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Abstract: Residential electricity load prediction is of great significance for 
power system planning. With the increasing complexity and uncertainty of the 
power grid, traditional prediction models still have insufficient accuracy and 
neglect seasonal changes. In this paper, a data-driven multi-scale hybrid 
prediction model for residential electricity load is proposed, which integrates a 
convolutional neural network (CNN), long short-term memory (LSTM), and 
attention mechanism. The seasonal decomposition was applied to extract 
seasonal patterns of the electricity consumption data. The hybrid model 
integrates the parallel processing capability of CNN and the long time-series 
modelling capability of LSTM to capture the spatial-temporal characteristics of 
electricity load accurately. The attention mechanism is employed to calculate 
the critical weight to enhance the prediction accuracy dynamically. Finally, 
detailed comparison experiments show that the proposed hybrid model 
outperformed state-of-the-art algorithms. The MAPE of the hourly and daily 
prediction results of the proposed model are 2.36% and 0.76%, respectively. 

Keywords: electricity consumption prediction; deep learning; convolutional 
neural network; CNN; long short-term memory; LSTM; attention mechanism. 
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1 Introduction 

Electricity is the basis of modern industrial and commercial activities and plays an 
irreplaceable role in efficient economic operation. Accompanied by the massive access of 
clean energy to the power system, the complexity and degree of uncertainty of the power 
grid are increasing. Accurate prediction of residential electricity load is crucial to 
improve the reliability and efficiency of the smart grid. 

Electricity load prediction plays an essential role in the supply-demand collaboration 
of smart grids, and it has also been of focus for both academia and industry (Ahmad  
et al., 2022). The existing prediction models can be categorised into three main categories 
from the prediction algorithms: statistical theory, classical machine learning, and deep 
learning (DL). We proposed a multi-scale short-term prediction model for electricity load 
based on a hybrid of SD, convolutional neural network (CNN), long short-term memory 
(LSTM), and attention mechanism (SD-CNN-LSTM-Attention). This model reveals the 
electricity consumption behaviours of users under different conditions with respect to the 
results of the analysis. In summary, the model can achieve accurate multi-scale prediction 
at both the hourly and daily time scale, which provides an essential reference for power 
planning on both the supply and demand sides. The proposed algorithm has good 
prediction performance and generalisation ability. In addition, the proposed algorithm is 
an optimised combination of several traditional algorithms, which also have good 
interpretability. It provides a valuable perspective and methodological reference for 
residential electricity consumption forecasting research. 

The main contributions of this study are as follows: 

1 SD is applied to decompose the electricity load to reveal its evolving pattern under 
different frequency characteristics. Meanwhile, it adapts to the requirements of 
different time-scale data analysis and prediction accurately. 

2 An electricity load prediction model based on SD-CNN-LSTM-Attention is 
proposed, which can effectively capture the long-term dependence and local features 
in the power consumption and strengthen the attention to crucial information. 

3 The hybrid model is compared with the state-of-the-art algorithms for hourly and 
daily prediction of residential electricity load. The experimental results indicate that 
the proposed model outperformed the traditional models with a minimum MAPE of 
2.36% and 0.76%, respectively. 

The rest of this paper is organised as follows: Section 2 is related works. Section 3 is the 
methodology, which analyses the basic principle of SD-CNN-LSTM-Attention prediction 
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algorithm in detail. Section 4 presents and analyses the experimental results. The 
conclusions are given in Section 5. 

