

International Journal of Information and Communication
Technology

ISSN online: 1741-8070 - ISSN print: 1466-6642
https://www.inderscience.com/ijict

Recurrent neural network optimisation based on linearly
constrained numerical methods

Wenmin Song, Wei Han, Ping Gu, Min Li

DOI: 10.1504/IJICT.2025.10071630

Article History:
Received: 15 April 2025
Last revised: 29 April 2025
Accepted: 29 April 2025
Published online: 20 June 2025

Powered by TCPDF (www.tcpdf.org)

Copyright © 2025 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijict
https://dx.doi.org/10.1504/IJICT.2025.10071630
http://www.tcpdf.org

 70 Int. J. Information and Communication Technology, Vol. 26, No. 21, 2025

 Copyright © The Author(s) 2025. Published by Inderscience Publishers Ltd. This is an Open Access Article
distributed under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

Recurrent neural network optimisation based on
linearly constrained numerical methods

Wenmin Song*, Wei Han, Ping Gu and Min Li
Department of Artificial Intelligence,
Laiwu Vocational and Technical College,
Laiwu 271199, China
Email: kelemi@163.com
Email: 21076018@qq.com
Email: guping0127@163.com
Email: xslxlm19870426@126.com
*Corresponding author

Abstract: Time-series data analysis has grown even more crucial in many
sectors as information technology and big data expand rapidly. This work
proposes a recurrent neural network (RNN) optimisation model based on the
linear constraint numerical method, namely, LSTM-LP optimiser, which
combines the powerful time-series modelling capability of long short-term
memory (LSTM) and the optimisation characteristics of linear programming
(LP) optimisation features, and so effectively improves the training efficiency
and stability of the model in resource-constrained environments. This helps to
efficiently capture the temporal dependencies in time-series data and solve the
noise and missing problems in the data. On two datasets, experimental results
show the LSTM-LP optimiser beats the conventional model in several
performance criteria. Future studies will investigate more effective optimisation
techniques, increase the generalisation capacity of the model, and simplify the
hyperparameter tweaking process to thus further promote the model in practical
uses.

Keywords: time-series data analysis; recurrent neural network; RNN; linear
programming; LP; long short-term memory; LSTM; resource-constrained
optimisation.

Reference to this paper should be made as follows: Song, W., Han, W., Gu, P.
and Li, M. (2025) ‘Recurrent neural network optimisation based on linearly
constrained numerical methods’, Int. J. Information and Communication
Technology, Vol. 26, No. 21, pp.70–86.

Biographical notes: Wenmin Song received her Master’s degree from
Yanshan University in 2008. She is currently an Associate Professor at the
Laiwu Vocational and Technical College. Her research interests include
artificial intelligence, big data and computer networks.

Wei Han received her Master’s degree from Qingdao University in 2009. She is
currently a Lecturer at the Laiwu Vocational and Technical College. Her
research interests include artificial intelligence and information security.

Ping Gu received her Master’s degree at Tianjin University of Technology in
2014. She is currently a Lecturer at the Laiwu Vocational and Technical
College. Her research interests include artificial intelligence and cloud
computing.

 RNN optimisation based on linearly constrained numerical methods 71

Min Li received her Master’s degree from Inner Mongolia University of
Technology in 2013. She is currently a Teaching Assistant at the Laiwu
Vocational and Technical College. Her research interests include artificial
intelligence and big data.

1 Introduction

The fast growth of information technology and big data has resulted in a lot of
time-series data accumulated in many sectors (Wen et al., 2020). Time-series data are
widespread and indispensable in many sectors, from the prediction of stock market
swings in the financial market to weather forecasting, energy consumption management,
traffic flow analysis and other fields (Bhogade and Nithya, 2024). Time-series data shows
the dynamic properties of objects over time, therefore how to extract useful information
from these data cannot only better comprehend the evolutionary principles of the system,
but also enhance resource optimisation and risk management and help decision making.

Analysing time-series data presents difficulties mostly related to its intricate
time-dependent interactions. First of all, time-series data typically have long-term
dependencies – that is, the current state has a complicated relationship with the states at
several times in the past that cannot be properly managed by conventional machine
learning techniques. Second, in time-series data, noise, missing values, and external
disruptions often complicate data processing. Consequently, the main challenge in
time-series data analysis is now how effectively to capture the temporal dependencies in
time-series data and eliminate the noise and missing issues in the data.

