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Abstract: Intending to the issue that the existing study do not fully exploit 
features, the random forest algorithm (IRF) is improved first. The splitting 
feature screening function is simplified based on the principle of infinitesimal 
equivalence, and the Gini coefficient value of the non-category attribute is 
introduced to improve the computational efficiency of the algorithm. Then, 
public health economic impact variables are selected, and spatial features are 
extracted using a residual convolutional neural network. Temporal features are 
extracted using a gate rate unit (GRU), and a self-attention mechanism is 
incorporated to enhance the spatial and temporal features. Finally, the IRF filter 
is used to select the most important spatio-temporal features of the early 
warning results and map them to the monitoring and early warning results 
through nonlinear transformation. The experimental outcome indicates that the 
accuracy of the proposed model has been improved by 5.07%–14.85%. 

Keywords: economic early warning; random forest; feature screening; residual 
convolutional neural network; gate rate unit; GRU. 
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1 Introduction 

In an era of accelerating globalisation, the impact of public health events has gone far 
beyond the scope of health, and has had a profound and widespread impact on the 
economy. Public health events are often accompanied by substantial investments in 
medical resources, including but not limited to the expansion of hospital facilities, the 
emergency procurement of medical supplies, and overtime compensation for medical 
staff (Szreter and Woolcock, 2004; Correia et al., 2022). Meanwhile, the spread of the 
disease will affect many industries. For example, the service industry will suffer greatly  
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due to restrictions on the movement of people, while the manufacturing industry may 
face production stoppages due to supply chain disruptions. These direct and indirect 
economic impacts are intertwined, forming a complex network of public health 
economics (Lu et al., 2017). To better cope with the economic challenges posed by public 
health events, it is imperative to establish a comprehensive public health economic 
monitoring and early warning system. Through dynamic monitoring and early warning of 
the public health economy, decision-makers can predict in advance the extent of 
economic damage that may be caused by public health events, and then formulate more 
targeted and forward-looking economic policies to alleviate the pressure of economic 
downturns and maintain social and economic stability (Ebi and Schmier, 2005; Meckawy 
et al., 2016). 

Ruck et al. (2021) introduced five public health economic ratio indicators into the 
model, completing the transformation of the early warning model from univariate to 
multivariate. Rappold et al. (2014) first considered using multiple linear discriminant 
analysis to study the problem of public health economic crises. This can also be referred 
to as a Z-score model, which discriminates risks based on the magnitude of the Z-score, 
which is inversely related to public health economic risks. Kolomoyets et al. (2021) used 
a logistic model to conduct a study on the medical industry and gave conditions for the 
effectiveness of the model’s application in the field of public health economic early 
warning. Ma et al. (2023) constructed a Benford-Logistic model to study the issue of 
public health economic early warning, but there was a large error in the early warning 
results, but there was a large error in the early warning results. 

In the field of early warning in public health economics, traditional statistical models 
and logistic regression have been widely used, but their limitations are becoming 
increasingly apparent. Machine learning models, with their more flexible data modelling 
capabilities, can effectively compensate for the shortcomings of traditional methods. 
When dealing with large amounts of complex data in public health economics, machine 
learning algorithms can better capture the non-linear characteristics of public health 
economics data, improving the accuracy of early warnings. Mao et al. (2020) used 
support vector machine (SVM) to conduct early warning for public health economics, 
and the experimental results proved the effectiveness of the method. Dou et al. (2023) 
used the Pearson coefficient to screen for characteristics of public health economic 
impacts, and implemented public health economic early warning through decision trees, 
but the accuracy of the early warning was not high. Yin et al. (2022) used PCA to reduce 
the dimensionality of the initially selected indicators, and then used a BP neural network 
to construct an early warning model, which has a good early warning effect on the public 
health economy. Botz et al. (2022) used random forests (RF) to screen for public health 
economic characteristics and built an early warning model using a classification and 
regression trees (CART) classification tree to improve the accuracy of early warning. 