2 Related works 

Traditional statistical methods construct forecasting models by analysing the 
mathematical relationship implied in the changing trend of electricity load. For instance, 
Rekhade and Sakhare (2021) employed four regression modeling methods to predict 
electricity consumption, offering simplicity and interpretability with reduced overfitting. 
Yang et al. (2018) proposed an integrated probability density prediction method using 
Gaussian process quartile regression (GPQR) to deal with the uncertainty of electricity 
load, providing robust modelling of uncertainty and nonlinear relationships. Although 
these regression prediction methods have fast prediction speeds, the model performance 
will be reduced when there are significant errors and defects in the historical data. Pan 
and Jia (2025) used univariate linear regression, ARIMA model, Fourier analysis method, 
univariate linear regression prediction method and binary linear regression prediction to 
predict the long-term trend, seasonal variation, periodic variation, and irregular variation 
of power demand in industrial parks. They also introduced the GARCH model to test the 
error sequence, which improved the accuracy of the prediction model. The grey 
prediction method is another statistical method that is usually used to deal with the 
problem of predicting systems with incomplete and imprecise information. Zhao and Guo 
(2016) used the grey model of hybrid optimisation to improve the accuracy of annual 
electricity load forecasting significantly. However, the statistical methods have 
significant limitations for nonlinear electrical load time series with strong randomness. 
The second category is prediction models based on classical machine learning algorithms. 
This kind of model realises the analysis and prediction of electricity consumption by 
learning from historical data. Jiang et al. (2020) used the support vector regression (SVR) 
model to mine the nonlinear relationship of electricity load. This approach improves 
model robustness and adaptability but comes with high computational costs and 
complexity. Tang et al. (2021) proposed an electricity consumption prediction model 
based on binary nonlinear fitted regression (BNFR) and SVR, enhancing accuracy and 
adaptability to complex consumption patterns. However, overfitting, high computational 
cost and complex feature engineering are still problems for researchers (Al-Alimi et al., 
2023). Therefore, DL models can extract complex nonlinear features of data for time 
series prediction in recent years (Xu et al., 2024). RNN is a kind of neural network that 
can process sequence data and maintain the information state during the evolution of the 
sequence. Heydari et al. (2019) predicted electricity consumption in Russia based on 
RNN. Fekri et al. (2021) proposed an innovative online adaptive RNN. Online features 
are achieved by capturing temporal dependencies while updating RNN weights based on 
new data. Compared with RNN, LSTM introduces three ‘gate’ structures and a memory 
cell, which solves the problem of gradient explosion and gradient disappearance when 
RNN processes long time series data (Yang et al., 2023). Bareth et al. (2024) applied 
LSTM to estimate the monthly electricity demand as well as the daily load demand. 
Compared with the artificial neural network (ANN) model, the proposed LSTM model is 
more accurate. Wen et al. (2019) established a deep recurrent neural network with a long 
short-term memory (DRNN-LSTM) model to predict the aggregated electricity load in a 
community microgrid. While the approach enhances forecasting accuracy and 
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adaptability to renewable energy fluctuations, it also introduces high computational 
complexity and strong data dependency. 

According to the prediction horizon, the existing methods for predicting electricity 
consumption are divided into ultra-short-term load forecasting (USTLF), short-term load 
forecasting (STLF), medium-term load forecasting (MTLF) and long-term forecasting 
(LTLF) (Butt et al., 2020). USTLF is affected by the substantial volatility of electricity 
load, which is difficult to predict accurately and robustly (Tan et al., 2020). Short-term 
forecasting offers significant savings potential for the economical and safe operation of 
power systems. Medium-term forecasts involve the scheduling of fuel supply and 
maintenance operations, while long-term forecasts facilitate the formulation of overall 
energy planning layouts and related strategic decisions. 

