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Abstract: For the goal of ensuring the smooth progress of construction, it is 
urgent to design a real-time construction safety management method. First, the 
overall architecture of internet of things (IoT) real-time monitoring is 
constructed, which includes sensing layer, network layer, platform layer, and 
application layer; second, according to the accident causation theory, the 
construction risk monitoring index system is determined, and the key risk 
features are extracted. Subsequently, the improved ReliefF algorithm is used to 
select important construction risk features, and the hyperparameters of the 
support vector machine (SVM) are optimised by the particle swarm 
optimisation (PSO) algorithm, and important risk features are inputted into the 
PSO-SVM model to obtain final risk warning results. Application results of a 
construction project show that the data transmission delay of the system is less 
than 0.2 s, and the monitoring accuracy can reach 91.31%, showing excellent 
real-time and accuracy. 

Keywords: construction site safety management; monitoring and early 
warning; internet of things; IoT; feature selection; support vector machine; 
SVM; particle swarm optimisation; PSO. 
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1 Introduction 

Under the background of continuous urbanisation, the construction industry is booming, 
and the number and scale of construction sites are increasing day by day. However, the 
construction site environment is complex, involving overhead work, machinery 
operation, electrical equipment use and many other links, safety accidents occur 
frequently, not only threatening the life safety of operators, but also causing huge 
economic losses and social impact (Lee and Lee, 2023). According to relevant statistics, 
the number of casualties caused by construction safety accidents each year should not be 
underestimated, and the traditional way of construction site safety management is not 
only inefficient, but also difficult to comprehensively cover all aspects of the construction 
site (Lee et al., 2009). The rise of internet of things (IoT) technology provides a new 
solution for construction site safety management. IoT technology through the sensor 
cloud computing and big data and other technical means, can realise the real-time 
monitoring and intelligent analysis of all data on the construction site, so as to timely 
discover potential safety hazards and take corresponding early warning measures (Chung 
et al., 2023). This IoT-based construction site safety management not only improves the 
efficiency and accuracy of safety management, but also reduces the incidence of safety 
accidents, providing a strong guarantee for the sustainable development of the 
construction industry (Zhou and Ding, 2017). Traditionally, construction site safety 
management is achieved through real-time monitoring and warning by building 
information modelling (BIM) (Naticchia et al., 2013). Hossain et al. (2023) investigated 
the use of BIM technology to achieve construction site monitoring visualisation and  
real-time warning functions; and to develop an application based on construction 
monitoring and warning. Wu et al. (2023) set up a three-level warning system according 
to the finite element model to effectively identify and prevent potential hazards on the 
construction site, thus guaranteeing construction safety. Kulinan et al. (2024) established 
a BIM 3D model for building fire prevention, which maps the parameters of the changes 
in the building structure and the surrounding environment during the construction process 
with the 3D model and realises real-time monitoring and warning for safety. Cheng et al. 
(2017) analysed the deficiencies of traditional construction monitoring and explored a 
new type of safety engineering monitoring management using BIM technology, but the 
accuracy of monitoring is not high. 

Traditional safety monitoring methods are unscientific and inconvenient to manage, 
etc. IoT uses radio frequency (RFID) as the basis for remote information collection, and 
through the positioning system to link things with things. Kanan et al. (2018) utilised the 
advantages of IoT technology to develop a construction safety intelligent monitoring 
system to realise real-time collection of on-site information and timely assessment of the 
safety condition of deep foundation pit construction sites. Häikiö et al. (2020) used global 
positioning system (GPS) positioning technology to collect real-time information about 
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data changes in the project structure and the surrounding environment, and established an 
IoT-based monitoring platform to realise intelligent monitoring of site conditions. 
Jayanthi et al. (2021) used IoT technology to collect and manage real-time data from all 
people and objects in the construction site, to realise the active warning function, and to 
improve the supervision and management efficiency of the construction site. Jiang et al. 
(2021) analysed the drawbacks of the current stage of China’s construction site 
monitoring methods, through the study of monitoring and early warning specifications, 
with the help of IoT technology, developed a monitoring management information 
platform based on the web side, but there is a large time delay. 

