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Abstract: Time-series data analysis has grown even more crucial in many 
sectors as information technology and big data expand rapidly. This work 
proposes a recurrent neural network (RNN) optimisation model based on the 
linear constraint numerical method, namely, LSTM-LP optimiser, which 
combines the powerful time-series modelling capability of long short-term 
memory (LSTM) and the optimisation characteristics of linear programming 
(LP) optimisation features, and so effectively improves the training efficiency 
and stability of the model in resource-constrained environments. This helps to 
efficiently capture the temporal dependencies in time-series data and solve the 
noise and missing problems in the data. On two datasets, experimental results 
show the LSTM-LP optimiser beats the conventional model in several 
performance criteria. Future studies will investigate more effective optimisation 
techniques, increase the generalisation capacity of the model, and simplify the 
hyperparameter tweaking process to thus further promote the model in practical 
uses. 
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1 Introduction 

The fast growth of information technology and big data has resulted in a lot of  
time-series data accumulated in many sectors (Wen et al., 2020). Time-series data are 
widespread and indispensable in many sectors, from the prediction of stock market 
swings in the financial market to weather forecasting, energy consumption management, 
traffic flow analysis and other fields (Bhogade and Nithya, 2024). Time-series data shows 
the dynamic properties of objects over time, therefore how to extract useful information 
from these data cannot only better comprehend the evolutionary principles of the system, 
but also enhance resource optimisation and risk management and help decision making. 

Analysing time-series data presents difficulties mostly related to its intricate  
time-dependent interactions. First of all, time-series data typically have long-term 
dependencies – that is, the current state has a complicated relationship with the states at 
several times in the past that cannot be properly managed by conventional machine 
learning techniques. Second, in time-series data, noise, missing values, and external 
disruptions often complicate data processing. Consequently, the main challenge in  
time-series data analysis is now how effectively to capture the temporal dependencies in 
time-series data and eliminate the noise and missing issues in the data. 

Deep learning technology has evolved RNN into one of the primary models for  
time-series data processing (Han et al., 2019). By using the hidden state of the past 
instant as the input of the current moment, RNN can effectively grasp long-term 
dependencies in time-series data. But when processing extended sequences, typical RNN 
suffers from the issue of gradient vanishing or gradient explosion, therefore restricting 
their performance over large times spans. LSTM originated to help us solve these 
challenges. By including forgetting gate, input gate, and output gate, LSTM efficiently 
solves the gradient vanishing problem and can retain the critical information over a long 
time span (Landi et al., 2021). Wide-ranging applications for LSTM abound in natural 
language processing, speech recognition, machine translation, etc.; it has produced 
amazing results. LSTM models still suffer with high computational complexity and high 
resource consumption in the training process, as well as insufficient capacity to manage 
constraints in the model. 

Apart from deep learning techniques, conventional machine learning systems find 
extensive use in time-series data analysis. Common classic techniques for classification 
and regression of time-series data are support vector machines (SVM) and decision trees 
(Fawaz et al., 2019). Suitable for smaller linear issues, support vector regression (SVR) 
finds an ideal hyperplane to match time-series data (Luo et al., 2019). Conversely, 
decision trees fit for handling noisy or high number of missing values since they partition 
the feature space recursively. Nevertheless, when handling long time dependencies and 
complicated constraints, the performance of these conventional methods is more 
constrained; so, it is usually difficult to handle the issues of big-scale time-series data. 
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More and more study has started to try to mix optimisation techniques with deep 
learning models in order to offset the drawbacks of deep learning and conventional 
machine learning algorithms when dealing with time-series data (Ahmed et al., 2023). By 
means of linear constraints to guarantee the computational efficiency of the model and to 
guarantee its performance under certain constraints, LP, as a traditional optimisation 
technique, is able to efficiently restrict the model training process. Linear programming 
can assist the model to better satisfy the needs in actual applications while handling  
time-series data analysis problems with specific constraints. 

Aiming to tackle the performance bottleneck of current approaches when confronted 
with challenging restrictions, this work suggests the LSTM-LP optimiser model, which 
combines the time-series modelling capabilities of LSTM with the optimisation features 
of LP. 

