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Abstract: We present a method to minimise and predict airblast in blasting
operations in an open-pit Debswana diamond mine. Blast engineers can
use this tool to optimise their blast design to achieve desired blasting
operation effect, i.e., airblast. The major novelty of this study is on the
creation of a nine-dimensional solution space, optimisation of the blast design
parameters, and minimisation of airblast using gradient descent method. We
develop a solution surface using artificial neural network (ANN). This is
our best-performing machine learning model compared to the three other
models used, namely, support vector machine (SVM), k-nearest neighbour
(k-NN), and random forest (RF). The computed nine-dimensional solution
space has eight input parameters: stemming, distance from the blast face to
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the monitoring point, burden, powder factor, hole diameter, maximum charge
per delay, spacing, and hole depth. Sensitivity analysis revealed that stemming
is the most sensitive input parameter while spacing is the least sensitive.
The minimum value of airblast computed in this study through unconstrained
optimisation is around 40 dB, which is approximately equivalent to the
sound of a whisper. This framework is adaptable to various geological
and operational settings, highlighting its broader applicability in improving
environmental compliance and blasting efficiency.

Keywords: airblast; machine learning; blast design; optimisation; sensitivity
analysis; open-pit diamond mine.
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1 Introduction

Blasting is the method of breaking rocks into smaller pieces by using explosives and is
widely used in mining and civil engineering as the first stage in processing materials. It
is one of the most widely accepted and cost-effective methods for rock fragmentation.
However, only a small percentage of the explosive’s energy, approximately 20% to 30%,
is utilised for rock breaking, while the remaining 70% to 80% contributes to undesirable
environmental effects such as flyrock, ground vibration, back-break, and airblast (Yu
et al., 2020; Khandelwal and Kankar, 2011; Trivedi et al., 2015; Monjezi and Dehghani,
2008).

Airblast, caused by air over-pressure (AOp), can have detrimental effects on nearby
buildings, such as window rattling and damage to roofing materials. It also leads to
discomfort and irritation to humans and animals (Sawmliana et al., 2007). The AOp is
generated by variations in air density, causing the shock wave from a blast to refract
horizontally, dissipating over distance and time. The pressure wave that is produced
comprises sounds within the audible range and those below the level of human hearing
(Bhandari, 1997). The audible sound corresponds to frequencies greater than 15 hertz in
the pressure wave emitted immediately after a blast, while the sub-audible sound lies in
the infrasound region with frequencies lower than 15 hertz. Typically, the sub-audible
portion is more prominent in regions far from the blast site (Faramarzi et al., 2014).

The AOp is typically measured in terms of pascals and decibels. Numerous factors
affect AOp, which can be categorised as either controllable or uncontrollable parameters
(Khandelwal and Kankar, 2011; Dindarloo, 2015). Controllable parameters, such as
explosives and blast design properties, are man-made, while uncontrollable parameters,
including geology, rock mass properties, and atmospheric conditions, are naturally
occurring. Among the input parameters influencing AOp, the distance between the blast
face and the monitoring point and the maximum charge per delay have been identified
as the most influential (Dumakor-Dupey et al., 2021). Researchers have developed a
variety of empirical models to predict AOp (Armaghani et al., 2015b; Chen et al., 2022;
Siskind et al., 1980; Hustrulid, 1999; Kuzu et al., 2009). One widely used model is the
US Bureau of Mines (USBM) formula, which is applied in the absence of monitoring,
as expressed by (1) (Siskind et al., 1980; Nguyen and Bui, 2020; Keshtegar et al., 2019;
Armaghani et al., 2018).

AOp = H ∗
(

DI

MC0.33

)−β

(1)

where MC and DI stand for the maximum charge per delay (kg) and distance (m)
between the blast face and the monitoring point, respectively. The site-specific constants
H and β are deduced by regression analysis through conversion to linear form.