IoT can collect monitoring data through big data, cloud computing, and intelligence, 
which provides data support for safety management and early warning. Zhu and Wang 
(2022) used the historical construction data from IoT monitoring as the input of back 
propagation (BP) neural network, and the warning threshold was obtained after predictive 
analysis, but the prediction accuracy was not high. Liu and Tian (2019) extracted the key 
principal component features through principal component analysis and obtained the final 
warning results through a decision tree (DT) classifier to improve the prediction 
accuracy. Liu and Chen (2023) combined the convolutional neural network (CNN) with 
wavelet analysis method to give a wavelet energy spectrum and warning index using 
virtual impulse response function, and the results showed that this method can effectively 
predict the warning level of the construction site, so as to improve the safety and 
reliability of construction. Yang (2019) presented a new construction site warning 
indicator that can accurately identify the relevant risk situations and effectively predict 
the construction risk generation through support vector machines (SVMs). 

Based on the analysis of the above studies, it is clear that the some methods are 
unable to monitor and warn the safety risks of construction in a real-time and efficient 
manner. Moreover, existing construction site safety management methods mostly rely on 
manual inspections, which have time blind spots (such as nighttime operations) and 
subjective misjudgements, resulting in low monitoring efficiency. To cope with the above 
challenges, this paper proposes an IoT-based construction site monitoring and early 
warning system. First of all, based on IoT, the overall architecture of IoT real-time 
monitoring is constructed, which includes sensing layer, network layer, platform layer 
and application level. According to the accident causation theory, a key risk monitoring 
index system consisting of risk indicators for work at height, environment, equipment, 
protection, organisation and workers is identified, and the key risk features of 
construction are extracted from IoT data based on the indicators to form a key risk feature 
set for construction in IoT. Then the ReliefF algorithm is improved based on the idea of 
distance weighting (IReliefF), which is used to select important construction risk 
features, and to reduce the influence of abnormal samples through the contribution of 
distance-weighted neighbours when calculating feature weights. Finally, the important 
features are taken as the input of the particle swarm optimisation (PSO)-SVM model, the 
population is randomly initialised, and each particle representing the parameter vector is 
selected as the calculation parameter in the SVM, and the corresponding iterative training 
is performed on it. When the iteration meets the requirements, the obtained particle is the 
particle with the largest fitness function. This particle represents the optimal parameters 
trained by SVM to obtain an accurate construction risk prediction level. The experimental 
outcome indicates that the proposed system has a data transmission delay of 0.16 s and a 
prediction accuracy of 91.31%, which can realise accurate and real-time construction site 
monitoring and warning. 



   

 

   

   
 

   

   

 

   

   58 Z. Li et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

2 Relevant technologies 

2.1 Introduction to the IoT 

IoT is a network that connects physical objects to the Internet through information 
sensing devices, (e.g., RFID, sensors, GPS, cameras, etc.) according to an agreed 
protocol for information exchange and communication for intelligent identification, 
localisation, tracking, monitoring and management (Atzori et al., 2010). The conceptual 
model of IoT is shown in Figure 1, which is usually divided into sensing, network and 
application levels. 

Figure 1 IoT conceptual model (see online version for colours) 
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1 The sensing level is the front-end of the IoT system, which owns one or more 
sensing devices and brings together the core technologies of the IoT system, and 
involves various types of sensors, electronic IDs, and wireless routers in the market. 
The sensing layer consists of three subordinate levels, i.e., data acquisition level, data 
processing level, and short-range data transmission level (Ray, 2018). 

2 The role of the network transmission level is to transmit the data acquired by the 
sensing layer and carried out in the sensors over a short distance using a local area 
network (LAN) or a wide area network (WAN). At present, these communication 
network technologies are very developed, such as mobile communication networks, 
Internet, radio and television networks, satellite networks, etc. 