This paper’s innovations consist in the following: 

1 An RNN model (LSTM-LP optimiser) incorporating linear constrained optimisation 
is proposed: combining the time-series modelling capacity of LSTM with the 
optimisation characteristics of LP, this combination not only effectively captures the 
long-term dependencies in the time-series data, but also guarantees the 
computational efficiency and the rationality of resource usage through linear 
constraint optimisation during model training, so solving the problem of the limited 
performance of the current deep learning models under complex constraints. 

2 A linear constraint optimisation mechanism is introduced in model training: this 
mechanism not only guarantees the stability and high efficiency of model training  
by dynamically adjusting the hidden layer state of LSTM to meet the preset  
resource constraints, but also guarantees the adaptability of the model under  
resource-constrained environments by means of new solution for resource 
management in time-series data analysis. 

3 The performance advantages of the model on different datasets are verified through 
experiments: LSTM-LP optimiser beats conventional and alternative deep learning 
models in several performance metrics, particularly in managing complicated 
constraints, which offers a better model choice for time-series prediction activities, 
experimental results on power consumption and traffic flow datasets reveal. 

2 Relevant technologies 

2.1 Linearly constrained numerical methods 

Many practical optimisation problems arise in situations with linear constraints (Necoara 
et al., 2019). Usually, a linearly constrained optimisation problem can be stated as 
follows: 

min ( ) subject ,to ≤ =
x

Ax bx Cxf d  (1) 

 

Usually a scalar function on the decision variable x, f(x) is the objective function; A and C 
are the coefficient matrices establishing the equality constraints and the inequality 
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constraints respectively, and b and d are the associated constraint vectors. See Figure 1 
for an optimal selection of x such that the objective function f(x) takes the smallest value 
while meeting all linear constraints. 

Figure 1 Linear constraint algorithm (see online version for colours) 

f(x, y) = d1

f(x, y) = d2

f(x, y) = d3

g(x, y) = c

 

Commonly used techniques for solving these types of optimisation issues are simplex 
method, interior point method and Lagrange multiplier approach (Nie et al., 2021). The 
fundamental concept of the Lagrange multiplier method, a basic approach for handling 
optimisation issues with constraints, is to include constraints into the objective function, 
therefore converting the initial constrained optimisation problem into an unconstrained 
optimisation problem. We create a Lagrangian function to accomplish this. Particularly 
for the aforementioned optimisation issue, Lagrange multipliers λ and μ can be 
introduced, respectively corresponding to the equality and inequality requirements 
respectively, and the Lagrange functions can be built: 

( ) ( ), , ( ) ( )= + − + −L x λ μ f x λ Ax b μ Cx d   (2) 

where λ and μ help to modify the goal function so that the constraints are satisfied. 
Solving the gradient of the Lagrangian function and hence bringing it equal to zero will 
provide the ideal solution (Jin et al., 2022). More especially, three equations are needed 
to be solved specifically: 

, ,( ) 0∇ =x L x λ μ  (3) 

, ,( ) 0∇ =λL x λ μ  (4) 

, ,( ) 0∇ =μL x λ μ  (5) 

These equations satisfy the Karush-Kuhn-Tucker (KKT) requirements, therefore defining 
the optimality conditions for the optimisation problem (Prado et al., 2023). Regarding 
inequality restrictions, the KKT conditions demand: 

, ( ) 0,≤ − = ∀i iAx b λ Ax b i  (6) 
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where complementary relaxation calls for the multipliers to be proportional to the 
residuals of the constraints and the Lagrange multipliers to be non-zero only if the 
inequality constraints are strictly activated; else, the corresponding Lagrange multipliers 
are zero. Regarding the inequality restrictions, the KKT condition demands that: 

=Cx d  (7) 

Solving this system of equations can help one to find the best solution for the 
optimisation issue. 

Along with the Lagrange multiplier technique, LP is a widely used numerical solution 
approach in linear restricted optimisation problems (Liu et al., 2023). A linear 
programming problem has its standard form as: 

min subject t ,o ≤ =
x

Axx bc Cx d  (8) 

where A and x are respectively the matrix of coefficients of the restrictions and the choice 
variables and c is the vector of coefficients of the objective function. Solving linear 
programming problems with the straightforward method is a traditional and extensively 
applied classical method. The basic concept of the simplex technique is to iterate along 
the constraints’ borders, and each step chooses a new viable solution in the 
neighbourhood of the present feasible solution until the optimal solution is obtained. 