Empirical models have inherent limitations due to their reliance on a limited number
of input parameters and their ability to output only one parameter at a time. These
models cannot capture the nonlinear relationships between the involved parameters and
are site-specific (Singh et al., 2004). This limitation has led to the adoption of artificial
intelligence (AI) methods to overcome these challenges. Khandelwal and Kankar (2011)
utilised SVM and a generalised predictor equation to predict AOp. The MC and DI were
considered as model inputs. The SVM-based predictions closely matched the measured
AOp, while the generalised predictor equation showed a high error.
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Chen et al. (2022) employed SVM optimised with the grasshopper optimiser (GO)
algorithm to predict airblast. The Boruta algorithm (BFS) was used for input selection,
and a combined model called SVR-GO-BFS was developed. The findings showed that
SVR-GO-BFS achieved the best performance, with a coefficient of determination (R2)
of 0.983 and a root mean square error (RMSE) of 1.332, outperforming other baseline
models.

Hosseini et al. (2022b) conducted a study on AOp predictions induced by blasting
operations using a dataset from the Anguran Lead-Zinc Mine in Iran, which included
90 blasts. A Z-number reliability and fuzzy cognitive map (FCM)-based uncertainty
intelligence method was employed to predict AOp. The reliability input weights were
then utilised in back-propagation causality-weighted neural networks (BPCWNNs).
This model exhibited superior performance in AOp prediction compared to the
back-propagation neural network (BPNN) and the generalised feed-forward neural
network (GFFNN).

Nguyen and Bui (2019) employed a robust AI system based on ANN and the RF to
predict AOp. An empirical technique was also used for comparison purposes. The results
demonstrated that the proposed ANN-RF model outperformed the empirical technique
with an RMSE of 0.847 and an R2 value of 0.985. Several researchers have also utilised
AI methods to predict airblast, showing their superiority over statistical and empirical
methods in terms of higher accuracy and lower errors (Khandelwal and Singh, 2005;
Mohamad et al., 2016; Armaghani et al., 2015b; Nguyen et al., 2020; Le et al., 2019;
Armaghani et al., 2016; Mohamad et al., 2012; Temeng et al., 2020; Armaghani et al.,
2015a; Mahdiyar et al., 2018; Gaopale et al., 2019). Researchers in other engineering
fields have also applied AI methods, demonstrating the capabilities of these algorithms
in modelling complex problems with a high degree of accuracy (Armaghani et al., 2023;
Cai et al., 2022; Saubi et al., 2023b; Zeng et al., 2021; Abdalla and Salih, 2022; Saubi
et al., 2023a; Bakhtavar et al., 2021; Mahmood and Mohammed, 2022; Kaklis et al.,
2022; Hosseini et al., 2022c,a).

Although there are many studies in machine learning modelling of blasting, none of
them were able to present a solution space based on the created model. This solution
space is instrumental in optimising the effects of blasting based on the input parameters.
At the same time, it also helps in designing the blast parameters by setting an expected
output from the solution space and extracting each corresponding input parameters. In
particular, we model the relationship between airblast (Ab) and its input parameters,
expressed as:

Ab = f(B,S, T, L,D,DI, Lc, Pf) (2)

where B = burden, S = spacing, T = stemming, L = hole depth, D = hole diameter,
DI= distance from the blast point to the monitoring point, Lc = Linear charge, and Pf
= powder factor. While traditional approaches rely on empirical methods to estimate
f(), our approach leverages machine learning to not only predict airblast but also define
a solution space for f(), enabling:
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• optimisation: finding the minimum airblast through random initial points

• blast design: Setting a desired airblast value and solving for corresponding input
parameters or assigning constraints on some parameters and solving for the rest.

Unlike prior studies, which treat f() as a black box, our method provides a transparent
and actionable solution space, offering predictive, optimisation, and design capabilities.
To the best of our knowledge, no previous work has achieved this. The major motivation
of this paper is to develop a machine learning (ML) model from the blasting dataset
provided by the Debswana Diamond Mine in Orapa, Botswana. This model will be used
to help blast engineers create their blast designs and predict airblast with acceptable
accuracy. At the same time, our model will allow blast engineers to come up with a
blast design that will minimise airblast. Therefore, the following can be listed as this
paper’s primary contributions.