Due to the fluctuation and non-stationarity of the electricity load, a single model 
cannot fully capture the intrinsically implied complex features. In order to improve the 
electricity consumption prediction performance, many researchers have focused on the 
development and training of hybrid models. Dong et al. (2016) developed an innovative 
hybrid modelling approach by combining data-driven techniques with physically based 
forward models. Li et al. (2021) proposed an electricity load prediction method based on 
multiple linear regression (MLR) and LSTM. The EMD is applied to decompose the 
original data to reduce the complexity of the electricity load. Lv et al. (2022) proposed a 
hybrid model based on variational modal decomposition (VMD) and long- and short-term 
memory, as well as the elimination of seasonal factors and error correction. Four  
real-world electricity load datasets from Singapore and the USA are used to verify the 
effectiveness and practicality of the proposed hybrid model. Zhang et al. (2018) proposed 
a hybrid model based on improved empirical mode decomposition (IEMD), 
autoregressive integrated moving average (ARIMA), and wavelet neural network 
(WNN). The simulation results show that the proposed model performs well in electricity 
load forecasting. Besides, the hybrid models also include the combination of statistical 
models and data-driven models (Dudek et al., 2022), the hybrid of machine learning and 
DL models (Bashir et al., 2022; Wang et al., 2021), the mixture of multiple DL models 
(Eskandari et al., 2021), etc. However, these existing models tend to neglect factors such 
as holidays, which makes it challenging to achieve high-precision prediction of electricity 
load over multiple time scales. 

3 Methodology 

The residential electricity load prediction model based on SD-CNN-LSTM-Attention is 
proposed in this paper, and the architecture is illustrated in Figure 1. It can be seen that 
the hybrid model contains the key components, such as the SD, CNN, LSTM, and 
attention mechanism. The process of the SD-CNN-LSTM-Attention prediction model 
mainly includes five parts: data acquisition and analysis, seasonal decomposition, model 
construction, parameter optimisation, and visualisation of prediction results. Firstly, data 
analysis and processing are performed to make the original data more convenient for 
prediction. Due to the periodic variation of electricity load, SD is performed on the 
original electricity load data set. Then, a hybrid model based on CNN-LSTM-Attention is 
constructed for electricity load prediction, and grid search is used to find the optimal 
parameter combination of the model. Finally, the prediction results were visualised to 
intuitively demonstrate the superiority of hourly and daily electricity load prediction. 
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Figure 1 The flowchart of residential electricity load prediction based on  
SD-CNN-LSTM-attention (see online version for colours) 

 

3.1 SD 

SD is often used to separate the original time series data into different sub-items so that 
we can understand the abstract structure and reveal hidden patterns and trends in the data. 
The historical electricity load of residents has prominent periodic characteristics. In this 
paper, SD is selected to effectively extract the periodic change trend in the electricity 
load data. SD divides the raw electricity load into trend, seasonal, and residual 
components. The decomposition process is as follows. 

( )1, 2,...,t n= + + =t t t tY T S R  (1) 

where Yt is the raw electricity load data at the tth moment, Tt, St and Rt are the trend, 
seasonal and residual components at the corresponding moment respectively. 

In additive models, the magnitude of seasonal fluctuations is fixed. The electricity 
load of residential buildings has stable seasonal fluctuations. The corresponding 
operations are as follows: 

1 Trend analysis: The trend is obtained by smoothing the data with a convolutional 
filter. Calculating the long-term trends can contribute to revealing long-term growth 
or decrease trends in the data. 

1
2

1
2

1
n

t t i
ni

n

−

+
−=−

= T Y  (2) 

 where Tt represents the electricity load trend component corresponding to the tth time 
step; n indicates the average moving window size. Yt+i denotes the raw data 
corresponding to the (t+i)th time step. 
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2 Seasonal factor extraction: Remove the trend from the original data according to the 
additive model. Calculate the seasonal mean value after removing the trend as the 
seasonal component. 

= −t t tD Y T  (3) 

1

1 m

km + ×
=

= t t k pS D  (4) 

 where Dt is the electricity load data after detrending corresponding to the tth time 
step; Yt, Tt and St is the original, trend, and seasonal component of the tth time step; 
m denotes the number of cycles; p is the length of the cycle; and is the detrended 
electricity load of the (t + k × p)th time step. 

3 Stochastic volatility analysis: Subtracting the seasonal component from the 
detrending data yields a residual component containing noise and other unpredictable 
factors. 