The straightforward approach specifically iterates over the following update formula: 

1+ = +k k k kx x pα  (9) 

where αk denotes the step size, therefore indicating the distance covered in the direction 
pk. With each update, the simplex technique advances towards the optimal solution until 
it is discovered. 

The interior point approach is yet another useful approach for linearly constrained 
optimisation issues. By optimising inside the constraint space, the interior point technique 
avoids the simplex method’s search procedure across its boundary. Large-scale linear 
programming problems are frequently solved using the interior point method, particularly 
in high-dimensional environments where it displays superior efficiency. One can express 
the iterative phases of the interior point approach by the following equation: 

( ) 1
1

−
+ = −k k k k kx x H gα  (10) 

where gk is the objective function’s gradient and Hk is the Hessian matrix of the current 
point. Particularly in cases of multiple restrictions, the interior point technique has the 
benefit in efficiently solving complicated and high-dimensional optimisation problems. 

Usually, a convergence criteria is used to find whether the optimisation method has 
converged. One often used criterion is that the process of optimising is said to have 
converged when the gradient’s norm is less than some preset value ε: 

( )∇ ≤kf x ε  (11) 

where the threshold ε is rather modest. One can ensure that a near-optimal solution to the 
optimisation problem has been discovered by iterating until the gradient change is quite 
minimal. 

By use of the Lagrange multiplier approach, the simplex method, and the internal 
point method, linearly limited numerical methods offer efficient tools for addressing 
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optimisation problems with linear constraints. Particularly in the domains of engineering 
design and neural network optimisation, these approaches have been extensively applied 
in pragmatic uses. 

2.2 Recurrent neural network 

Best defined by its capacity to transport information between time steps via cyclic 
connections, RNN is a neural network design for handling sequence data (Xiangxue  
et al., 2019). This is thus extensively applied in tasks including time series prediction and 
natural language processing since RNN can capture temporal connections in sequences. 

Standard RNN updates the hidden layer state ht recursively at every time step. 
Particularly, the hidden layer state at the current moment is computed using the hidden 
layer state ht–1 at the past moment concurrently with the current input xt: 

( )1tanh −= + +t h t h t hh W x U h b  (12) 

where Wh and Uh are the weight matrices of the network; bh is the bias term; tanh(·) is the 
activation function, hence generating nonlinearity and guaranteeing that the model can 
learn complicated patterns. This update lets the network create fresh hidden layer states 
depending on the inputs and recall past data. 

Usually computed from the hidden layer state ht at the current instant in RNN, the 
output yt follows this formula: 

= +t y t yy W h b  (13) 

Long sequences cause ordinary RNN to suffer from gradient vanishing or gradient 
explosion, though. This is thus difficult for the network to learn long-term dependencies 
since during backpropagation the gradient becomes either very tiny or very large over 
several chained law passes (Zucchet et al., 2023). 

Researchers have suggested enhanced RNN designs-that is, LSTM networks and 
gated recurrent unit (GRU) networks-to address this challenge (Khan et al., 2022). LSTM 
introduces several gates to manage the storage and information updating, therefore 
reducing the gradient vanishing issue. LSTM has a state update formula like this: 

( )1−= + +t i t i t ii σ W x U h b  (14) 

( )1−= + +t f t f t ff σ W x U h b  (15) 

( )1 1tanh− −= + + + t t t t c t c t cc f c i W x U h b  (16) 

( )tanh= t t th o c  (17) 

where ct is the cell state; it is the input gate; ft is the forgetting gate; ot is the output gate. 
These gates assist the network to keep significant information over time by regulating the 
input, forgetting and output of knowledge, therefore ignoring pointless stuff and helping 
to regulate the network. 

Just two gates make GRU a condensed form of LSTM. Its state updating formula 
follows: 

( )1−= + +t z t z t zz σ W x U h b  (18) 
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( )1−= + +t r t r t rr σ W x U h b  (19) 

( )( )1tanh −= + + t h t h t t hh W x U r h b  (20) 

( ) 11 −= − +  t t t t th z h z h  (21) 

Though the performance is almost that of LSTM, GRU is more efficient in computation 
and appropriate in cases when computational resources are restricted (Fu and Wang, 
2022). These two enhanced RNN designs help neural networks to avoid gradient issues 
and capture interdependence in extended sequences. 