• the use of a blasting dataset provided by the Debswana Diamond Company in
Botswana consisting of 104 blast events

• the development of machine learning models based on four algorithms with eight
input parameters. The models are compared against a statistical method and an
empirical method

• creation of a nine-dimensional solution space, optimisation of the blast design
parameters, and minimisation of airblast using gradient descent method

• sensitivity analysis to ascertain the relative impact of inputs on airblast is
conducted using the network weights of the ANN model as opposed to the usual
cosine amplitude method.

The remainder of this paper is organised as follows: Section 2 explains the materials
and methods used in this study. Results and discussion are covered in Section 3. The
last section details the conclusion.

1.1 Blasting in Orapa diamond mine

A blasting dataset consisting of 104 blasting events was collected from the mine
records. The mine is located in Southern Africa, Botswana at the coordinates, latitude
21◦18′30′′ S and longitude 25◦22′10′′ E, as depicted in Figure 1(a). In this mine,
blasting operations employ a staggered pattern. Type A explosives (pentolite boosters)
and type B explosives (detonators 15 m and 20 m) are used. Bench height is set at
15 m, and blast holes with diameters of 127 mm, 165 mm, and 250 mm are utilised.
Each blast typically consists of 40 to 60 holes per row and 15 to 25 rows. Figure 1(b)
provides a schematic diagram of the blast geometry. In-pit material handling of the
blasted materials and hauling are carried out using shovels, excavators, and rear dump
trucks. The mine’s production plan for 2018 aimed to extract approximately 153 million
carats from 205 million tons of ore over 15 years.
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Figure 1 (a) Orapa mine layout (b) Diagram of blast geometry (see online version
for colours)

(a) (b)

2 Materials and methods

In this section, we present the computational methods used in this paper which include
machine learning methods, an empirical method, and a statistical method. The empirical
method used in this paper adapts the USBM formula for predicting airblast. We utilised
a total of 104 datasets obtained from the mine blasting records of the Orapa Diamond
Mine owned by Debswana. Table 1 provides a summary of the input and output
parameters considered in our analysis, with their corresponding minimum and maximum
values. The input parameters listed in Table 1 were selected because they capture
the key blast design and explosive factors influencing airblast in practical blasting
operations. Burden and spacing, for example, reflect the confinement and distribution of
the explosive load within the rock mass, directly affecting the pressure wave’s intensity.
Stemming length controls how gases and energy escape from the borehole, thereby
influencing airblast levels. Hole depth and diameter relate to the total explosive volume
and consequently how energy propagates through the rock, while the distance from the
blast to the monitoring point determines how much the wave attenuates over distance.
Linear charge and powder factor help characterise the explosive energy applied per unit
length and volume, respectively, both of which strongly affect the overall vibration and
airblast output. The methodology flow chart for the machine learning implementation
stages is shown in Figure 2.

The process began with the collection of original data from the mine records. The
collected data underwent a cleaning process to address inconsistencies and errors. Once
cleaned, the data was then normalised to ensure that all input parameters were on a
consistent scale and range. The dataset, after preprocessing, was divided into three parts:
a training subset (80%), a validation subset (10%), and a testing subset (10%) as shown
in Figure 2. The training subset was used to train the ML models, including, SVM,
ANN, k-NN, and RF.

Performance indices like mean absolute error (MAE), R2, and RMSE, were used to
assess the trained models. These metrics assess how well the models can predict airblast
values based on the input parameters. The models underwent a fine-tuning process,
which involved adjusting their hyper-parameters to optimise their performance.
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Figure 2 Flowchart for the machine learning model implementation stages

Figure 3 The RMSE values for different models, (a) RMSE for KNN model with different k
(b) RMSE for RF model with different trees (c) RMSE for ANN model with
different neurons (d) RMSE for SVM model with different sigma (see online
version for colours)

(a) (b)

(c) (d)