= −t t tR D S  (5) 

 where Rt, Dt and St are the residual electricity load component corresponding to time 
step t, the electricity load after detrending, and the seasonal electricity load 
component, respectively. 

3.2 CNN 

CNN automatically learns and extracts significant features from the original data through 
convolution operation, which makes up for the shortcomings of LSTM in feature 
extraction. The convolution and pooling operations of CNN make the model adaptable to 
the scale and shape of the input data. It means that CNN can adaptively process 
electricity load data of different lengths without complex pre-processing or scaling 
operations. 

The core principle of CNN is to extract the features of the data through convolutional 
and pooling operations, and finally to perform regression or classification through the 
fully connected layer, and the principle is shown in the first part of Figure 2. 

The main mathematical principles and formulas corresponding to CNN are as 
follows: 

1 Convolutional operation extracts features of the input data. For the ith convolution 
kernel, its output zi(t) at the tth time step is given as: 

2

2

( ) Re ( ) ( )

n

i i i
nk

z t LU w k x t k b
=−

 
 

= ⋅ + + 
 
 

  (6) 

 where n is the size of the convolution kernel, wi(k) is the weight of the ith convolution 
kernel at position k, x(t + k) is the value of the input data at position t + k, and bi is 
the bias term of the ith convolution kernel. 
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2 Pooling operation reduces the size of the feature map and keeps the most important 
features, commonly used way is maximum pooling. 

{ }( )i it
p max z t=  (7) 

 where pi is the maximum value of the ith convolution kernel in all time steps, which 
is the value of the ith feature. 

3 The fully connected layer flattens the output of the convolutional layer or pooling 
layer into a vector and performs a linear transformation through the weight matrix 
and the bias vector. 

i i
i

y w p b= ⋅ +  (8) 

 where wi is the weight of the ith neuron in the output layer, that is, the weight of the 
ith feature; b is the bias term of the output layer. 

3.3 LSTM 

There are two primary components of LSTM: cell states and gate mechanisms. Among 
the gate mechanisms are the input gate, output gate, and forgetting gate. These two 
components are primarily used to filter what needs to be forgotten and remembered in the 
input data. The second part of Figure 2 shows the flowchart of the internal state of the 
LSTM hidden cell corresponding to the t time step. Where the symbols ☉ and ⊕ denote 
multiplication and addition in the model, and the arrows denote the direction of the flow 
of information. 

The leading information flow of an LSTM cell can be described mathematically. 

1 Forget gate: It determines what information should be forgotten. 

( )1t tt fσ bf x h −× + × += f fW U  (9) 

 where ft represents the activation vector of the forget gate. σ represents the activation 
function sigmoid. xt denotes the input vector. ht–1 represents the hidden state vector of 
the LSTM unit. Wf and Uf represent the weight matrix of the input vector and the 
hidden state vector, respectively. bf is the bias vector parameter of the forget gate. 

2 Input gate and candidate cell: The input gate controls the amount of information 
about the current input xt and the hidden state ht–1 at the last moment. The candidate 
units contain potentially new information it. 

( )1t t t ii σ x h b−= × + × +i iW U  (10) 

( )1t t t cc σ x h b−= × + × + c cW U  (11) 

 where tc  denote the activation vector of the input gate and candidate unit. Wi, Ui 
represents the input vector corresponding to the input gate and the weight matrix of 
the hidden state vector; Uc denotes a weight matrix of input vectors and hidden state 
vectors of the candidate unit. bi and bc denote the bias vector parameters of the input 
gates and candidate cells. 
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3 Memory cell ct update: Combining the decisions of the forgetting gate and the input 
gate, the long-term state of the cell is updated. 


1t t t t tc f c i c−= × + ×  (12) 

 where ct is the cell state vector; ct–1 is the cell state at the previous moment. 