Especially in application domains like natural language processing, speech 
recognition and time series prediction, RNN, LSTM, and GRU excel in many sequence 
modelling tasks and have grown to be crucial tools for processing sequence data in deep 
learning. 

3 Recurrent neural network optimisation model based on linearly 
constrained numerical methods 

Aiming to improve the performance and computational efficiency of the model when 
dealing with complex time-series data by essentially merging time-series modelling with 
constrained optimisation, in this work we present the LSTM-LP optimiser model, which 
combines LSTM and LP optimisation approaches. The model is not only able to 
efficiently capture long-term dependencies in the time-series data during the training 
process but also able to optimise when faced with computational and resource 
constraints, so ensuring efficient and stable model training, see Figure 2 by introducing a 
linear constraint numerical method. 

Figure 2 Structure of LSTM-LP optimiser model (see online version for colours) 

Input layer
 (1 Batch)

Implicit
 layer 1

Implicit
 layer 2

Output layer

Timeline T

T=1 T=2 T=3

Hidden layer 
state ht 

Forget gate 
Ct

Input gate

Max(min)
Decision function

Objective function

 

The model comprises of five main modules: the LSTM modelling module for extracting 
the dependency information of the time-series data, the LP optimisation module for 
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optimising the parameter updates of the LSTM by linear constraints, the training module 
for combining the LSTM and LP for co-training, and the output module for generating 
the final prediction results and post-processing. By means of the synergy among these 
five modules, the model is able to efficiently manage the limited resources while 
preserving the accuracy and so attaining the aim of optimal training. 

3.1 Input module 

Data preparation and processing for LSTM-LP optimiser falls to this module. Usually 
mean normalised during the time series data preparation, the data is so that every feature 
has a mean of 0 and a standard deviation of 1. The formulae are as follows: 

ˆ −= t x
t

x

x μx
σ

 (22) 

where ˆtx  is the normalised data; xt is the original input data; μx and σx are respectively the 
mean and standard deviation of the dataset. 

The input module also must slide windows on the time-series data to divide the 
continuous time-series data into training samples fit for LSTM input (Nizam et al., 2022). 
One sets a window length w, and the sliding window can be produced using the following 
equation: 

{ }: 1 1, , ,+ + −= t w t t t wX x x x  (23) 

where Xt:w represents the window data spanning length w beginning from time step t. By 
use of this sliding window technique, the model may forecast the current time step’s 
output depending on historical time step input. 

3.2 LSTM modelling module 

Extensive timing information from the timing data is extracted in this module to generate 
accurate expected outputs for the next optimisation step. By means of its special gating 
structure, which addresses gradient vanishing in conventional RNNs, LSTM is able to 
efficiently capture long-term dependencies (Zucchet and Orvieto, 2024). The LSTM 
modelling module not only concentrates on the relationships between time steps but also 
takes into account the limitations on the outputs to be altered at each instant to achieve 
more precise optimisation in order to combine LSTM with linearly limited numerical 
approaches. 

LSTM’s computational mechanism consists on a sequence of gating operations. First, 
computed as the forgetting gate controls how much of the past memories should be 
thrown away in the present: 

[ ]( )1,−= ⋅ +t f t t ff σ W h x b  (24) 

The LSTM then updates the memory cells depending on input gate equation: control of 
the forgetting gate. 

1−= ⋅ + ⋅ t t t t tC f C i C  (25) 
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In the LSTM-LP optimiser model, the output of the LSTM module must be merged with 
the LP optimiser module to guarantee that the model satisfies particular resource 
limitations during training. Particularly, this tuning process is accomplished by the 
following equation: 

( )( )tanh ,= ⋅ ⋅ ≤t t t th LP o C A h b  (26) 

To guarantee that the training process of the model does not surpass the resource 
constraint, LP(·) indicates the constraint adjustment of the current hidden layer state by 
the linear programming module, A · ht ≤ b is the linear constraint connected with the 
resource constraint, and A and b are the coefficient matrix and the constant vector of the 
linear constraint, respectively. 