3 The application level receives data from various sensors, decrypts and processes the 
data, and finally realises human-computer interaction. This level is mainly composed 
of various types of service platforms, which work together to serve the market 
through data sharing and transmission. 

2.2 SVM algorithm 

SVM is a powerful class of machine learning algorithms widely used for classification 
and regression tasks. The essence of SVM is the ability to find an optimal hyperplane that 
best separates data points from different classes while maximising the margin between 
these classes (Ding et al., 2017). Compared to machine learning algorithms such as BP 
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and DT, SVM selects the best hyperplane by maximising the distance from the support 
vectors to the hyperplane, which allows the model to maintain good performance on 
unseen data. 

SVM has the advantages of strong generalisation ability, jumping out of local optimal 
solutions, and clear structure (Tan et al., 2019). Starting with a set of training samples, 
the input variable x is constructed. Using the mapping function F(x), which corresponds 
to the high-dimensional feature space insight, the parameters w and b are adjusted to 
capture the characteristics of the data samples using the fitting process f(x) = wF(x) + b. 
To accommodate the nonlinearity, a kernel function is introduced to assess the impact of 
the nonlinear regression fit. The model parameters are shown in equation (1) and the 
constraints are shown in equation (2) to equation (4), respectively. 

( )2 *

1

1Minimise : + +
2

n

i iW C ξ ξ  (1) 

[ ( ) + ] +i iy wF x b ε ξ−   (2) 

*[ ( ) + ] +i iwF x b y ε ξ−   (3) 

* 0i iξ ξ   (4) 

where W is a vector of weights, b is a model parameter, C is a penalty factor, and ξ is a 
slack variable. 

By satisfying the Karush-Kuhn-Tucker (KKT) condition and using the Lagrange 
multiplier method, the relevant parameters of the function can be obtained, and the final 
prediction is as follows. 

( ) ( ) ( )* *
1

1

,, , +i i i i i

n

i

f x K x x b
=

= −α α α α  (5) 

where αi and *
iα  are the Lagrange multipliers and K(x1, xi) is the nuclear function. 

3 Overall design of IoT-based real-time monitoring for construction site 
safety management 

3.1 Overall architecture of IoT-based real-time construction site monitoring 
system 

To avoid construction site safety accidents, there is an urgent need to study the real-time 
monitoring technology of key risks in construction. Firstly, the overall architecture of 
real-time construction site monitoring technology based on IoT is constructed, and 
secondly, according to the theory of accident causation, the key risk monitoring index 
system is determined, and based on the indexes, the key risk features of construction are 
extracted from the IoT, and the key risk feature set of construction is composed of the 
IoT, which will provide the data support for the establishment of the subsequent early 
warning model. 
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Figure 2 The overall architecture of IoT-based remote monitoring system (see online version  
for colours) 
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Since the key risks of construction mainly exist in the construction site, in order to 
facilitate the monitoring of the key risks of construction, it is possible to collect the key 
risk data received by different sensors in the process of construction, and construct the 
overall architecture of IoT-based remote monitoring technology, as shown in Figure 2. 
The overall architecture consists of a sensing level, a network level, a platform level and 
an application level, and the monitoring process is as follows. 

1 Multiple sensors in the sensor layer module are installed at the construction site to 
collect a series of construction risk data such as horizontal displacement, 
temperature, humidity, wind direction, wind speed, cracks, acceleration, and strain at 
the construction site. 

2 Utilise M2M terminals to provide a short-distance data transmission channel 
between the sensor module and the network layer. At the same time, the construction 
site is divided into zones, and cameras and other video monitoring equipment are 
installed in each zone to collect real-time video images of the construction site. 

3 After receiving and parsing the data, the platform layer extracts the key risk features 
of construction based on the key risk monitoring indicators of construction, 
constructs the construction risk monitoring and early warning model by using 
IReliefF and PSO improved SVM, predicts the results of the key risks of 
construction, and transmits the prediction results to the application layer. 