4 Output gate and final hidden state: The output gate determines which information is 
output from the unit state to the hidden state, where the hidden state is used both for 
the output of the current time step and as part of the input of the next time step. 

( )1t t t oo σ x h b−= × + × +o oW U  (13) 

( )tanht t th o c= ×  (14) 

 where ot is the output vector at the time step t; Wo and Uo denote the weight matrix 
of the input vector and the hidden state vector corresponding to the output gate; bo 
denotes the bias vector parameter of the output gate; ht is the hidden state vector at 
time step t; tanh is the activation function. 

In summary, LSTM can effectively solve the problem of gradient disappearance by 
introducing a ‘gate’ mechanism to control the flow of information. 

3.4 Attention 

The dot product attention mechanism automatically assigns weights to different parts of 
the electricity load input sequence by directly capturing the correlation between query 
vectors and key vectors, allowing the model to focus on features that are critical for the 
prediction results. In this paper, we add the attention layer as an extra layer after the 
CNN-LSTM model and apply the attention mechanism at each time step. The principle of 
the corresponding attention mechanism is shown in the third part of Figure 2. The 
specific operation is as follows: 

1 Calculate similarity score. The similarity score is obtained by taking the dot product 
of the transpose of the query vector and the key vectors. 

score ( , ) = ⋅ ΤQ K Q Κ  (15) 

 where score(Q, K) is the similarity score matrix; Q is the query vector matrix; KT is 
the transpose matrix of the key vector. 

2 Combined with a scaling factor: The score is scaled in order to avoid the dot product 
result being too large. 

( , )scaled_score ( , )
kd

= score Q KQ K  (16) 

 where scaled_score(Q, K) is the scaled score result; kd  is the dimension of the 
key vector. 
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3 Calculate the attention weight: The attention score is converted into a probability 
distribution by performing the SoftMax operation on it in order to represent the 
attention weight of each LSTM hidden unit. 

( )max scaled_score( )soft= ,Q Kα  (17) 

 where α is the attention weight matrix corresponding to the query vector Q. 

4 Weighted sum: The attention output is obtained by the weighted sum of the value 
vectors using the attention weights. This output will contain the most relevant 
information to the current task. 

Attention( ) = ⋅, ,Q K V Vα  (18) 

 where Attention(Q, K, V) is the attention output; V denotes the value vector. 

3.5 The principle of the proposed hybrid prediction algorithm based on SD-
CNN-LSTM-Attention 

A model based on CNN-LSTM-Attention is constructed for electricity load prediction, 
and the calculation of the proposed algorithm is shown in equation (19). 

ˆ ( , )SD CNN LSTM Attentionf − − −=Y Y D  (19) 

where Ŷ  denotes the residential electricity consumption in the following m hours to be 
predicted; 

fSD–CNN–LSTM–Attention is the SD-CNN-LSTM-Attention model; (Y, D) – residential 
electricity consumption (kw ‧ h), time (hour or day), and all contain data from the past j 
time steps, corresponding to 1 2 1 2( , , , ), ( , , , )j jy y y d d d⋅ ⋅ ⋅ ⋅ ⋅ ⋅  respectively. The flowchart of 
the CNN-LSTM-Attention prediction algorithm is demonstrated in Figure 3. 

3.6 Evaluation criteria 

In this study, four metrics are selected to evaluate the performance of the proposed 
model: mean absolute percentage error (MAPE), mean square error (MSE), root mean 
square error (RMSE), and mean absolute error (MAE). 


1

1 n

i i
i

MAE y y
n =

= −  (20) 

( )2

1

1 n

i i
i

MSE y y
n =

= −  (21) 

( )2

1

1 n

i i
i

RMSE y y
n =

= −  (22) 



1

1 *100%
n

i i

ii

y y
MAPE

n y=

−
=   (23) 
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where yi is the actual value, iy  is the predicted value, and n is the number of samples. 