Machine learning-based public health economic monitoring and early warning 
models are difficult to use for mining the intrinsic characteristics of influencing 
indicators, resulting in low monitoring accuracy. Deep learning models have more 
powerful feature extraction and generalisation capabilities. Therefore, more and more 
scholars hope to solve the problem of public health economic early warning through deep 
learning. Zheng and Hu (2021) combined recurrent neural network (RNN), 
autoregressive moving average (ARMA) and exponential smoothing models to achieve 
public health economic early warning and achieved satisfactory prediction results. 
Sansone and Zhu (2023) used principal component analysis (PCA) to extract the principal 
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components of impact indicators and convolutional neural network (CNN) to monitor and 
predict public health economics, which improved the performance of early warning. 
Devyatkin et al. (2021) propose a new public health economic early warning method that 
includes an long short-term memory (LSTM) module to prevent overfitting and an LSTM 
module for early warning, which can effectively reduce prediction errors. Although most 
current methods based on a single neural network are simple and effective, the extracted 
features are too monotonous. Hybrid neural networks make full use of the characteristics 
of different neural networks to extract deep and rich features and thereby improve the 
accuracy of early warning. Azadi et al. (2023) used a series and parallel connection of 
LSTM and CNN, respectively, to achieve public health economic early warning and 
improve the accuracy of early warning. Wang et al. (2024) constructed a method 
consisting of a CNN and bidirectional transformer to complete public health economic 
early warning. 

The above research status shows that there is feature redundancy in studies based on 
hybrid neural networks, which leads to unsatisfactory early warning results. To this end, 
this paper first improves the RF algorithm by simplifying the split feature selection 
function according to the principle of equivalent infinitesimal, so as to improve the 
efficiency of function operation. The introduction of the non-class attribute in the 
simplified split feature selection function improves the calculation efficiency and 
screening performance of the algorithm by calculating the Gini coefficient value of this 
attribute. Then, public health economic impact variables were selected and pre-processed. 
Next, a hybrid neural network model was designed to extract the temporal and spatial 
characteristics of the variables. The residual structure was used to improve the CNN to 
fully extract the spatial characteristics of the variables. Meanwhile, the time features are 
extracted through GRU, and a self-attention mechanism is incorporated to enhance the 
spatiotemporal features. Finally, the IRF is used to filter the most important  
spatio-temporal features and perform a nonlinear transformation to map them to the final 
monitoring and early warning results. The experimental outcome indicates that the early 
warning accuracy of the proposed model is 93.36%, which can be better applied to the 
early warning of public health economic monitoring. 

2 Relevant theoretical foundations 

2.1 Convolutional neural network 

CNN and RNN are both extended from traditional neural networks, but the neurons in 
CNN use local connections, which greatly reduces the difficulty of training (Kuo, 2016). 
CNN calculates by sliding a convolution kernel (filter) over local areas of the input data 
(such as 3 × 3 pixels) rather than being fully connected, significantly reducing the 
number of parameters (the same convolution kernel shares weights). RNN is suitable for 
time series prediction, but its feature extraction ability is weak. GAN is suitable for 
testing with fewer samples, requires additional design of a discriminator, and the 
computational cost is usually 2–3 times that of CNN. CNN generally consists of 
convolutional, pooling and fully connected levels, as shown in Figure 1. The roles of 
each level in CNN are shown below: 
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1 The convolutional level extracts features by collecting data and performing 
convolution operations using multiple convolution kernels. The three parameters are 
padding, stride, and kernel size. When the convolutional level extracts features, the 
convolution kernel represents the weight, and the convolution calculation is as 
bellow. 

( )i i ic f w x b= ⊗ +  (1) 

where xi is the input, ci is the feature output of the ith layer, w is the weight matrix, ⊗ 
is the convolution operation, and  is the bias parameter. 

2 A pooling level is often adopted to remove redundant information and reduce the 
amount of computation. 

3 The fully connected level is a multi-level perceptron with a Softmax activation 
function (Khan et al., 2020), which enables end-to-end learning. 