Deep learning technology has evolved RNN into one of the primary models for
time-series data processing (Han et al., 2019). By using the hidden state of the past
instant as the input of the current moment, RNN can effectively grasp long-term
dependencies in time-series data. But when processing extended sequences, typical RNN
suffers from the issue of gradient vanishing or gradient explosion, therefore restricting
their performance over large times spans. LSTM originated to help us solve these
challenges. By including forgetting gate, input gate, and output gate, LSTM efficiently
solves the gradient vanishing problem and can retain the critical information over a long
time span (Landi et al., 2021). Wide-ranging applications for LSTM abound in natural
language processing, speech recognition, machine translation, etc.; it has produced
amazing results. LSTM models still suffer with high computational complexity and high
resource consumption in the training process, as well as insufficient capacity to manage
constraints in the model.

Apart from deep learning techniques, conventional machine learning systems find
extensive use in time-series data analysis. Common classic techniques for classification
and regression of time-series data are support vector machines (SVM) and decision trees
(Fawaz et al., 2019). Suitable for smaller linear issues, support vector regression (SVR)
finds an ideal hyperplane to match time-series data (Luo et al., 2019). Conversely,
decision trees fit for handling noisy or high number of missing values since they partition
the feature space recursively. Nevertheless, when handling long time dependencies and
complicated constraints, the performance of these conventional methods is more
constrained; so, it is usually difficult to handle the issues of big-scale time-series data.

 72 W. Song et al.

More and more study has started to try to mix optimisation techniques with deep
learning models in order to offset the drawbacks of deep learning and conventional
machine learning algorithms when dealing with time-series data (Ahmed et al., 2023). By
means of linear constraints to guarantee the computational efficiency of the model and to
guarantee its performance under certain constraints, LP, as a traditional optimisation
technique, is able to efficiently restrict the model training process. Linear programming
can assist the model to better satisfy the needs in actual applications while handling
time-series data analysis problems with specific constraints.

Aiming to tackle the performance bottleneck of current approaches when confronted
with challenging restrictions, this work suggests the LSTM-LP optimiser model, which
combines the time-series modelling capabilities of LSTM with the optimisation features
of LP.

This paper’s innovations consist in the following:

1 An RNN model (LSTM-LP optimiser) incorporating linear constrained optimisation
is proposed: combining the time-series modelling capacity of LSTM with the
optimisation characteristics of LP, this combination not only effectively captures the
long-term dependencies in the time-series data, but also guarantees the
computational efficiency and the rationality of resource usage through linear
constraint optimisation during model training, so solving the problem of the limited
performance of the current deep learning models under complex constraints.

2 A linear constraint optimisation mechanism is introduced in model training: this
mechanism not only guarantees the stability and high efficiency of model training
by dynamically adjusting the hidden layer state of LSTM to meet the preset
resource constraints, but also guarantees the adaptability of the model under
resource-constrained environments by means of new solution for resource
management in time-series data analysis.

3 The performance advantages of the model on different datasets are verified through
experiments: LSTM-LP optimiser beats conventional and alternative deep learning
models in several performance metrics, particularly in managing complicated
constraints, which offers a better model choice for time-series prediction activities,
experimental results on power consumption and traffic flow datasets reveal.

2 Relevant technologies

2.1 Linearly constrained numerical methods

Many practical optimisation problems arise in situations with linear constraints (Necoara
et al., 2019). Usually, a linearly constrained optimisation problem can be stated as
follows:

min () subject ,to ≤ =
x

Ax bx Cxf d (1)

Usually a scalar function on the decision variable x, f(x) is the objective function; A and C
are the coefficient matrices establishing the equality constraints and the inequality

 RNN optimisation based on linearly constrained numerical methods 73

constraints respectively, and b and d are the associated constraint vectors. See Figure 1
for an optimal selection of x such that the objective function f(x) takes the smallest value
while meeting all linear constraints.

Figure 1 Linear constraint algorithm (see online version for colours)

f(x, y) = d1

f(x, y) = d2

f(x, y) = d3

g(x, y) = c

Commonly used techniques for solving these types of optimisation issues are simplex
method, interior point method and Lagrange multiplier approach (Nie et al., 2021). The
fundamental concept of the Lagrange multiplier method, a basic approach for handling
optimisation issues with constraints, is to include constraints into the objective function,
therefore converting the initial constrained optimisation problem into an unconstrained
optimisation problem. We create a Lagrangian function to accomplish this. Particularly
for the aforementioned optimisation issue, Lagrange multipliers λ and μ can be
introduced, respectively corresponding to the equality and inequality requirements
respectively, and the Lagrange functions can be built:

() (), , () ()= + − + −L x λ μ f x λ Ax b μ Cx d (2)

where λ and μ help to modify the goal function so that the constraints are satisfied.
Solving the gradient of the Lagrangian function and hence bringing it equal to zero will
provide the ideal solution (Jin et al., 2022). More especially, three equations are needed
to be solved specifically:

, ,() 0∇ =x L x λ μ (3)

, ,() 0∇ =λL x λ μ (4)

, ,() 0∇ =μL x λ μ (5)

These equations satisfy the Karush-Kuhn-Tucker (KKT) requirements, therefore defining
the optimality conditions for the optimisation problem (Prado et al., 2023). Regarding
inequality restrictions, the KKT conditions demand:

, () 0,≤ − = ∀i iAx b λ Ax b i (6)

 74 W. Song et al.

where complementary relaxation calls for the multipliers to be proportional to the
residuals of the constraints and the Lagrange multipliers to be non-zero only if the
inequality constraints are strictly activated; else, the corresponding Lagrange multipliers
are zero. Regarding the inequality restrictions, the KKT condition demands that:

=Cx d (7)

Solving this system of equations can help one to find the best solution for the
optimisation issue.

Along with the Lagrange multiplier technique, LP is a widely used numerical solution
approach in linear restricted optimisation problems (Liu et al., 2023). A linear
programming problem has its standard form as:

min subject t ,o ≤ =
x

Axx bc Cx d (8)

where A and x are respectively the matrix of coefficients of the restrictions and the choice
variables and c is the vector of coefficients of the objective function. Solving linear
programming problems with the straightforward method is a traditional and extensively
applied classical method. The basic concept of the simplex technique is to iterate along
the constraints’ borders, and each step chooses a new viable solution in the
neighbourhood of the present feasible solution until the optimal solution is obtained.

The straightforward approach specifically iterates over the following update formula:

1+ = +k k k kx x pα (9)

where αk denotes the step size, therefore indicating the distance covered in the direction
pk. With each update, the simplex technique advances towards the optimal solution until
it is discovered.

The interior point approach is yet another useful approach for linearly constrained
optimisation issues. By optimising inside the constraint space, the interior point technique
avoids the simplex method’s search procedure across its boundary. Large-scale linear
programming problems are frequently solved using the interior point method, particularly
in high-dimensional environments where it displays superior efficiency. One can express
the iterative phases of the interior point approach by the following equation:

() 1
1

−
+ = −k k k k kx x H gα (10)

where gk is the objective function’s gradient and Hk is the Hessian matrix of the current
point. Particularly in cases of multiple restrictions, the interior point technique has the
benefit in efficiently solving complicated and high-dimensional optimisation problems.

Usually, a convergence criteria is used to find whether the optimisation method has
converged. One often used criterion is that the process of optimising is said to have
converged when the gradient’s norm is less than some preset value ε:

()∇ ≤kf x ε (11)

where the threshold ε is rather modest. One can ensure that a near-optimal solution to the
optimisation problem has been discovered by iterating until the gradient change is quite
minimal.

By use of the Lagrange multiplier approach, the simplex method, and the internal
point method, linearly limited numerical methods offer efficient tools for addressing

 RNN optimisation based on linearly constrained numerical methods 75

optimisation problems with linear constraints. Particularly in the domains of engineering
design and neural network optimisation, these approaches have been extensively applied
in pragmatic uses.

2.2 Recurrent neural network

Best defined by its capacity to transport information between time steps via cyclic
connections, RNN is a neural network design for handling sequence data (Xiangxue
et al., 2019). This is thus extensively applied in tasks including time series prediction and
natural language processing since RNN can capture temporal connections in sequences.

Standard RNN updates the hidden layer state ht recursively at every time step.
Particularly, the hidden layer state at the current moment is computed using the hidden
layer state ht–1 at the past moment concurrently with the current input xt:

()1tanh −= + +t h t h t hh W x U h b (12)

where Wh and Uh are the weight matrices of the network; bh is the bias term; tanh(·) is the
activation function, hence generating nonlinearity and guaranteeing that the model can
learn complicated patterns. This update lets the network create fresh hidden layer states
depending on the inputs and recall past data.

Usually computed from the hidden layer state ht at the current instant in RNN, the
output yt follows this formula:

= +t y t yy W h b (13)

Long sequences cause ordinary RNN to suffer from gradient vanishing or gradient
explosion, though. This is thus difficult for the network to learn long-term dependencies
since during backpropagation the gradient becomes either very tiny or very large over
several chained law passes (Zucchet et al., 2023).