Figure 2 Corresponding schematic diagram of CNN, LSTM, and Attention (see online version 
for colours) 

 

Figure 3 The flowchart of CNN-LSTM-Attention algorithm (see online version for colours) 

 

4 Experimental results and analysis 

4.1 Data sources and feature selection 

The residential electrical load dataset for this study is shared in the UCI Machine 
Learning repository. Three households were selected for evaluation and validation. The 
electricity consumption data of the three households are aggregated and integrated hourly 
and daily. 

Residents’ electricity load is affected by multi-dimensional factors such as indoor and 
outdoor temperature and holidays. Different electricity consumption habits and control 
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strategies of power supply companies also directly affect the actual electricity load of 
residents. Under the unified supervision of the power supply management platform, these 
factors are implied in the historical electricity load data characteristics. Based on the 
above premise, this study mainly considers time and historical electricity consumption as 
influencing factors. 

4.2 Data processing and analysis 

1 Data pre-processing 

 Before training the model, the data is preprocessed with outlier detection and missing 
data filling to ensure data integrity. The outlier is detected based on the traditional  
3-sigma rule, and the missing data is filled with Spline interpolation. Subsequently, 
the data is normalised using Min-Max Scaling to scale the data to the range [0–1]. 

min

max min
scaled

x xx
x x

−
=

−
 (24) 

2 SD 

 In order to obtain the best model accuracy, the original electricity load data is 
decomposed into three parts: seasonal, trend, and residual components based on SD. 
The output of the seasonal decomposition diagram of electricity load is shown in 
Figure 4. Here, the left and right are the hourly and daily electricity load 
decomposition results, respectively. 

4.3 The optimisation of hyperparameters 

Hyperparameters play an important role in the performance of the proposed model, and 
the grid search method is employed in this paper to find the optimal hyperparameters. By 
defining a space of all possible hyperparameters and then evaluating the performance of 
each combination successively, the best performing one is ultimately selected. The 
approach is simple, intuitive and easy to implement, and can find the global optimal 
solution. 

4.4 Prediction results 

4.1.1 Hourly electricity load prediction 
Figure 5 shows the electricity load prediction curve and performance comparison with 
different algorithms for three residential houses. It can be seen from Figure 5 that 
residents usually use more electrical appliances, such as lighting and cooking appliances, 
after getting up in the morning, and the electricity consumption increases accordingly. 
Therefore, the electricity load has a clear upward trend from 5:00 to 7:00. During the day, 
residents go out to work, and the electricity load may decrease. Therefore, the electricity 
load is in a relatively stable state from 9:00 to 17:00, and main appliances such as 
refrigerators maintain essential electricity consumption. From 17:00 to 19:00, electricity 
consumption increases again as residents return home from work. At dinner time and 
evening leisure activities, we will use more electrical appliances, such as a TV, computer, 
etc. 
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Figure 4 The hourly and daily electricity load plots of SD of household A (see online version  
for colours) 

 

The residential electricity consumption pattern is relatively regular, with noticeable peaks 
in the morning and evening: 7:00 a.m.–9:00 a.m. and 6:00 p.m.–10:00 p.m. The troughs 
are usually in the middle of the night and during the afternoon work hours, with a 
smoother in the middle part. From Figure 5, we can see that the SD-CNN-LSTM-
Attention algorithm fits better in all three time periods (morning, daytime, and evening), 
and the curves are in good agreement with the actual values. Especially in the peak 
periods of morning and evening, SD-CNN-LSTM-Attention can capture the fluctuating 
changes in electricity load better than simple models such as SVR. As shown in Table 1, 
the MAE, RMSE, and MAPE of the proposed algorithm based on SD-CNN-LSTM-
Attention for predicting the electricity load of three households are minimal compared to 
other algorithms. In residents A and C, the SVR performs the worst in all the metrics and 
has the highest error. Although both CNN-LSTM and Autoformer offer strong 
capabilities in time-series prediction, the SD-CNN-LSTM-Attention model consistently 
performs better, especially during critical periods of morning and evening peak electricity 
consumption, where capturing sudden fluctuations in load demand is essential. 

