal 
convolution allows each output ty′  to consider more distant previous information in the 
input sequence, rather than just the information of the next few time steps. 

An L2 loss function as shown below is used during training: 

( ) ( )2

1

, ,
N

i i
i

L f f f f
=

=
 

 (20) 

Among them, f is the measured force tactile data, f


 is the generated force tactile data, 
and N is the number of samples. Due to the existence of the square term, it is more 
sensitive to outliers and can therefore more effectively penalise larger errors. Then, the 
optimal parameter set Θ is obtained by minimising the loss function. 

3.2 Visual rendering algorithm 

The differential shader R links the 3D attribute space to the 2D image space and defines 
pixel values by interpolating the abstract vertex attributes u0, u1, and u2. Since the 
renderer expects the input to be a mesh, vertex position is one of these attributes, but a 
large number of other vertex attributes are supported at the same time, drawing images 
directly using vertex colour or textures. To define the base colour of a mesh, supported 
vertex attributes are vertex colour or coordinate u and v from learned or predefined 
texture maps. The pixel values are determined by bilinear interpolation of vertex colours 
or projected texture coordinates, respectively. Then, differential rendering is used to 
render the resulting three-dimensional attributes into two-dimensional images. The image 
encoder and the three-dimensional attribute generator are optimised by two-dimensional 
image supervision, and the formula is as follows (Moragane et al., 2024): 

[ ]( )( )( )
1

1arg min , ,
N

θ θ i j i
i

θ Dist R G E X M X
N =

=   (21) 

Among them, Dist() represents the distance between the reconstructed data 
[ , ] ( ( [ , ]))r r r

θ θ i ii i iX I M R G E X M= =  and the input data Xi. DIB-R is used as the 
differential renderer in this chapter. 

In order to constrain the above process, a loss function is designed, including 
reconstruction loss and GAN loss. These losses will be described below. 

3.2.1 Reconstruction loss 
The reconstruction loss is mainly achieved by calculating pixel level and feature level L1 
losses: 

1
1

1 N
r r

rgb i i i i
i

L X M X M
N =

= −    (22) 

( ) ( ) 1
1

1 N
r r

frat i i i i
i

L VGG X M VGG X M
N =

= −    (23) 
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Among them,  represents element-by-element multiplication. 
Finally, the minimised distance loss for overall two-dimensional spatial supervision is 

weighted as follows: 

recon rgb rgb feat featL λ L λ L= +  (24) 

λrgb and λfeat represent weights, and Lrecon can back-propagate the loss gradient to Eθ and 
Gθ through the renderer R. 

3.2.2 GAN loss 
The adversarial loss can be expressed as: 

( )[ ] ( )( )2

2
1 1

1 1( ) 1
n m

r r
D i j j

n j

L D X D G λ x D x
N m= =

= − + ∇ −   (25) 

The weight t of the GP is the path length regularisation set in consideration of the 
stability during the training process. 

Path length regularisation can be expressed as: 

( )2

2
T

pl WL J y a= −  (26) 

Among them, w is a latent space point, y is a unit normally distributed random variable in 
the generated image space (the dimension of RGB images is 3 * w * h), J is the Jacobian 
matrix, and a is a global value representing the expected gradient scale. When the 
Jacobian matrix J is orthogonal, the internal expectation is (approximately) minimised. 

4 System design and experimental analysis 

The related theories such as multi-projection geometry and colour rendering studied in 
this paper are verified in practical application scenarios. In the third part, the VA2T 
algorithm and visual rendering algorithm of time-series force tactile data have been 
combined to construct an intelligent system that can be used for the design of art exhibits. 
system. 

4.1 Immersive multi-projection system 

This paper puts forward a multi-projection system solution for art exhibit design, which 
consists of four layers: application layer, support layer, data layer and hardware layer. As 
shown in Figure 3. 

The application layer mainly realises the functions of system management, interactive 
function, configuration management, visual simulation, etc. The support layer provides 
technical support for the operation of the whole system, mainly providing communication 
services, projector and camera array control support, clock synchronisation, correction 
and rendering, etc. The data layer provides data support for each layer, mainly including 
3D model files, animation and special effects files, configuration files, fusion correction 
data, etc. The hardware layer provides hardware platform support for system operation, 
including network switches, system control computers, scene generation computer arrays, 
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projector arrays, large-scale special-shaped projection screens, industrial camera arrays, 
interactive devices, etc. 