Researchers have suggested enhanced RNN designs-that is, LSTM networks and
gated recurrent unit (GRU) networks-to address this challenge (Khan et al., 2022). LSTM
introduces several gates to manage the storage and information updating, therefore
reducing the gradient vanishing issue. LSTM has a state update formula like this:

()1−= + +t i t i t ii σ W x U h b (14)

()1−= + +t f t f t ff σ W x U h b (15)

()1 1tanh− −= + + + t t t t c t c t cc f c i W x U h b (16)

()tanh= t t th o c (17)

where ct is the cell state; it is the input gate; ft is the forgetting gate; ot is the output gate.
These gates assist the network to keep significant information over time by regulating the
input, forgetting and output of knowledge, therefore ignoring pointless stuff and helping
to regulate the network.

Just two gates make GRU a condensed form of LSTM. Its state updating formula
follows:

()1−= + +t z t z t zz σ W x U h b (18)

 76 W. Song et al.

()1−= + +t r t r t rr σ W x U h b (19)

()()1tanh −= + + t h t h t t hh W x U r h b (20)

() 11 −= − + t t t t th z h z h (21)

Though the performance is almost that of LSTM, GRU is more efficient in computation
and appropriate in cases when computational resources are restricted (Fu and Wang,
2022). These two enhanced RNN designs help neural networks to avoid gradient issues
and capture interdependence in extended sequences.

Especially in application domains like natural language processing, speech
recognition and time series prediction, RNN, LSTM, and GRU excel in many sequence
modelling tasks and have grown to be crucial tools for processing sequence data in deep
learning.

3 Recurrent neural network optimisation model based on linearly
constrained numerical methods

Aiming to improve the performance and computational efficiency of the model when
dealing with complex time-series data by essentially merging time-series modelling with
constrained optimisation, in this work we present the LSTM-LP optimiser model, which
combines LSTM and LP optimisation approaches. The model is not only able to
efficiently capture long-term dependencies in the time-series data during the training
process but also able to optimise when faced with computational and resource
constraints, so ensuring efficient and stable model training, see Figure 2 by introducing a
linear constraint numerical method.

Figure 2 Structure of LSTM-LP optimiser model (see online version for colours)

Input layer
 (1 Batch)

Implicit
 layer 1

Implicit
 layer 2

Output layer

Timeline T

T=1 T=2 T=3

Hidden layer
state ht

Forget gate
Ct

Input gate

Max(min)
Decision function

Objective function

The model comprises of five main modules: the LSTM modelling module for extracting
the dependency information of the time-series data, the LP optimisation module for

 RNN optimisation based on linearly constrained numerical methods 77

optimising the parameter updates of the LSTM by linear constraints, the training module
for combining the LSTM and LP for co-training, and the output module for generating
the final prediction results and post-processing. By means of the synergy among these
five modules, the model is able to efficiently manage the limited resources while
preserving the accuracy and so attaining the aim of optimal training.

3.1 Input module

Data preparation and processing for LSTM-LP optimiser falls to this module. Usually
mean normalised during the time series data preparation, the data is so that every feature
has a mean of 0 and a standard deviation of 1. The formulae are as follows:

ˆ −= t x
t

x

x μx
σ

 (22)

where ˆtx is the normalised data; xt is the original input data; μx and σx are respectively the
mean and standard deviation of the dataset.

The input module also must slide windows on the time-series data to divide the
continuous time-series data into training samples fit for LSTM input (Nizam et al., 2022).
One sets a window length w, and the sliding window can be produced using the following
equation:

{ }: 1 1, , ,+ + −= t w t t t wX x x x (23)

where Xt:w represents the window data spanning length w beginning from time step t. By
use of this sliding window technique, the model may forecast the current time step’s
output depending on historical time step input.

3.2 LSTM modelling module

Extensive timing information from the timing data is extracted in this module to generate
accurate expected outputs for the next optimisation step. By means of its special gating
structure, which addresses gradient vanishing in conventional RNNs, LSTM is able to
efficiently capture long-term dependencies (Zucchet and Orvieto, 2024). The LSTM
modelling module not only concentrates on the relationships between time steps but also
takes into account the limitations on the outputs to be altered at each instant to achieve
more precise optimisation in order to combine LSTM with linearly limited numerical
approaches.

LSTM’s computational mechanism consists on a sequence of gating operations. First,
computed as the forgetting gate controls how much of the past memories should be
thrown away in the present:

[]()1,−= ⋅ +t f t t ff σ W h x b (24)

The LSTM then updates the memory cells depending on input gate equation: control of
the forgetting gate.