The electricity load prediction curves and performance comparisons for different 
models applied to Household A across three periods – working days, weekends, and 
national day – are illustrated in Figure 6. As shown, the electricity load on weekends and 
National Day is generally higher than on working days, with similar trends observed 
across the forecast curves for all three periods. 
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Table 1 Performance performances of the three residents predicted by different models 
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Table 2 Different period performances of the electricity consumption predicted by different 
models 
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From Table 2, it is evident that the SD-CNN-LSTM-Attention algorithm outperforms 
other models, achieving the lowest MAE, RMSE, and MAPE across all three periods. In 
contrast, the Autoformer model performs poorly compared to the other DL models. 
Additionally, when compared to the regression-based model SVR, the proposed  
SD-CNN-LSTM-Attention model improves residential electricity consumption prediction 
accuracy by 6.14%, 4.93%, and 2.3% for working days, weekends, and National Day, 
respectively. 

Notably, the best prediction performance occurs during the weekend, where the 
proposed model achieves a minimum MAPE of 2.36%, indicating that the model adapts 
well to periods of higher variability in household energy usage. This suggests that the 
proposed model is highly effective at capturing the unique consumption patterns seen 
during non-working periods. The overall improvements demonstrate the robustness of the 
model in different real-world scenarios, providing valuable insights for energy 
management and consumption optimisation in residential environments. 

Figure 5 Prediction curves and performance comparison of weekday electricity load,  
(a) Residence A (b) Residence B (c) Residence C (see online version for colours) 
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Figure 6 Electricity load forecasting curve and performance comparison of household A,  
(a) workday (b) weekend (c) national day (see online version for colours) 

 

4.1.2 Daily electricity load prediction 
The daily electricity load dataset is divided into four seasons, spring, summer, autumn 
and winter, and the prediction results of the three residents are shown in Figure 7. It can 
be seen that the electricity consumption of the three households fluctuates less in spring. 
The decline in electricity consumption in the early stage may be due to the gradual rise of 
temperature in spring and the reduction of heating demand consumption. It could also be 
that the increase in daylight hours in spring reduces the need for indoor lighting. The 
subsequent rise in electricity consumption may be due to the fact that residents begin to 
use air conditioning and refrigeration or other electrical appliances as the temperature 
rises; it may also be due to the increase in evening activities as the hours of daylight 
increase, which leads to a subsequent increase in electricity consumption. As can be seen 
from Table 3, the proposed SD-CNN-LSTM-Attention prediction model performs the 
best in all three households with the lowest MAE, MAPE and RMSE, and MAPE reaches 
a minimum of 0.9% for resident B, significantly lower than CNN-LSTM and 
Autoformer. 
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Figure 7 Electricity load prediction curves and performance comparison of three residents in four 
seasons, (a) spring (b) summer (c) autumn (d) winter (see online version for colours) 

 

During the summer months, all three residents show a significant increase in electricity 
consumption. The change of resident A is relatively stable, but there is an obvious peak 
in the middle period, which may correspond to a large increase in air conditioning usage 
caused by extremely high-temperature weather. Moreover, there is usually a summer 
vacation in summer. Under the effect of holidays, family members spend more time at 
home, and the frequency of electrical appliances increases, resulting in increased 
electricity load. As can be seen from Table 2, SD-CNN-LSTM-Attention shows 
significant advantages in all three households, and it is especially prominent in residents 
B and C. 