3.3 LP optimisation module 

This module ensures that the LSTM model not only learns the patterns of the temporal 
data effectively during the training process but also follows certain computational and 
resource constraints by means of linear programming methods, so combining the outputs 
of the LSTM model with predefined resource constraints and optimising the model. This 
module’s major objective is to solve the linear programming problem so as to satisfy the 
specified constraints and increase the efficiency and stability of the training process, so 
adjusting the hidden layer states of the LSTM model. 

Combining the hidden layer states of the LSTM model with the resource constraints 
produces an optimisation issue initially in the LP optimisation module. Usually linear, the 
problem consists in the hidden layer state ht and a set of constraints. LP optimisation 
specifically aims to satisfy the linear constraints and maximise or reduce the hidden layer 
state ht in respect to an objective function (Samanipour and Poonawala, 2023). One may 
represent the optimisation process as follows: 

maximise/minimise , subject to ⋅ ≤T
t tc h A h b  (27) 

where ht is the hidden layer state output by the LSTM module; c is the coefficient vector 
of the objective function; A is the coefficient matrix of the linear constraints; b is the 
constant vector of the constraints. 

The LP optimisation module dynamically changes the hidden layer state ht at every 
moment t and guarantees that the model generates valid outputs considering the 
constraints, therefore helping to better manage the linear constraints in the optimisation 
process. One can engage in this adjustment process by adding a fresh constraint 
formulation: 

⋅ + ≤tA h d b  (28) 

where d is a minor adjustment vector connected with the state adjustment of the hidden 
layer, therefore reflecting the possible changes during model optimisation. This new 
restriction guarantees that the model may satisfy resource restrictions by means of 
effective computations and state changes. 

This method helps the LP optimisation module to efficiently control computational 
resources during the optimisation process and raise the general stability and efficiency of 
the model. 
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3.4 Training module 

Handling the flow of input data, loss computation, model parameter optimisation, and 
resource constraint management is the responsibility of the training module of the  
LSTM-LP optimiser model. By means of backpropagation and linear programming, the 
training procedure aims to raise the performance and computational efficiency of the 
model on challenging time-series data. 

First getting input from the LSTM modelling module, the training module delivers 
prediction results by updating the hidden layer state using LSTM. The loss function is 
computed depending on the discrepancy between the actual value and the projected 
result. Apart from the conventional prediction error, the loss function incorporates the 
constraint loss produced during the LP optimisation process, therefore aggregating into 
the total loss function. There is a formula for total loss as follows: 

= + ⋅total prediction LPL L λ L  (29) 

where Lprediction is the prediction error; LLP is the constraint loss; λ is a hyperparameter 
meant to balance the prediction error and constraint loss. 

The LP optimisation module changes its value at every cycle of model training based 
on the hidden layer states output from the LSTM such that the states satisfy the linear 
constraints. The following equation captures this process of adjustment: 

( )tanh= ⋅ +t th P C Q  (30) 

where tanh(Ct) is the memory cell following the activation function; P and Q are the 
weight matrix of the linear constraints; ht is the hidden layer state of the LSTM. Thus, the 
training module guarantees that the linear requirements are satisfied at every time step in 
addition to making sure the LSTM produces data in line. 

3.5 Output module 

First getting the hidden layer state ht at the present instant from the LSTM module, the 
output module processes it to produce the final model output. The hidden layer state is 
further changed following linear programming optimisation throughout processing such 
that the result satisfies the established requirements. Specifically, the output module must 
carry the last computation to derive the prediction result yt depending on the current 
hidden layer state, so it may be stated as: 

= ⋅ +t out t outy W h b  (31) 

where Wout is the output layer’s weight matrix; bout is the bias term. The raw model output 
produced by this method is subsequently handled in more detail by other stages. 

Together with LP optimisation, the output module changes the output value yt to 
satisfy the resource restrictions therefore guaranteeing that the model output fulfils the 
established requirements (Cao et al., 2020). One achieves this change process by means 
of the following equation: 

( ),= ⋅ ⋅ ≤t out t ty LP W h A y b  (32) 
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where yt is the optimised output; A is the matrix of coefficients of the linear constraints; b 
is the constant vector of constraints. By means of LP optimisation, the output module 
guarantees not only conformity with the computational and resource limitations but also 
with the data patterns. 

In the end, the output module uses the produced prediction results yt as the last output 
of the model, which finds use in several contexts like time series forecasting, decision 
support, etc. The design of the output module guarantees, however, that the model 
preserves excellent computational efficiency and accuracy even under limited resources. 