1−= ⋅ + ⋅ t t t t tC f C i C (25)

 78 W. Song et al.

In the LSTM-LP optimiser model, the output of the LSTM module must be merged with
the LP optimiser module to guarantee that the model satisfies particular resource
limitations during training. Particularly, this tuning process is accomplished by the
following equation:

()()tanh ,= ⋅ ⋅ ≤t t t th LP o C A h b (26)

To guarantee that the training process of the model does not surpass the resource
constraint, LP(·) indicates the constraint adjustment of the current hidden layer state by
the linear programming module, A · ht ≤ b is the linear constraint connected with the
resource constraint, and A and b are the coefficient matrix and the constant vector of the
linear constraint, respectively.

3.3 LP optimisation module

This module ensures that the LSTM model not only learns the patterns of the temporal
data effectively during the training process but also follows certain computational and
resource constraints by means of linear programming methods, so combining the outputs
of the LSTM model with predefined resource constraints and optimising the model. This
module’s major objective is to solve the linear programming problem so as to satisfy the
specified constraints and increase the efficiency and stability of the training process, so
adjusting the hidden layer states of the LSTM model.

Combining the hidden layer states of the LSTM model with the resource constraints
produces an optimisation issue initially in the LP optimisation module. Usually linear, the
problem consists in the hidden layer state ht and a set of constraints. LP optimisation
specifically aims to satisfy the linear constraints and maximise or reduce the hidden layer
state ht in respect to an objective function (Samanipour and Poonawala, 2023). One may
represent the optimisation process as follows:

maximise/minimise , subject to ⋅ ≤T
t tc h A h b (27)

where ht is the hidden layer state output by the LSTM module; c is the coefficient vector
of the objective function; A is the coefficient matrix of the linear constraints; b is the
constant vector of the constraints.

The LP optimisation module dynamically changes the hidden layer state ht at every
moment t and guarantees that the model generates valid outputs considering the
constraints, therefore helping to better manage the linear constraints in the optimisation
process. One can engage in this adjustment process by adding a fresh constraint
formulation:

⋅ + ≤tA h d b (28)

where d is a minor adjustment vector connected with the state adjustment of the hidden
layer, therefore reflecting the possible changes during model optimisation. This new
restriction guarantees that the model may satisfy resource restrictions by means of
effective computations and state changes.

This method helps the LP optimisation module to efficiently control computational
resources during the optimisation process and raise the general stability and efficiency of
the model.

 RNN optimisation based on linearly constrained numerical methods 79

3.4 Training module

Handling the flow of input data, loss computation, model parameter optimisation, and
resource constraint management is the responsibility of the training module of the
LSTM-LP optimiser model. By means of backpropagation and linear programming, the
training procedure aims to raise the performance and computational efficiency of the
model on challenging time-series data.

First getting input from the LSTM modelling module, the training module delivers
prediction results by updating the hidden layer state using LSTM. The loss function is
computed depending on the discrepancy between the actual value and the projected
result. Apart from the conventional prediction error, the loss function incorporates the
constraint loss produced during the LP optimisation process, therefore aggregating into
the total loss function. There is a formula for total loss as follows:

= + ⋅total prediction LPL L λ L (29)

where Lprediction is the prediction error; LLP is the constraint loss; λ is a hyperparameter
meant to balance the prediction error and constraint loss.

The LP optimisation module changes its value at every cycle of model training based
on the hidden layer states output from the LSTM such that the states satisfy the linear
constraints. The following equation captures this process of adjustment:

()tanh= ⋅ +t th P C Q (30)

where tanh(Ct) is the memory cell following the activation function; P and Q are the
weight matrix of the linear constraints; ht is the hidden layer state of the LSTM. Thus, the
training module guarantees that the linear requirements are satisfied at every time step in
addition to making sure the LSTM produces data in line.

3.5 Output module

First getting the hidden layer state ht at the present instant from the LSTM module, the
output module processes it to produce the final model output. The hidden layer state is
further changed following linear programming optimisation throughout processing such
that the result satisfies the established requirements. Specifically, the output module must
carry the last computation to derive the prediction result yt depending on the current
hidden layer state, so it may be stated as:

= ⋅ +t out t outy W h b (31)

where Wout is the output layer’s weight matrix; bout is the bias term. The raw model output
produced by this method is subsequently handled in more detail by other stages.

Together with LP optimisation, the output module changes the output value yt to
satisfy the resource restrictions therefore guaranteeing that the model output fulfils the
established requirements (Cao et al., 2020). One achieves this change process by means
of the following equation:

(),= ⋅ ⋅ ≤t out t ty LP W h A y b (32)

 80 W. Song et al.

where yt is the optimised output; A is the matrix of coefficients of the linear constraints; b
is the constant vector of constraints. By means of LP optimisation, the output module
guarantees not only conformity with the computational and resource limitations but also
with the data patterns.