Figure 3 shows the variation in RMSE for different models with their hyper-parameters.
Figure 3(a) shows the variation in the number of neighbours for the k-NN model with
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RMSE. As the number of neighbours increases the RMSE increases, and the optimum
model performance was found at k = 5 (lowest RMSE). For the RF model an increase
in the number of trees, results in a higher RMSE, the optimum model was found at the
number of trees = 5 (lowest RMSE) as shown in Figure 3(b). In Figure 3(c), the RMSE
increases as the number of neurons increases with an optimum model being 10 neurons
(lowest RMSE). For the SVM model, smaller and larger sigma values lead to a higher
RMSE, while the medium values lead to a lower sigma value, with the optimum model
being σ = 6. Once the models had been trained and evaluated, they were then used to
make predictions on new, unseen data. These predictions provided estimates of airblast
values based on the input parameters.

Table 1 Description of the input and output parameters for all models

Parameter Type Unit Symbol Min Max

Burden input m B 4 8
Spacing input m S 5 9
Stemming length input m T 4 6
Hole depth input m L 12.3 15.2
Hole diameter input mm D 165 250
Distance from blast to monitoring point input m DI 438 1,500
Linear charge input kg/m Lc 27 61.4
Powder factor input kg/m3 Pf 0.3 1.2
Airblast output dB Ab 91.5 126.7

2.1 Sensitivity analysis

Sensitivity analysis is typically conducted using the cosine amplitude method
(Faradonbeh et al., 2016; Wang et al., 2023). Yang et al. (2014) applied the method
for sensitivity analysis using network weights. The relative importance is calculated
using (3):

Ij =

∑m=Nh
m=1

W ih
jm∑Ni

k=1 |W ih
jm| × |Who

mn|∑k=Ni
k=1

∑m=Nh
m=1

|W ih
jm|∑Ni

k=1 |W ih
km|×|Who

mn|

(3)

In this context, Ij denotes the relative significance of the jth predictor in influencing the
dependent variable; Ni and Nh correspond to the number of neurons within the input
layer and the hidden layer, respectively; W represents the synaptic weight; where the
superscript notations i, h, and o are indicative of the input, hidden, and output layers,
correspondingly, and the subscript notations k, m and n are associated with the neuron
indices in the input, hidden, and output layers, in that order.

2.2 Optimisation of blast parameters using gradient descent

This study employs gradient descent optimisation to find the minimum airblast value
and its corresponding input parameters, which can be utilised by blast engineers in
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their blast design. The Monte Carlo method was utilised to determine the optimal
ANN model with eight inputs, one output, and two hidden layers, focusing on the
optimal number of neurons in each hidden layer. The optimal ANN architecture is
8-80-10-1. The gradient descent technique was then used to navigate the solution space
to find the minimum airblast and its corresponding optimised input parameters. Figure 4
shows the optimisation process. The gradient descent method is a widely used iterative
optimisation technique that finds application in almost all areas of computation (Yang
et al., 2014). The gradient descent technique is shown in (4):

pnewi = pi − η

(
nnet(p1, . . . , pi, . . . , pN )− nnet(p1, . . . , poldi , . . . , pN )

pi − poldi

)
(4)

In this equation, pnewi represents the updated parameter, while pi is the current parameter
value being updated. The term poldi denotes the parameter value from the previous
iteration. The learning rate is represented as η. The function nnet represents the neural
network model.

Figure 4 Flow chart for the gradient descent optimisation process (see online version
for colours)

3 Results and discussion

The efficacy of each predictive model was evaluated using RMSE, MAE, and R2

as performance metrics, as shown in equations (5) through (7) (Ikram et al., 2023;
Ghazvinian et al., 2021):

RMSE =

√√√√ 1

n

n∑
i=1

(yi − y′i)
2 (5)

MAE =
1

n

n∑
i=1

|yi − y′i| (6)

R2 =

[ ∑n
i=1(yi − ȳi)(y

′
i − ȳ′i)∑n

i=1(yi − ȳi)2
∑n

i=1(y
′
i − ȳ′i)

2

]2
(7)

where n is the number of observations, yi and y′i are the measured and predicted values
of the ith observation, respectively; and ȳi and ȳ′i are the mean values, respectively.
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Table 2 The calculated performance indices for all algorithms