Figure 3 Framework design of art exhibit design system (see online version for colours) 

 

Figure 4 Functional module diagram of art exhibit design system 

 

This immersive multi-projection system mainly designs and develops several main 
functional modules as shown in Figure 4, including correction module, rendering module, 
communication module and management module. 
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All the image correction and fusion work of the system is completed by the correction 
module, and its main functions include geometric correction, colour adaptive correction 
and ambient light elimination. The operation flow of the whole calibration module is 
shown in Figure 5. 

Figure 5 Art exhibit appearance design system image correction module 

  

Figure 6 Networking structure of art exhibit display system (see online version for colours) 

 

The correction process of the system consists of five steps: environmental perception, 
geometric correction, colour correction, ambient light elimination and scene generation. 
The rendering module is implemented based on the UE5 rendering engine, integrates 
geometric correction data from the correction module to complete picture splicing, and 
receives colour correction data and ambient light elimination data to rebalance colour and 
brightness. 
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The management module is mainly responsible for the unified control of the whole 
system, including the on-off of the whole system, the camera array photography control, 
the projector array projection control, and the synchronisation of image output frames 
among all projectors. The module designs an easy-to-use human-computer interaction 
interface, displays the system status, and provides the functions of scene data 
management and system configuration parameter setting. Its networking structure is 
shown in Figure 6. 

The master node computer in the array of scene generation computers is the scheduler 
of nDisplay, which manages the timing information across the computer cluster and 
manages and distributes the copy content of possible rendering roles and data to other 
computers. 

The dataset used in this article is Oxford Art Online, ARTstor Digital Library,JSTOR, 
According to the random pairing method for model matching, 6500 sets of data were 
obtained, with 80% of the data used as the training set and 20% as the testing set. 

4.2 Experimental methods 

The experimental model proposed in this paper can simulate the touchable exhibit 
simulation structure with certain rendering effect in the experimental terminal. Moreover, 
the VA2T algorithm combined with time-series force tactile data can realise audio and 
vision fusion to generate a tactile terminal projection image. In addition, this paper 
combines the algorithm in Part 3.2 to realise the appearance and colour rendering of art 
exhibits, and combines the touch to enhance the simulation design effect of art exhibits, 
so as to further improve the appearance design effect and display effect of art exhibits. 

The experiment is carried out on a computer system equipped with an IntelXeonE5-
2620 processor and four Nvidia Tesla V100 GPUs and is implemented with the help of 
the PyTorch framework deployment in a Python environment. 

The experimental environmental parameters of this paper are shown in Table 1. 
Table 1 Experimental environment parameters 

Category Configuration 
CPU Intel Core i9-9900KS 
GPU GeForce RTX4080 SUPER 
Memory 16 GB 
Render window resolution 1,920 * 1,080 
Operating system Windows11 
Development tools Unity 6 
API DirectX 12 

4.3 Results 

Mean absolute error (MAE) and mean square error (MSE) are two commonly used loss 
functions in regression tasks, which affect the optimisation direction and performance of 
the model through different error calculation methods. 
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Figure 7 MAE loss curves of tangential friction force and normal force (see online version  
for colours) 
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Figure 8 MSE loss curves of tangential friction force and normal force (see online version  
for colours) 

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

19
2

20
4

21
6

22
8

24
0

25
2

26
4

27
6

28
8

30
0

M
A

E 
lo

ss

Iteration cycle

MSE loss of normal force

MSE loss of tangential force

 

MAE has low sensitivity to outliers and is suitable for scenarios with high data noise or 
outliers, such as sensor data. 

MSE, due to its square operation, significantly amplifies the impact of large errors 
and focuses more on reducing extreme biases, making it suitable for scenarios that 
require high accuracy and clean data. 

The MAE and MSE loss curves of tangential friction force and normal force are 
shown in Figures 7 and 8, respectively, and the MAE and MSE of tangential force and 
normal force converge to 0.001 after 300 iteration periods. The Pearson correlation 
coefficient curves of tangential friction force and normal forces are shown in Figure 9. 
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Figure 9 Pearson correlation coefficient curves of tangential friction force and normal force  
(see online version for colours) 
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Figure 10 Example of rendered image effect using StyleGAN-VA2T algorithm, (a) before 
rendering (b) after rendering (see online version for colours) 

 
(a)     (b) 

Figure 10 shows an example image rendered by the stylegan-va2t algorithm. It can be 
seen from the figure that the original image is fuzzy and monotonous in colour. After the 
stylegan-va2t rendering, not only the image definition is improved, but also the colour 
richness of the image is improved, which effectively improves the artistic effect of the 
image. 