4 Experimental results and analyses 

4.1 Datasets 

Two genuine and extensively used datasets were used for this work in order to assess the 
LSTM-LP optimiser model performance. 

The first dataset is the Individual Household Power Consumption Dataset from the 
UCI Machine Learning Repository, which records, minute-by-minute data covering 
information on the power consumption of appliances utilised, during a four-year period. 
Derived from the California Traffic Surveillance System, the second dataset is the 
Performance Measurement System (PeMS) Traffic Flow Dataset, which records 
information including traffic flow and speed by means of multiple locations and multiple 
motorways recorded at five-minute intervals. 

Table 1 shows specifics about the dataset. 
Table 1 Summary of datasets for experimentation 

Dataset name Electricity consumption dataset Traffic flow dataset 
Data source UCI Machine Learning Repository Performance Measurement System (PeMS) 
Data content Contains electricity consumption 

data, recorded every minute over 
four years 

Traffic flow data from multiple locations, 
recorded every five minutes across multiple 

highways 
Data type Power consumption (in watts) Traffic flow, vehicle speed, lane occupancy 
Task type Load forecasting, energy demand 

prediction 
Traffic flow prediction, intelligent traffic 

system optimisation 
Data size 207,525 instances Millions of records, covering data from 

multiple cities and highways 

4.2 Impact of iterative optimisation on performance in time series prediction 

This experiment aims to assess, in particular how the LSTM-LP optimiser model 
performs predictions on two distinct time-series datasets, namely how the model 
performance varies with increasing iteration count. First the experiments will be carried 
out on the PeMS traffic flow dataset and then the electricity usage dataset. We first load 
the PeMS traffic flow dataset and the dataset on individual household electricity use. To 
create a format fit for model input, the data were preprocessed including cleaning, 
normalisation and sliding window processing. We then selected the LSTM-LP optimiser 
model and defined starting hyperparameters including learning rate, hidden layer size, 
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etc. The other hyperparameters were maintained constant throughout the tests so that one 
may concentrate on the impact of the iteration count. 

Figure 3 Results of model performance variation on power consumption dataset (see online 
version for colours) 

 

Figure 4 Results of model performance variation on traffic flow dataset (see online version  
for colours) 

 

We trained the LSTM-LP optimiser model on each of the two datasets in the model 
training and assessment phase using a number of iterations beginning from 50 and rising 
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by 50 every time until 500. At every iteration, the models were assessed; a performance 
indicator was mean square error (MSE) (Yıldız and Karakuş, 2020). At every iteration, 
note the MSE value; then, examine the model performance trend. Determine the number 
of repetitions at which the MSE value starts to stabilise or the rate of decrease slows 
down noticeably, therefore suggesting a near convergence of the model. 

Figure 3 and 4 display, for varying numbers of iterations, the LSTM-LP optimiser 
model’s performance on both datasets. 

The experimental results indicate that the MSE value of the model progressively 
declines with increasing iteration on the power consumption dataset, therefore showing 
improving model prediction performance. Particularly from 50 to 500 iterations, the MSE 
value drops from 0.072 to 0.054, indicating ongoing model performance improvement. 
From 350 iterations on, the MSE value changes very little and stays practically constant, 
implying that the model may have reached or is close to its optimal performance and that 
additional iteration has limited effect in the MSE. The MSE of the model similarly drops 
on the PeMS traffic flow dataset as number of iterations increases. The change in the 
MSE value levels off as the number of iterations hits 350, showing that the model 
performance is near to ideal, same like the power consumption dataset. 

These results reveal that the LSTM-LP optimiser model shows good convergence on 
both the electricity consumption dataset and the PeMS traffic flow dataset; hence, the 
suitable number of iterations may balance the training duration and prediction 
performance of the model to prevent overfitting. Practically, the best number of iterations 
can be found depending on model performance on the validation set to provide good 
generalisation capacity without overconsuming computational resources. These results 
guide applications in related time-series data analysis projects and offer direction for 
additional optimisation of the LSTM-LP optimiser model. 