Method R2 RMSE MAE

k-nearest neighbour
n-neighbours = 5 0.945 1.037 0.330
n-neighbours = 15 0.639 1.188 0.324
n-neighbours = 25 0.524 1.677 0.385
n-neighbours = 35 0.546 1.894 0.361
n-neighbours = 45 0.769 2.013 1.046

Support vector machine
sigma = 1 0.852 1.125 0.369
sigma = 3 0.863 1.112 0.389
sigma = 5 0.948 1.075 0.362
sigma = 7 0.872 1.115 0.467
sigma = 9 0.886 1.203 0.590

Random forest
n-estimators = 5 0.955 0.210 0.322
n-estimators = 15 0.891 0.502 0.315
n-estimators = 25 0.885 0.704 0.344
n-estimators = 35 0.894 0.884 0.478
n-estimators = 45 0.785 1.471 0.682

Artificial neural network
model 1 (10 neurons) 0.988 0.273 0.189
model 2 (20 neurons) 0.918 0.380 0.261
model 3 (30 neurons) 0.894 0.428 0.265
model 4 (40 neurons) 0.889 0.490 0.387
model 5 (50 neurons) 0.862 1.529 0.390

Multivariant regression model
regression model 0.485 2.363 1.490

Empirical model (USMB)
empirical model 0.149 11.034 9.232

The results of the calculated performance indices of the test set for all models are
summarised in Table 2. Based on the performance indices presented in Table 2, it is
evident that the ANN model with an architecture of 8-10-1 (eight inputs, ten neurons in
the hidden layer, one output) exhibits the lowest RMSE (0.273), lowest MAE (0.189),
and the highest R2 (0.988). In contrast, the empirical model USBM demonstrates poor
prediction capabilities with RMSE, MAE, and R2 values of 11.034, 9.232, and 0.149,
respectively. Therefore, the ANN 8-10-1 model is considered to be the optimum model
for predicting airblast.

Figures 6(a) to 6(d) depict the correlations between the measured and predicted
airblast values for all the machine learning models. The data points closely align with
the line of best fit for the ANN model, illustrating the high correlation and improved
prediction capability of the ANN compared to other models. In contrast, Figures 6(e)
and 6(f) indicate that the data points for the MVRA and USBM models deviate
significantly from the line of best fit, indicating poor correlation and limited prediction
capabilities.
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Table 3 Performance indices from other machine learning studies related to airblast
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Figure 5 Scatter plots for all the models, (a) ANN 8-10-1 model performance (b) SVM
(sigma = 5) model performance (c) k-NN (5) model performance (d) RF
(no. trees = 5) model performance (e) MVRA model performance (f) USBM
model performance (see online version for colours)

(a) (b)

(c) (d)

(e) (f)

The ANN excels due to its ability to handle nonlinear relationships through its
adaptive and flexible structure. Unlike traditional machine learning models, ANN
can automatically learn complex patterns directly from data without relying on
predefined assumptions. Their interconnected neurons and multiple layers allow them to
model intricate relationships, while activation functions introduce nonlinearity, enabling
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them to approximate complex functions. Additionally, optimisation techniques like
backpropagation ensure effective learning, making ANN particularly suitable for tasks
with high-dimensional data and complex patterns, thus outperforming other models.

Figure 6 Sensitivity analysis of airblast (see online version for colours)

The k-NN model (R2 = 0.945, RMSE = 1.037) may perform this way because
it assumes that similar inputs yield similar outputs, which might not hold if there
is insufficient local similarity for predicting blast-induced airblast. Moreover, for
high-dimensional datasets like ours, the “curse of dimensionality” can limit KNN’s
ability to identify meaningful neighbours. The SVM model (R2 = 0.948, RMSE =
1.075) relies heavily on careful tuning of multiple hyperparameters such as (kernel
type, regularisation, and margin), so slight deviations from optimal settings can degrade
its performance, especially when capturing highly nonlinear patterns in the data. The
random forest model achieved a relatively higher R2 of 0.955 and an RMSE of
0.210. However, its ensemble-based approach typically benefits most from larger, more
diverse datasets, where multiple subsets can be drawn to produce robust decision trees.
The MVRA model, which is a traditional linear approach, fails to capture nonlinear
relationships. The USBM formula performs poorly because, like MVRA, it relies on
linear assumptions and cannot accurately represent the complex nonlinear nature of
airblast data, making it the least effective model.