The algorithm proposed in this paper is named StyleGAN-VA2T, and the rendering 
scene is Sponza. In order to compare this algorithm with mainstream algorithms in many 
aspects, this paper divides it into static comparison and dynamic comparison in Sponza 
rendering comparison experiment. Static comparison can more intuitively compare the 
rendering results of different algorithms, and dynamic comparison can obtain more 
experimental data, which fully verifies the effectiveness of the algorithm. Then, this 
paper compares the algorithm proposed in this paper with the algorithms in Wang (2021), 
Lattas et al. (2021), Guo and Wang (2021) and Li et al. (2020). This paper compares the 
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appearance of two art exhibits with the static scene reflection rendering frame rates (FTs) 
under different algorithms, as shown in Table 2. 
Table 2 Comparison of FT of static scene reflection rendering under different algorithms 

Algorithm Rendering FT of art exhibit 1 Rendering FT of art exhibit 2 
Wang (2021) 172.43 112.27 
Lattas et al. (2021) 151.32 80.66 
Guo and Wang (2021) 130.32 61.79 
Li et al. (2020) 177.73 116.04 
StyleGAN-VA2T 208.02 167.64 

Structural Similarity Index Measure (SSIM) is a comprehensive reference evaluation 
index that measures the similarity between two images. It quantifies the perceived 
characteristics of brightness, contrast, and structure by simulating the human visual 
system. 

The comparison of SSIM for static scene reflection rendering under different 
algorithms is shown in Table 3. 
Table 3 Comparison of SSIM for static scene reflection rendering under different algorithms 

Algorithm Art exhibits 1 SSIM Art exhibits 2 SSIM 
Wang (2021) 0.94 0.93 
Lattas et al. (2021) 0.95 0.94 
Guo and Wang (2021) 0.92 0.91 
Li et al. (2020) 0.80 0.76 
StyleGAN-VA2T 0.96 0.95 

The comparison of MSE for static scene reflection rendering under different algorithms is 
shown in Table 4. 
Table 4 Comparison of MSE for static scene reflection rendering under different algorithms 

Algorithm Art exhibit 1 MSE Art exhibit 2 MSE 
Wang (2021) 5.01 5.21 
Lattas et al. (2021) 4.95 5.16 
Guo and Wang (2021) 6.46 6.94 
Li et al. (2020) 9.34 12.98 
StyleGAN-VA2T 4.90 5.10 

In the comparison experiment of dynamic scene reflection rendering FT, this paper will 
set a fixed speed to move in the same path in the scene. Then, the recorded FT is drawn 
into a line chart to compare the FT of dynamic scene reflection rendering. The FT of 
different algorithms in dynamic scenes are shown in Figure 11. In the figure, the ordinate 
is the FT, the unit is Hz/S, and the abscissa is the time, the unit is S. 
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Figure 11 Comparison of FT of dynamic scene reflection rendering under different algorithms 
(see online version for colours) 
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Taking the high-precision picture obtained by the ray tracing algorithm under 4096SPP as 
a reference, the intermediate frame per second in 100 s of dye FT comparison in the 
dynamic scene is used for comparison, and the SSIM values of each algorithm and the 
reference picture are compared as shown in Figure 12, in which the ordinate is SSIM, the 
abscissa is time, and the unit is s. 

Figure 12 Comparison of SSIM for dynamic scene reflection rendering under different 
algorithms (see online version for colours) 
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4.4 Analysis and discussion 

It can be seen from Figures 7 and 8 that the MAE and MSE of tangential force and 
normal force converge to 0.001 after 300 iteration periods. It is also verified that the 
VA2T algorithm based on time series force tactile data proposed in this paper has certain 
effects, and it can realise reliable system functions after many iterative learning. 
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It can be seen from Figure 9 that the Pearson correlation coefficients of tangential 
force and normal force fluctuate around 0.8 after 300 periodic iterations, which means 
that there is a strong correlation between the generated tangential force, normal force and 
measured force respectively. 

• In the comparison of static scene FT in Table 2, art exhibit 1: The model in Lattas  
et al. (2021) is reduced by 12.24% compared to the model in Wang (2021), the 
model in Guo and Wang (2021) is reduced by 24.42% compared to the model in 
Wang (2021), the model in Lattas et al. (2021) is reduced by 2.98% compared to the 
model in Li et al. (2020), and it is reduced by 17.11% compared to  
StyleGAN-VA2T. Art exhibit 2: the model in Lattas et al. (2021) is reduced by 
28.1% compared with the model in Wang (2021), the model in Guo and Wang 
(2021) is reduced by 44.96% compared with the model in Wang (2021), the model in 
Lattas et al. (2021) is reduced by 3.25% compared with the model in Wang (2021), 
and it is reduced by 33.03% compared with StyleGAN-VA2T. 