4 While storing the data, the application level realises real-time monitoring of key 
construction risks by viewing construction site video images, risk data and key risk 
prediction results in real time through the mobile monitoring app. 



   

 

   

   
 

   

   

 

   

    IoT-based construction site safety management 61    
 

    
 
 

   

   
 

   

   

 

   

       
 

3.2 Selection of technical indicators and feature extraction for monitoring key 
risks on construction sites 

Construction site key risk monitoring technical indicators are based on the theory of 
accident causation in ergonomics (Mitropoulos et al., 2005), through the analysis of three 
elements in the construction process, namely, people, machinery and the environment, to 
determine the causes of the key risks of the construction, which is used as the main 
indicators for monitoring the key risks of the construction. Referring to the existing 
research, the construction key risk monitoring indicators are divided into six categories of 
indicators: construction workers’ work at height risk, construction environment risk, 
machinery and equipment risk, safety protection risk, management organisation risk, and 
workers’ health conditions risk. 

After determining the key risk monitoring indicators, the construction key risk 
characteristics are extracted from the IoT data based on the indicators. For example, to 
determine whether there are environmental risks in construction, relevant data are 
collected from sensors such as temperature and humidity sensors, wind direction sensors, 
and wind speed sensors in the heterogeneous IoT sensing layer, and then transmitted to 
the platform layer via IoT to parse the data and extract features. The key risk 
characterisation parameters for real-time IoT sensor data are extracted from three main 
aspects: real-time sensed data traffic, IoT protocol connections, and the difference 
between IoT uplink traffic and downlink traffic. 

1 The expressions for extracting the critical risk features δ1, δ1 of the sensed data from 
the real-time sensed data traffic are as follows. 

1
1

n

i

δ k m
=

= × ×β  (6) 

where β is the data variable to be sent and its range is set in the sensor device, k is 
the IoT channel bandwidth, and m is the number of channels. 

2 Extracting key risk characteristics of sensing data from IoT protocol connections. 
Since IoT can make different TCPs connect to several different sensors at the same 
time, the number of special messages formed when TCP establishes and disconnects 
is used as the key risk feature δ2 of sensing data, and its expression is as follows. 

2
+ + ( )

3
W H Gδ W H G= × × ×  (7) 

where W is the number of termination messages, H is the number of reset messages, 
and G is the number of synchronisation sequence number messages. 

3 Extract sensing data from the difference between IoT uplink traffic and downlink 
traffic as key risk features δ3 and δ4. When various types of data traffic are 
aggregated, there will be a small difference between IoT uplink traffic and downlink 
traffic. Therefore, the ratio of the difference between the IoT uplink and downlink 
traffic to the entire heterogeneous IoT traffic can be taken as the key risk feature δ3, 
and the time-domain feature v of the sensed data can be expressed by using the 
information entropy and information gain of this data (Buscemi et al., 2016), as 
shown below. 
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( )2
3

1

+1
o

o

δ Q Q
=

=  (8) 

( )4
1

1lg
2

o
o

o
o

Cδ C C
C=

= − ×  (9) 

where Q is the total amount of sensed real-time data, Co is the relevant risk data 
collected by one sensor O, and C is the relevant risk data collected by all sensors. 

The full risk characterisation dataset extracted in the above way is the key risk 
characterisation set δ2, i.e., δz = [δ1, δ2, δ3, δ4], for building construction in IoT. 

4 Construction site risk early warning model based on ReliefF and SVM 

4.1 Construction risk feature selection based on optimised ReliefF algorithm 

After extracting the construction key risk feature set δz, the IReliefF algorithm and the 
improved SVM model of PSO are used to construct the construction risk warning model, 
and the overall process is shown in Figure 3. δz is pre-processed by IReliefF feature 
selection to obtain the optimal set of critical risk features, which is used to downscale δz 
to improve the prediction speed. The optimal key risk feature set is divided into training 
set and prediction set by cross-validation method, and the kernel function and penalty 
parameters are selected, while PSO solves the model parameters to obtain the optimal key 
risk prediction model of SVM. 