In autumn, the electricity load of the three residents shows different trends. The 
electricity load of resident A rises and falls with large fluctuations. There is a clear peak 
in residents B and C. The reason for this large change may be that air conditioners are 
used less in autumn when the temperature gradually decreases, but the heating demand 
has not yet fully appeared. From Table 2, it can be seen that the error of the proposed SD-
CNN-LSTM-Attention model is significantly lower than that of other algorithms in all 
residents, with higher stability and accuracy. 
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Table 3 The prediction performance of different models in three residents in four different 
seasons 
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Table 3 The prediction performance of different models in three residents in four different 
seasons (continued) 
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In winter, the electricity load of resident A fluctuates greatly, falling in the middle period 
and rising in the later period. The electricity load of resident B first rises and then falls. 
There is a clear rise and fall in resident C. This change may be due to the frequent use of 
heating equipment (electric heaters, air conditioners) in winter, when the temperature is 
lower. In addition, the long nights and short days in winter increase the demand for 
lighting, and the frequency of use of electrical appliances such as washing machines and 
water heaters increases in cold weather. Although it is difficult to predict accurately in 
winter, Table 3 shows that SD-CNN-LSTM-Attention outperforms other algorithms in all 
residents. Autoformer performs well in long-term trend prediction but lags in handling 
the sharper load variations during peak hours. 

5 Conclusions 

In this paper, we propose a multi-scale electricity load prediction model based on SD-
CNN-LSTM-Attention. The model accurately captures critical information in historical 
data. The proposed model has a smaller MAPE and smaller error distribution range in all 
cases. From the perspective of prediction results, the proposed model has higher 
prediction accuracy for the three residents. Specifically, in the workday prediction of the 
three residents, our model achieves a MAPE of 3.56% in residence A, 4.78% in residence 
B and 6.81% in residence C, which significantly outperforms the performance of other 
traditional models such as CNN, GRU and LSTM. In the weekend prediction, the MAPE 
of the model is 2.36%, 3.19% and 4.02% in residential A, B and C, respectively, which 
also shows high accuracy. The variation in electricity consumption of residential 
buildings is linearly related to the activity of the day. Compared with working days, the 
change in electricity consumption on weekends and holidays is backward with the delay 
of the start time of residential activities. The model exhibits superior robustness. 
According to the seasonal characteristics, electricity consumption is closely related to the 
electricity consumption behaviour caused by climate change. In the daily forecasting 
results of the four seasons, the fluctuation of electricity load data in winter is increased 
due to the large temperature change. By considering the prediction results of seasonal 
characteristics, it provides a basic guarantee for the subsequent analysis of the difference 
in electricity load between the four seasons. 

Overall, the proposed method achieves accurate electricity consumption estimation of 
residents in different situations, and the model is more suitable for different data sets. The 
seasonal pattern of electricity load in practical applications may be affected by many 
factors, such as energy policy, economic development, etc., resulting in fluctuations or 
changes in the seasonal pattern. In the following work, the influencing factors of 
electricity load will be further studied to improve the accuracy of the mode. 

Data availability 

Sequence data of this study have been deposited in the following WebURL link: 
https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014. 
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Nomenclature 

CNN Convolutional neural network 
LSTM Long short-term memory 
Attention Attention mechanism 
R2 Coefficient of determination 
MAPE Mean absolute percentage error 
MLR Multiple linear regression 
GPQR Gaussian process quartile regression 
SVR Support vector regression 
BNFR Binary nonlinear fitted regression 
DL Deep learning 
RNN Recurrent neural network 
ANN Artificial neural network 
DRNN-LSTM Deep recurrent neural network with long short-term memory 
USTLF Ultra-short-term load forecasting 
STLF Short-term load forecasting 
MTLF Medium-term load forecasting 
LTLF Long-term forecasting 
EMD Empirical mode decomposition 
BiLSTM Bidirectional LSTM 
ARIMA Autoregressive integrated moving average 
WNN Wavelet neural network 
SD-CNN-LSTM-Attention Seasonal decomposition-convolutional neural network-long and 

short-term memory network-attention mechanism 
MAPE Mean absolute percentage error 
MSE Mean square error 
RMSE Root mean square error 
MAE Mean absolute error 

 