• In the SSIM comparison of static scenes in Table 3, art exhibit 1: The model in 
Lattas et al. (2021) is improved by 1.30% compared with the model in Wang (2021), 
STYLEGAN-VA2T is improved by 2.06% compared with the model in Wang 
(2021), the model in Lattas et al. (2021) is improved by 1.99% compared with the 
model in Guo and Wang (2021), and is improved by 17.13% compared with the 
model in Li et al. (2020). Art exhibit 2: the model in Lattas et al. (2021) is improved 
by 1.20% compared with the model in Wang (2021), STYLEGAN-VA2T is 
improved by 2.30% compared with the model in Wang (2021), and the model in 
Wang (2021) is improved by 2.00% compared with the model in Guo and Wang 
(2021) and is improved by 23.32% compared with the model in Li et al. (2020). 

• In the static scene MSE comparison in Table 4, art exhibit 1: The model in Lattas  
et al. (2021) is improved by 1.34% compared with the model in Wang (2021), 
STYLEGAN-VA2T is improved by 2.26% compared with the model in Wang 
(2021), the model in Wang (2021) is reduced by 22.32% compared with the model in 
Guo and Wang (2021), and is reduced by 46.28% compared with the model in Li  
et al. (2020). Art exhibit 2: the model in Wang (2021) is improved by 1.02% 
compared with the model in Lattas et al. (2021), STYLEGAN-VA2T is improved by 
2.20% compared with the model in Wang (2021), and the model in Lattas et al. 
(2021) is reduced by 24.85% compared with the model in Guo and Wang (2021), 
and is reduced by 59.83% compared with the model in Li et al. (2020). 

In the dynamic scene FT comparison in Figure 11, as the number of samples gradually 
increases, the STYLEGAN-VA2T dynamic scene FT decreases by several frames. The 
average FT in 100s under 1/4 SPP (SamplesperPixe) is 19.35 fps, the highest FT is 
188.45 fps, and the lowest FT is 189.36 fps. The FT is 50.23 fps. The average FT of 100s 
under 1SPP is 103.12 fps, the highest FT is 185.25 fps, and the lowest FT is 37.45fs. The 
average FT at 2SPP is 85.13fps, the highest FT is 183.14fps, and the lowest FT is 16.21 
fps. The average 100s FT under SSR (Screen space reflection) is 162.99 fps, the highest 
FT is 245.49 fps, and the lowest FT is 109.11 fps. 

In the dynamic scene SSIM comparison in Figure 12, as the number of samples 
increases, the STYLEGAN-VA2T dynamic scene SSIM improves very little. The 
average SSIM in 100s under 1/4 SPP is 0.908, the max value is 0.919, and the min value 
is 0.817. Under 1SPP, the average SSIM of 100s is 0.9113, the max value is 0.939, and 
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the min value is 0.812. The average SSIM of 100 s under 2SPP is 0.919, the max is 
0.941, and the min is 0.819. The average SSIM of 100s under SSR is 0.769, the max 
value is 0.811, and the min value is 0.719. 

As an improved attention mechanism, VA2T’s computational complexity and 
potential limitations can be inferred based on similar architectures such as group vector 
attention and separable self attention, and analysed in conjunction with algorithm design 
principles 

• Time complexity: If a divide and conquer strategy similar to group vector attention 
(GVA) is adopted, VA2T can reduce the complexity of traditional multi head 
attention from O (k2) to O (k), specifically by grouping input features and processing 
them in parallel. For example, MobileViTv2 optimises complexity to linear level 
through separable self attention. If a dynamic weight allocation mechanism is 
introduced (such as adjusting the number of attention groups based on environmental 
feedback), it may increase the cost of dynamic decision-making and lead to 
fluctuations in complexity. 

• Space complexity: Grouping strategy can reduce parameter storage requirements 
(such as Point Transformer V2 reducing the number of parameters caused by channel 
growth through grouping), but if multiple sets of historical states or pre trained 
parameters need to be stored (such as Meta CT’s iterative optimisation process), it 
may increase memory usage. 