In the end, the output module uses the produced prediction results yt as the last output
of the model, which finds use in several contexts like time series forecasting, decision
support, etc. The design of the output module guarantees, however, that the model
preserves excellent computational efficiency and accuracy even under limited resources.

4 Experimental results and analyses

4.1 Datasets

Two genuine and extensively used datasets were used for this work in order to assess the
LSTM-LP optimiser model performance.

The first dataset is the Individual Household Power Consumption Dataset from the
UCI Machine Learning Repository, which records, minute-by-minute data covering
information on the power consumption of appliances utilised, during a four-year period.
Derived from the California Traffic Surveillance System, the second dataset is the
Performance Measurement System (PeMS) Traffic Flow Dataset, which records
information including traffic flow and speed by means of multiple locations and multiple
motorways recorded at five-minute intervals.

Table 1 shows specifics about the dataset.
Table 1 Summary of datasets for experimentation

Dataset name Electricity consumption dataset Traffic flow dataset
Data source UCI Machine Learning Repository Performance Measurement System (PeMS)
Data content Contains electricity consumption

data, recorded every minute over
four years

Traffic flow data from multiple locations,
recorded every five minutes across multiple

highways
Data type Power consumption (in watts) Traffic flow, vehicle speed, lane occupancy
Task type Load forecasting, energy demand

prediction
Traffic flow prediction, intelligent traffic

system optimisation
Data size 207,525 instances Millions of records, covering data from

multiple cities and highways

4.2 Impact of iterative optimisation on performance in time series prediction

This experiment aims to assess, in particular how the LSTM-LP optimiser model
performs predictions on two distinct time-series datasets, namely how the model
performance varies with increasing iteration count. First the experiments will be carried
out on the PeMS traffic flow dataset and then the electricity usage dataset. We first load
the PeMS traffic flow dataset and the dataset on individual household electricity use. To
create a format fit for model input, the data were preprocessed including cleaning,
normalisation and sliding window processing. We then selected the LSTM-LP optimiser
model and defined starting hyperparameters including learning rate, hidden layer size,

 RNN optimisation based on linearly constrained numerical methods 81

etc. The other hyperparameters were maintained constant throughout the tests so that one
may concentrate on the impact of the iteration count.

Figure 3 Results of model performance variation on power consumption dataset (see online
version for colours)

Figure 4 Results of model performance variation on traffic flow dataset (see online version
for colours)

We trained the LSTM-LP optimiser model on each of the two datasets in the model
training and assessment phase using a number of iterations beginning from 50 and rising

 82 W. Song et al.

by 50 every time until 500. At every iteration, the models were assessed; a performance
indicator was mean square error (MSE) (Yıldız and Karakuş, 2020). At every iteration,
note the MSE value; then, examine the model performance trend. Determine the number
of repetitions at which the MSE value starts to stabilise or the rate of decrease slows
down noticeably, therefore suggesting a near convergence of the model.

Figure 3 and 4 display, for varying numbers of iterations, the LSTM-LP optimiser
model’s performance on both datasets.

The experimental results indicate that the MSE value of the model progressively
declines with increasing iteration on the power consumption dataset, therefore showing
improving model prediction performance. Particularly from 50 to 500 iterations, the MSE
value drops from 0.072 to 0.054, indicating ongoing model performance improvement.
From 350 iterations on, the MSE value changes very little and stays practically constant,
implying that the model may have reached or is close to its optimal performance and that
additional iteration has limited effect in the MSE. The MSE of the model similarly drops
on the PeMS traffic flow dataset as number of iterations increases. The change in the
MSE value levels off as the number of iterations hits 350, showing that the model
performance is near to ideal, same like the power consumption dataset.

These results reveal that the LSTM-LP optimiser model shows good convergence on
both the electricity consumption dataset and the PeMS traffic flow dataset; hence, the
suitable number of iterations may balance the training duration and prediction
performance of the model to prevent overfitting. Practically, the best number of iterations
can be found depending on model performance on the validation set to provide good
generalisation capacity without overconsuming computational resources. These results
guide applications in related time-series data analysis projects and offer direction for
additional optimisation of the LSTM-LP optimiser model.

4.3 Performance comparison of different timing prediction models

This experiment intends to evaluate on traffic flow and electricity consumption datasets
the performance of several time-series prediction methods. Six time-series prediction
models were chosen; LSTM, GRU, transformer, LSTM-LP optimiser, ARIMA and
prophet using MSE, mean absolute error (MAE) and coefficient of determination (R2) as
evaluation metrics. Each model then had reasonable hyperparameters selected for it.
Their MSE, MAE, and R2 values were noted following separate training of these models
on each dataset.