ReliefF algorithm is a filter-based (filter) feature selection method (Aggarwal et al., 
2023), but the key of ReliefF algorithm lies in the distance calculation, and the traditional 
Euclidean distance calculation method has high complexity. For this reason, IReliefF 
algorithm will feature samples in accordance with the length of the distance from the 
centre of the way to mention 10% as the sample core circle, in the process of calculating 
the weights of each time, randomly selected from the core circle of the sample as the 
centre of the weight calculation, and at the same time, in order to solve the problem of 
different features corresponding to the number of different samples, the use of the new 
distance calculation method instead of the calculation of the Euclidean distance method. 

First, the feature vector W is initialised, and then, based on the Pareto principle, the 
distance from each sample to the centre of the class is calculated according to the new 
distance calculation method, and the closest 10% of the samples are selected as the core 
circle of the samples. Randomly select a sample x as the new class centre within the 
sample core of each class, and take its k nearest neighbours again. Next, take k nearest 
neighbour samples from all other samples that are different from sample x. Finally, the i, 
jth feature weight vector is calculated according to the weight update formula. 

( )

( )

, , 1

( )

1

1 , ( )
1+

, ( )

k c
dist jj li j i j

c c x

k
dist j

j

L x M x
lW W

m k l

L x H x
m k l

=−

≠

=

−=
∗ ∗

= −
∗ ∗





 (10) 
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where l is the number of feature categories, m is the number of features and Ldist is the 
distance approach proposed in this paper as shown in equation (11). 

[ ]

1

1

2

1

21 1 1+
( 1)

2
i j

N k

dist c i s
N i

k k

d i j
u u l

L u x λ
N K N N

λ u u
=

= =

=

= − −
−

= − −  

 


 (11) 

where uc is the centre of a sample in the same category as sample x, uj is the centre of a 
sample in a different category than sample x, λs and λd are centres of mass. 

Figure 3 Construction site monitoring and early warning system (see online version for colours) 
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4.2 Early warning of construction site safety risks based on PSO-SVM 
algorithm 

The SVM model needs to be set up with corresponding parameters, two of which are 
quite important for the final calculation, one is the penalty factor C, which is used to 
control the degree of penalisation on the samples, and the other is the kernel function σ, 
which represents the radial basis function width. These two parameters can have a direct 
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impact on the performance of SVM (Cervantes et al., 2020). Firstly, the population is 
randomly initialised, and then the particles representing the parameter vectors are 
selected as the computational parameters in the SVM, and the corresponding iterative 
training is done, and finally the parameter values obtained in each iteration are recorded, 
and when the iteration meets the requirements, the particles obtained are the optimal 
parameters trained by the SVM, so as to increase the accuracy of the early warning. 

1 Initialise the parameters of the particle swarm. Set d1 and d2 as the acceleration 
factors, and set the inertia weight w and the maximum number of evolution iterations 
M. The position of the ith particle in the mth iteration is denoted as ( , ),m m m

i i ip C σ=  
and the rate of evolution of the ith particle in the mth iteration is denoted as .m

iv  The 
orientation of any s particles is denoted as 0 0 0

1 2, , ..., ,sp p p  so as to form the initial 
particle group p0; the random initial velocity of particles is denoted as 0 0 0

1 2, , ..., ,sv v v  
where the position of each particle is denoted as 1 2( , , ..., ),m m m m

i ini ip p p p=  and the 
optimal solution for each particle is denoted as .m

idp  

2 Calculation of population fitness. The feature vector after feature selection is  
trained on the SVM, and then the trained output value ˆiy  is obtained, and the 
corresponding curvature mode difference is yi. Its fitness function is defined, as 
shown in equation (12). In the mth iteration, the maximum fitness function is denoted 
as max ,g ′′  as shown in equation (13). 