4.3 Performance comparison of different timing prediction models 

This experiment intends to evaluate on traffic flow and electricity consumption datasets 
the performance of several time-series prediction methods. Six time-series prediction 
models were chosen; LSTM, GRU, transformer, LSTM-LP optimiser, ARIMA and 
prophet using MSE, mean absolute error (MAE) and coefficient of determination (R2) as 
evaluation metrics. Each model then had reasonable hyperparameters selected for it. 
Their MSE, MAE, and R2 values were noted following separate training of these models 
on each dataset. 

Figure 5 and 6 exhibit the experimental outcomes. 
With its MSE of 0.05, MAE of 0.15, and R2 of 0.92, which indicates a reduced error 

and better goodness of fit, the LSTM-LP optimiser model performs the best on the power 
consumption dataset from the experimental findings on all the evaluation indexes. 
Regarding the traffic flow dataset, the LSTM-LP optimiser model performs best in terms 
of R2, with a R2 of 0.89; the GRU model performs best in terms of MSE and MAE, with 
an MSE of 0.10 and MAE of 0.25. These findings show that the performances of several 
models vary significantly on various datasets, hence the model selection should be 
optimised in line with the features of the dataset. 
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Figure 5 Comparison of the performance of each time-series prediction model on the power 
consumption dataset (see online version for colours) 

 

Figure 6 Comparison of the performance of each time-series prediction model on the traffic flow 
dataset (see online version for colours) 

 

Overall, the LSTM-LP optimiser model has the best prediction performance on the 
electricity consumption dataset whereas the GRU model is more beneficial on the traffic 
flow dataset. These results offer direction for model selection in comparable time-series 
data analysis projects and a significant reference for the choice and optimisation of  
time-series prediction models. By changing the hyperparameters of the models or 
choosing models better fit for the features of the data, one can considerably raise the 
prediction performance of the models. 
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5 Conclusions 

This work proposes to handle the challenge of handling complicated constraints in time 
series data analysis using an RNN optimisation model, LSTM-LP optimiser, grounded on 
the linear constrained numerical approach. On traffic flow and power consumption 
datasets, the model shows good performance by integrating the optimisation 
characteristics of LP with the time-series modelling capacity of LSTM. On the power 
consumption dataset, experimental results reveal that the LSTM-LP optimiser satisfies 
resource limitations and captures long-term dependencies, therefore attaining the lowest 
MSE, MAE and greatest R2. Although GRU performs somewhat better on several 
measures on the traffic flow dataset, LSTM-LP optimiser still scores the best on R2, 
therefore proving even more relevance under challenging limitations. Furthermore, the 
performance of the model gradually improves and stabilises after a given number of 
iterations as the number of iterations increases, so indicating that the model can 
efficiently converge under resource constraints and so offers a significant reference for 
the optimisation of computational resources in practical applications. 

Still, the LSTM-LP optimiser model has certain constraints. First of all, the model is 
rather complex, particularly following the launch of the linear programming optimisation 
module; hence, the computational process gets more complicated and could result in 
longer training times, which could cause issues in large-scale datasets or situations 
requiring high real-time demand. Second, although the model performs well on both 
datasets, its generalisation capacity still has to be more confirmed. For other kinds of 
time-series data, such as medical or financial time series, the performance of the model 
could be impacted by the features of the data. Furthermore, the application of the model 
depends on domain knowledge and becomes more challenging since the environment of 
linear constraints has to be modified to particular issues. 

Future investigations could go in the following lines: 

1 Explore more efficient optimisation algorithms to reduce the computational 
complexity of the model: future studies should investigate more effective 
optimisation algorithms, such integrating approximation optimisation approaches 
(e.g., versions of stochastic gradient descent or approximate linear programming 
algorithms) to minimise processing overheads while guaranteeing optimisation 
accuracy. 

2 Further research on the generalisation ability of the model: in order to fully evaluate 
the relevance of the model in many spheres, future studies can do tests on more 
varied kinds of information, including financial time series, medical, health, and 
meteorological data. Simultaneously, the model structure and parameter values are 
tuned for various data features, including changing the number of layers, the number 
of hidden units or the requirements of linear constraints of the LSTM, to better fit 
varied time series data. 

3 Research on hyperparameter optimisation and automated tuning mechanisms for 
model: to streamline the use of the model, future studies could investigate  
hyperparameter optimisation strategies such automated hyperparameter tuning 
systems based on Bayesian optimisation, evolutionary algorithms, or lattice searches. 
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