Figure 5 and 6 exhibit the experimental outcomes.
With its MSE of 0.05, MAE of 0.15, and R2 of 0.92, which indicates a reduced error

and better goodness of fit, the LSTM-LP optimiser model performs the best on the power
consumption dataset from the experimental findings on all the evaluation indexes.
Regarding the traffic flow dataset, the LSTM-LP optimiser model performs best in terms
of R2, with a R2 of 0.89; the GRU model performs best in terms of MSE and MAE, with
an MSE of 0.10 and MAE of 0.25. These findings show that the performances of several
models vary significantly on various datasets, hence the model selection should be
optimised in line with the features of the dataset.

 RNN optimisation based on linearly constrained numerical methods 83

Figure 5 Comparison of the performance of each time-series prediction model on the power
consumption dataset (see online version for colours)

Figure 6 Comparison of the performance of each time-series prediction model on the traffic flow
dataset (see online version for colours)

Overall, the LSTM-LP optimiser model has the best prediction performance on the
electricity consumption dataset whereas the GRU model is more beneficial on the traffic
flow dataset. These results offer direction for model selection in comparable time-series
data analysis projects and a significant reference for the choice and optimisation of
time-series prediction models. By changing the hyperparameters of the models or
choosing models better fit for the features of the data, one can considerably raise the
prediction performance of the models.

 84 W. Song et al.

5 Conclusions

This work proposes to handle the challenge of handling complicated constraints in time
series data analysis using an RNN optimisation model, LSTM-LP optimiser, grounded on
the linear constrained numerical approach. On traffic flow and power consumption
datasets, the model shows good performance by integrating the optimisation
characteristics of LP with the time-series modelling capacity of LSTM. On the power
consumption dataset, experimental results reveal that the LSTM-LP optimiser satisfies
resource limitations and captures long-term dependencies, therefore attaining the lowest
MSE, MAE and greatest R2. Although GRU performs somewhat better on several
measures on the traffic flow dataset, LSTM-LP optimiser still scores the best on R2,
therefore proving even more relevance under challenging limitations. Furthermore, the
performance of the model gradually improves and stabilises after a given number of
iterations as the number of iterations increases, so indicating that the model can
efficiently converge under resource constraints and so offers a significant reference for
the optimisation of computational resources in practical applications.

Still, the LSTM-LP optimiser model has certain constraints. First of all, the model is
rather complex, particularly following the launch of the linear programming optimisation
module; hence, the computational process gets more complicated and could result in
longer training times, which could cause issues in large-scale datasets or situations
requiring high real-time demand. Second, although the model performs well on both
datasets, its generalisation capacity still has to be more confirmed. For other kinds of
time-series data, such as medical or financial time series, the performance of the model
could be impacted by the features of the data. Furthermore, the application of the model
depends on domain knowledge and becomes more challenging since the environment of
linear constraints has to be modified to particular issues.

Future investigations could go in the following lines:

1 Explore more efficient optimisation algorithms to reduce the computational
complexity of the model: future studies should investigate more effective
optimisation algorithms, such integrating approximation optimisation approaches
(e.g., versions of stochastic gradient descent or approximate linear programming
algorithms) to minimise processing overheads while guaranteeing optimisation
accuracy.

2 Further research on the generalisation ability of the model: in order to fully evaluate
the relevance of the model in many spheres, future studies can do tests on more
varied kinds of information, including financial time series, medical, health, and
meteorological data. Simultaneously, the model structure and parameter values are
tuned for various data features, including changing the number of layers, the number
of hidden units or the requirements of linear constraints of the LSTM, to better fit
varied time series data.

3 Research on hyperparameter optimisation and automated tuning mechanisms for
model: to streamline the use of the model, future studies could investigate
hyperparameter optimisation strategies such automated hyperparameter tuning
systems based on Bayesian optimisation, evolutionary algorithms, or lattice searches.

 RNN optimisation based on linearly constrained numerical methods 85

Declarations

All authors declare that they have no conflicts of interest.

References
Ahmed, S.F., Alam, M.S.B., Hassan, M., Rozbu, M.R., Ishtiak, T., Rafa, N., Mofijur, M., Ali, A.S.

and Gandomi, A.H. (2023) ‘Deep learning modelling techniques: current progress,
applications, advantages, and challenges’, Artificial Intelligence Review, Vol. 56, No. 11,
pp.13521–13617.

Bhogade, V. and Nithya, B. (2024) ‘Time series forecasting using transformer neural network’,
International Journal of Computers and Applications, Vol. 46, No. 10, pp.880–888.