( ) ( )( )
1

2
ˆ

N
m m m

i ii id id
i

g p y p y
=

= −  (12) 

( )max max m m
i idi l

g g p
∈

′′ =  (13) 

3 Judge whether the iteration can be terminated. Compare the maximum value max
mg  of 

the fitness function calculated for the m – 1th time with the maximum fitness value 
1

max
mg −  of the m-1st time, and judge, if 1

max max ,m mg g −=  the calculation is terminated. 
Otherwise, proceed to step (4). 

4 The velocity and position of the particles are updated as shown in equation (14) and 
equation (15), respectively. Through the iterative operation of the particle swarm, the 
global optimal positions pmax(Cmax, σmax) and (Cmax, σmax) of the particles can be 
obtained as the SVM parameters optimised by the PSO, and the output results are 
assigned to the SVM to complete the classification and prediction of the samples. 

+1
1 1 2 2+ +m m m m m m

i i i iid idv ω v d η p p d η p p= ⋅ ⋅ ⋅ − ⋅ ⋅ −        (14) 

+1 +1+m m m
i i ip p v=  (15) 

where η1 and η2 represent random functions with values from 0 to 1. 

5 Set the optimal construction risk feature samples as d-dimensional vectors, the 
number of samples is N, the category to which they belong is {xi, yi}, xi is the ith risk 
feature vector, yi is the class marker, and Rd is the d-dimensional feature space. Set T 



   

 

   

   
 

   

   

 

   

    IoT-based construction site safety management 65    
 

    
 
 

   

   
 

   

   

 

   

       
 

as the training data set in the feature space, then the classification hyperplane of the 
feature space is ω · X + b = 0. After normalising the data, the constraints on the 
linearly separable key risk feature samples are as follows. 

( )[ ]+ 0i iy ω x b⋅   (16) 

The minimum categorisation surface is obtained when the above constraints are met and 
the weights are 1/2(||w||2) at the same time. The Lagrange multiplier method is used to 
transform the optimal classification surface into the dual problem ε(α), as shown below, 
where i is the Lagrange multiplier, and αj, xj, and yj are the mapping results of i, xi, and yi, 
respectively. Subject to the inequality constraints, there is a unique solution to  
equation (17). Based on the above equation, the optimal classification function for 
construction key risk features is shown in equation (18), where b* is the optimal 
classification threshold. 

( )
1 1

1

1( ) min
2

1 0
2

0

N N

i i i j i j i j
i j

N

i i
i

i

ε y y y x x

y

= =

=


⋅




= −

=




 >

 



α α α α

α

α

 (17) 

( ) *

1

( ) , +
N

i i i j
i

f x sign y x x X b
=
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5 Experimental results and analyses 

To verify the ability of this paper’s system ours to remotely monitor the key risks of 
building construction, it is applied to a building construction project. The project is 
undertaken by a construction engineering company, the project content for the 
construction of commercial housing, the project planning area of 479,306 m2, a total 
construction area of 253,765 m2. The sensors used in the monitoring process include 
temperature sensors, humidity sensors, and pressure sensors, and the penalty factor of 
SVM is 1, and the approximation threshold is 0.8. The daily time-course curves of the 
beam-end displacements and temperatures at the three monitoring points of the 
construction building are shown in Figure 4. The trend of the displacement response of 
the beam end of the building is mainly due to the temperature change, and there is an 
obvious negative correlation between the total trend of the beam end displacement and 
the total trend of the temperature fluctuation, and there is a certain offset at the extreme 
value of the two, and it can be seen that there is a certain time lag in the response of the 
beam end displacement of the building. 