The highest-performing model in Table 3 is the ANN model by Tiile (2016), which
achieved an R2 of 0.99 using 180 blasting events with seven inputs (maximum charge
per delay (MC), DI, D, T, S/B, D, Pf). This model’s superior performance can be
attributed to the large dataset size and more inputs. In contrast, the lowest-performing
model is the SVM model by Khandelwal and Kankar (2011) with an R2 of 0.85 using
75 blasting events and two inputs (MC, DI). The smaller dataset size, few inputs, and
potential challenges with hyperparameter tuning of the SVM model might have restricted
the model’s ability to generalize and capture the variability in the data, leading to lower
predictive accuracy. In the middle range, the ANN-KNN by Amiri et al. (2016) achieved
an R2 of 0.90 using 75 datasets with two inputs (DI, MC). This model combines
the k-NN algorithm with ANN, enabling it to handle larger and more diverse datasets
effectively. Its performance is better than the lowest-performing model, indicating that
hybrid techniques can significantly enhance predictive capabilities. Our ANN model
achieved an R2 of 0.988 with 100 datasets and eight inputs. It performs well and aligns
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closely with other high-performing models, such as the SVM-GO-BFS by Chen et al.
(2022), which achieved an R2 of 0.98 with 62 blasting events and six inputs.

Figure 7 Solution space for airblast as the output parameter with eight input parameters,
taken two at a time (see online version for colours)

(a) (b)

(c) (d)

(e) (f)

Note: The red dots are random initial values that always converge to the optimal
point, the blue dot, for every minimisation computation. Airblast versus
stemming, the most influential input parameter, presented in a 2D plot. The
values of the other seven input parameters at the optimal point are kept
constant, while stemming is plotted in its entire range.
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Our ANN model performed well compared to the hybrid models (PSO-ANN, ICA-ANN,
and XGBoost), all of which used fewer inputs and smaller datasets than our model.
Additionally, our ANN achieved slightly better performance (R2 = 98.8%) than the
RF-ANN model (R2 = 98%), which utilised the same number of inputs but had a
slightly larger dataset. These results imply that the accuracy and generalisability of a
model can be improved by investigating hybrid models and increasing dataset size, this
allows the model to capture more complex interactions and improve generalisability, as
seen in the highest-performing models.

3.1 Sensitivity analysis

From Figure 6, it can be inferred that stemming (T) is the most influential input
parameter on airblast with 20%. It is also noted that the level of airblast is least
sensitive to the spacing (S) with 6%. The sensitivity analysis highlights the critical role
of stemming in influencing airblast. These parameters should be given priority during
the blast design process. The high sensitivity of stemming suggests that even minor
adjustments can lead to significant changes in airblast levels, providing a powerful lever
for engineers to control blast outcomes. On the other hand, the relatively low sensitivity
of spacing indicates that it can be considered a secondary factor, allowing engineers to
focus their optimisation efforts on more influential parameters.

Building on the sensitivity analysis that identified stemming as the most influential
parameter for airblast control, practical implementation starts with small-scale trials to
determine the optimal stemming length for each site’s geological conditions. Carefully
selecting a suitable stemming material such as a denser, more cohesive aggregate further
enhances explosive gas containment, and this choice should be balanced through a
cost-benefit analysis to ensure operational feasibility. Incorporating real-time airblast
measurements will allow for continual refinement of stemming parameters across
successive blasts. While stemming plays a critical role, it is nonetheless important to
integrate these adjustments with other design variables like burden, hole diameter, and
spacing to maintain overall blast efficiency, safety, and effectiveness.