Based on the mechanism and practical requirements of the algorithm, the limitations are 
analysed as follows: 

1 Insufficient adaptability to dynamic scenes: 

In high dynamic environments such as real-time obstacle avoidance and streaming 
data sorting, the grouping strategy of VA2T may cause response delays due to fixed 
grouping rules. For example, tree search algorithms can cause overthinking or 
underestimation issues due to node redundancy and uneven computation allocation. 

Some variants rely on static positional encoding (such as the positional encoding 
multiplier of Point Transformer V2), which limits their generalisation ability to  
non-uniform distribution data (such as point clouds). 

2 Parameter sensitivity and training cost: 

Hyperparameters such as the number of groups and attention heads need to be finely 
tuned, otherwise they may lead to underfitting or overfitting. For example, the 
accuracy improvement of MobileViTv2 relies on the parameter balance of separable 
self attention, while the performance of tree search algorithm shows a marginal 
decrease with the increase of the number of child nodes. If combined with online 
learning (such as the dynamic reward mechanism of reinforcement learning), 
frequent updates of the policy network are required, which exacerbates the 
consumption of training resources. 

Combined with the above analysis, it can be seen that the model proposed in this 
paper has certain effects in the design of art exhibits, which can effectively improve 
the design effect of art exhibits and enhance the actual experience of visitors. 
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Sensory design guides audience emotions through environmental sound effects, 
tactile feedback, and other means, which may lead to controversy over ‘perceptual 
manipulation’. For example, using high-frequency sound waves or specific light 
frequencies to induce audience behaviour requires defining the boundary between 
‘reasonable guidance’ and ‘involuntary intervention’. The promotion of multi 
sensory exhibition design in public spaces needs to face the dual proposition of 
technological empowerment and ethical constraints. Through dynamic regulation, 
inclusive design, and cultural sensitivity prediction, public value can be maintained 
while stimulating perceptual potential. In the future, it is necessary to continue 
exploring the symbiotic model between humanism and technological innovation, in 
order to avoid the ‘sensory utopia’ from becoming an ethical testing ground. 

The VA2T algorithm demonstrates full scene coverage potential in the field of art 
and design, from individual creation to industrial applications, through its ability to 
generate generalisation and multimodal fusion. Its scalability is not only reflected in 
the compatibility of the technical architecture with heterogeneous data (such as 
vision, language, sensor signals), but also in adapting to rapidly changing industry 
demands through dynamic learning mechanisms. In the future, combining embodied 
intelligence and high-precision rendering technology, this system is expected to 
become the core infrastructure of the digital creative economy The VA2T algorithm 
is reshaping the technological paradigm in the field of art and design through its dual 
innovation of generating logic reconstruction (multimodal alignment) and executing 
link reinforcement (dynamic optimisation). Its value lies not only in improving the 
efficiency of single point creation, but also in building an open platform to promote 
the evolution of the digital creative industry towards standardisation and 
modularisation. 

5 Conclusions 

This paper combines virtual exhibits with interactive displays as a design strategy, and 
takes multi-sensory integration and diversified presentation as the research direction of 
the article, thereby extending the cultural and commercial value of the exhibits. 
Meanwhile, this paper combines computer vision rendering technology to study the 
design system of art exhibits. The experimental results show that the VA2T algorithm 
based on time series force tactile data proposed in this paper has certain effects, and can 
realise reliable system functions after multiple iterations of learning. In addition, 
combined with experimental analysis, it can be seen that the model proposed in this paper 
has a certain effect in the design of art exhibits, which can effectively improve the design 
effect of art exhibits and enhance the actual experience of visitors. 

In this paper, a mesh model with texture is proposed based on StyleGAN model. By 
utilising feature extraction and vector decoupling, StyleGAN’s powerful  
two-dimensional image generation capabilities are extended to three-dimensional space, 
thus generating meshes with textures, whose performance outperforms the reconstruction 
performance of existing methods. 

In response to the insufficient adaptability of algorithms to dynamic scenarios, 
parameter sensitivity, and training costs, the main research directions in the future are as 
follows: firstly, the algorithm model is improved through dynamic grouping strategy, 
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combined with meta learning (such as iterative optimisation of Meta CT), and the number 
of groups is adaptively adjusted according to the complexity of input features. Secondly, 
a hybrid computing framework is constructed to integrate the parallel advantages of 
quantum reinforcement learning and allocate high load computing tasks (such as attention 
weight generation) to dedicated hardware acceleration. The next step will be to build the 
above platform and continue to conduct model performance analysis through experiments 
to further improve the model’s effectiveness. 
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