From the results of the above analysis, it can be seen that the building beam end 
displacement and temperature have extremely similar trends and patterns of change, 
compared with the figure can be known that the two show a negative correlation between 
the relationships. In order to further determine the correlation between the two and the 
degree of correlation, using the observation of the distribution of the building beam end 
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displacement and temperature, as shown in Figure 5. The correlation coefficient of the 
building beam end displacement and temperature in the range of 0.930~0.991, are greater 
than 0.80, and the slope is less than 0, which shows that the expansion joints of the 
building are in a normal state of work, full of its deformation coordination ability, and 
will not produce construction accidents. 

Figure 4 The daily time-course curves of the beam-end displacements and temperatures  
(see online version for colours) 
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Figure 5 The distribution of the building beam end displacement and temperature (see online 
version for colours) 
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For the goal of verifying the transmission capability of this paper’s method for the 
collected monitoring data, PBDT (Liu and Tian, 2019) and CSVM (Yang, 2019) are 
selected as the comparison method, and Eclipse IoT-Testware open-source test tool is 
used to conduct comprehensive delay test, and the test results are shown in Figure 6. As 
the length of transmitted monitoring data increases, the combined latency of the three 
methods also increases. When the length of transmitted monitoring data increases to  
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180 kb, the combined latency of IoT is 0.16, which is lower than that of PBDT and 
CSVM, indicating that ours is more time-efficient in monitoring the key risks of building 
construction. 

Figure 6 Comprehensive delay of various system (see online version for colours) 
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The accuracy, mean square error (MSE), mean absolute error (MAE), and running time 
comparisons of PBDT, CSVM, and Ours methods are shown in Table 1. PBDT was the 
worst performer across all metrics, with prediction accuracy and run time of 80.56% and 
207 s, respectively. This is because although PBDT uses PCA to remove feature 
redundancy, the DT keeps splitting nodes until all training samples are ‘perfectly 
classified’, resulting in an overly complex tree structure that captures noise rather than 
regularities. The construction safety risk warning accuracy obtained by ours method 
using PSO optimised SVM is 91.31% and the running time is 35 s, while comparatively, 
the prediction accuracy of CSVM using traditional SVM for construction risk warning 
decreases to 87.39%, and the running time extends to 138 s, it is obvious that Ours has 
higher accuracy compared to CSVM. In addition the MSE and MAE of ours are smaller 
than CSVM, indicating that ours has better generalisation ability as well as robustness. 
Table 1 Comparison of prediction performance of different methods 

Method Accuracy/% MSE MAE Running time/s 
PBDT 80.56 0.181 2.439 207 
CSVM 87.39 0.085 1.851 138 
Ours 91.31 0.013 1.032 35 

6 Conclusions 

As a high-risk field, the building construction industry is characterised by frequent safety 
accidents, which seriously threaten the safety of people’s lives and property. In order to 
avoid construction safety accidents and realise real-time construction site safety 
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management. This paper proposes an IoT-based construction site monitoring and warning 
system. Firstly, based on IoT, we build the overall architecture of IoT real-time 
monitoring, which includes sensing layer, network layer, platform layer and application 
layer, and determine the construction risk monitoring index system according to the 
accident causation theory. Construction site risk characteristics are extracted from three 
aspects: real-time sensed data traffic, IoT protocol connections, and the difference 
between IoT uplink traffic and downlink traffic. The IReliefF algorithm is then used to 
select important construction risk features and reduce the impact of anomalous samples 
by weighting the contribution of neighbours by distance when calculating feature 
weights. Finally, the important features are taken as input to the PSO-SVM model, the 
population is randomly initialised, and the particles representing the parameter vector are 
selected as the calculation parameters in the SVM, and corresponding iterative training is 
performed on them. Finally, the parameter values obtained in each iteration are recorded. 
The obtained particles represent the optimal parameters trained by SVM to obtain 
accurate prediction results. The application simulation results in a building construction 
project show that the proposed system has low data transmission delay and high 
prediction accuracy, which provides a practical technical reference for the construction 
industry to create a safer construction environment. 
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