3.2 Optimisation of airblast

Figures 7(a) through 7(e) display the results of the optimisation procedure, starting with
seven initial points (depicted as red dots) chosen at random and converging towards the
optimal value (illustrated as a blue dot), which is the lowest point in the surface. The
optimal solution is consistent throughout all random initial points and has a value of
around 40 dB. Each curve plotted in subfigures is one of the seven input parameters.
Subfigures shows a 3D plot where stemming, the second most influential parameter, is
kept constant in the traced curve that includes the blue dot which is the minimum point.
The red dots are random initial points converging to the blue dot at every optimisation
computation. The optimised blast design parameters are as follows: powder factor (1.15),
linear charge (42), burden (5.5), spacing (5.5), stemming (6), distance from blast point to
monitoring point (980), hole depth (14), and diameter (170). Every point in the solution
surface has nine components, i.e., eight components of the eight input parameters plus
the output component of the airblast. From the sensitivity analysis, stemming is the most
influential parameter. Because of this, we compare stemming versus all the other seven
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input parameters kept constant, to observe the variations in the values of the output
parameter in a two-dimensional plot. We assign stemming to be the x-axis, while airblast
is assigned as the y-axis.

In Figure 7(a), when stemming decreases while hole depth is fixed, airblast initially
decreases towards an optimal stemming value that minimises airblast and rises again.
Figure 7(b) shows that as stemming decreases with the hole diameter fixed, airblast
gradually decreases towards an optimal stemming value for minimal airblast and then
increases. In Figure 7(c), decreasing stemming while keeping the burden fixed results
in a sharp decrease in airblast to an optimal value, and then it rises again. Figure 7(d)
demonstrates that with spacing fixed, airblast gradually decreases with an increase in
stemming up to the lowest optimal point. Figure 7(e) shows with the distance from the
blast point to the monitoring point kept constant, airblast decreases to an optimal point
as stemming increases, after which it begins to rise.

The solution space also confirms the results of the sensitivity analysis. As can be
seen in Figure 7(f), generated by varying stemming and fixing all the other parameters,
and taking a slice through the lowest, optimised point in the solution space. Hole
depth is the second most influential input parameter after stemming, and has the largest
variation ranging from about 39–142 dB in Figure 7(f). This indicates a high sensitivity,
as changes in hole depth significantly impact airblast. Spacing is the least influential
parameter, this parameter shows variations from about 80–110 dB, also suggesting lower
sensitivity.

The significance of these results lies in their practical application for blasting
engineers seeking to minimise the environmental and structural impacts of airblast
during blasting operations. By providing a set of optimised parameters, the model
enables engineers to design blasts that adhere to safety regulations and reduce the
risk of noise and pressure wave damage to nearby structures and communities.
Reducing airblast mitigates the risk of structural damage and enhances the blasting
process’ efficiency. Minimising airblast can lead to more controlled and precise rock
fragmentation, potentially reducing the need for secondary blasting and lowering
operational costs.

4 Conclusions

This study shows a method for modelling airblast using machine learning in an
open-pit mine located in Orapa, Botswana owned by Debswana Diamond Company. We
employed four machine learning algorithms, namely, ANN, SVM, RF, and k-NN. The
USBM empirical formula and the MVRA statistical method are used to compare results
against the machine learning models. The sensitivity analysis is performed to determine
the most influential parameter out of the eight input parameters. The most influential
input parameter on airblast is stemming (T). Conversely, the spacing (S) showed the
least sensitivity to airblast. Of all the machine learning models, the ANN model is
the best-performing one. This model is then optimised in terms of its architecture for
the number of neurons in each of the two hidden layers. Using the optimised machine
learning model, the minimum airblast was calculated to be approximately 40 dB using
the gradient descent technique. The values of its corresponding input parameters are
powder factor (1.15), charge (42), burden (5.5), spacing (5.5), stemming (6), distance
from the blast point to the monitoring point (980), hole depth (14), and hole diameter
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(170). The study’s findings apply to Orapa diamond mine, but its scalable methodology
can be adapted to other mines by incorporating site-specific data and retraining the
model for varying geological, topographical, and operational conditions.
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