Cao, X., Tang, G., Guo, D., Li, Y. and Zhang, W. (2020) ‘Edge federation: towards an integrated
service provisioning model’, IEEE/ACM Transactions on Networking, Vol. 28, No. 3,
pp.1116–1129.

Fawaz, H.I., Forestier, G., Weber, J., Idoumghar, L. and Muller, P-A. (2019) ‘Deep learning for
time series classification: a review’, Data Mining and Knowledge Discovery, Vol. 33, No. 4,
pp.917–963.

Fu, Y. and Wang, X. (2022) ‘Traffic prediction-enabled energy-efficient dynamic computing
resource allocation in CRAN based on deep learning’, IEEE Open Journal of the
Communications Society, Vol. 3, pp.159–175.

Han, Z., Zhao, J., Leung, H., Ma, K.F. and Wang, W. (2019) ‘A review of deep learning models for
time series prediction’, IEEE Sensors Journal, Vol. 21, No. 6, pp.7833–7848.

Jin, L., Wei, L. and Li, S. (2022) ‘Gradient-based differential neural-solution to time-dependent
nonlinear optimization’, IEEE Transactions on Automatic Control, Vol. 68, No. 1,
pp.620–627.

Khan, I.A., Moustafa, N., Razzak, I., Tanveer, M., Pi, D., Pan, Y. and Ali, B.S. (2022)
‘XSRU-IoMT: explainable simple recurrent units for threat detection in internet of medical
things networks’, Future Generation Computer Systems, Vol. 127, pp.181–193.

Landi, F., Baraldi, L., Cornia, M. and Cucchiara, R. (2021) ‘Working memory connections for
LSTM’, Neural Networks, Vol. 144, pp.334–341.

Liu, X-W., Dai, Y-H., Huang, Y-K. and Sun, J. (2023) ‘A novel augmented Lagrangian method of
multipliers for optimization with general inequality constraints’, Mathematics of Computation,
Vol. 92, No. 341, pp.1301–1330.

Luo, X., Yuan, X., Zhu, S., Xu, Z., Meng, L. and Peng, J. (2019) ‘A hybrid support vector
regression framework for streamflow forecast’, Journal of Hydrology, Vol. 568, pp.184–193.

Necoara, I., Nesterov, Y. and Glineur, F. (2019) ‘Linear convergence of first order methods for
non-strongly convex optimization’, Mathematical Programming, Vol. 175, pp.69–107.

Nie, J., Wang, L., Ye, J.J. and Zhong, S. (2021) ‘A Lagrange multiplier expression method for
bilevel polynomial optimization’, SIAM Journal on Optimization, Vol. 31, No. 3,
pp.2368–2395.

Nizam, H., Zafar, S., Lv, Z., Wang, F. and Hu, X. (2022) ‘Real-time deep anomaly detection
framework for multivariate time-series data in industrial IoT’, IEEE Sensors Journal, Vol. 22,
No. 23, pp.22836–22849.

Prado, R.W., Santos, S.A. and Simões, L.E. (2023) ‘On the fulfillment of the complementary
approximate Karush-Kuhn-Tucker conditions and algorithmic applications’, Journal of
Optimization Theory and Applications, Vol. 197, No. 2, pp.705–736.

Samanipour, P. and Poonawala, H.A. (2023) ‘Stability analysis and controller synthesis using
single-hidden-layer ReLU neural networks’, IEEE Transactions on Automatic Control,
Vol. 69, No. 1, pp.202–213.

 86 W. Song et al.

Wen, J., Yang, J., Jiang, B., Song, H. and Wang, H. (2020) ‘Big data driven marine environment
information forecasting: a time series prediction network’, IEEE Transactions on Fuzzy
Systems, Vol. 29, No. 1, pp.4–18.

Xiangxue, W., Lunhui, X. and Kaixun, C. (2019) ‘Data-driven short-term forecasting for urban
road network traffic based on data processing and LSTM-RNN’, Arabian Journal for Science
and Engineering, Vol. 44, pp.3043–3060.

Yıldız, S. and Karakuş, C.B. (2020) ‘Estimation of irrigation water quality index with development
of an optimum model: a case study’, Environment, Development and Sustainability, Vol. 22,
pp.4771–4786.

Zucchet, N. and Orvieto, A. (2024) ‘Recurrent neural networks: vanishing and exploding gradients
are not the end of the story’, Advances in Neural Information Processing Systems, Vol. 37,
pp.139402–139443.

Zucchet, N., Meier, R., Schug, S., Mujika, A. and Sacramento, J. (2023) ‘Online learning of
long-range dependencies’, Advances in Neural Information Processing Systems, Vol. 36,
pp.10477–10493.