Figure 1 General structure of CNN (see online version for colours) 
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2.2 Gated recurrent unit 

GRU replaces the forget gate, input gate, and output gate in the LSTM model with an 
update gate and reset gate. The structure is simpler than LSTM, with fewer internal 
parameters, so training speed is improved compared to LSTM (Zarzycki and 
Ławryńczuk, 2022). The updated gate of GRU is used to determine which part of the 
information entered in xt is retained and which part is discarded. The formula for 
calculating the output ut of the gate is as follows. 

( )1t u xu t hu t uu σ W x W h b−= + +  (2) 

The reset door determines the following formula for calculating the output rt of the door: 
how much of the hidden state ht–1 at time t–1 is retained to the current time ht. 

( )1t r xr t hr t rr σ W x W h b−= + +  (3) 
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Candidate hidden states nt can be calculated from rt. When rt = 0, nt only contains 
information about the current input xt. nt is calculated as follows. 

( )( )1tanht xn t hn t t nn W x W r h b−= + +  (4) 

Finally, the current neuron’s hidden state ht is updated through ut and nt, and the update 
formula is as follows. 

( ) 11t t t t th u h u n−= − +   (5) 

where   is the multiplication operation, w, b, and σ are the weight matrix, bias vector, 
and activation function, respectively. 

2.3 Random forest 

The RF algorithm itself has the ability to filter features. The importance of the data 
features is calculated through RF (Paul et al., 2018), which is used to analyse the 
importance of all the data and then select the appropriate features as the input data for 
prediction. Feature selection is a critical step in machine learning, used to remove 
redundant or irrelevant features to improve model performance and interpretability. In 
addition to RF, filtering, wrapping, embedding, and other methods are also commonly 
used feature selection algorithms. RF quantifies feature importance by calculating the 
average reduction in impurity (Gini index or information gain) or the number of splits at 
which a feature acts as a splitting node across all trees. It does not require additional 
calculations and directly outputs an interpretable feature ranking. The algorithm process 
is shown in Figure 2. The specific steps are as follows. 

1 First, the collected feature data is taken as input. It is assumed that there is feature 
variable X1, X2, …, Xj, VIMj is the average change of node splitting impurity of the jth 
variable in all trees, and the Gini index of each feature is calculated as Gm (Speiser  
et al., 2019), as shown below. 

( )
1

ˆ ˆ1
K

m mk mk
k

G p p
=

= −  (6) 

where Gm is the characteristic Gini index, K is the number of categories, m is the 
current number of nodes, and ˆmkp  is the estimated probability that node m belongs 
to the kth category. 

2 The importance of the features at the nodes is shown below. 
( )G
j m l rVIM G G G= − −  (7) 

where Gl and Gr are the Gini indices of l and r nodes respectively. 
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Figure 2 The algorithm process of RF (see online version for colours) 
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3 An improved random forest feature selection algorithm based on the 
principle of equivalent infinitesimal 

The RF algorithm has a very high computational complexity due to the large number of 
logarithmic functions that must be calculated during the calculation. This paper improves 
the RF algorithm (IRF), uses the Taylor formula (Bonfiglioli, 2009) to approximately 
replace the complex functions in the formula, changes the information gain ratio function 
to only need addition and subtraction operations to compare the impact of different 
feature selections on decision tree generation, and then introduces the mean value of the 
Gini coefficient to adjust the error caused by feature redundancy, improving the 
calculation efficiency and accuracy of the algorithm. 

During the RF training feature selection process, the higher the information gain ratio, 
the more significant the feature is as a splitting feature in reducing the uncertainty of the 
sample. Therefore, During the RF training feature selection process, the higher the 
information gain ratio, the more significant the feature is as a splitting feature in reducing 
the uncertainty of the sample. Therefore, the feature with the highest information gain 
ratio should be selected as the classification feature for this node. For the Gini index gini, 
if the greater the redundancy between features, the greater the correlation between 
features, then the Gini index between this feature and other features will be smaller 
(Hasan et al., 2016), and the formula for the Gini index between features is as follows. 

( ) ( )
1 1

| |
| |

s x
ij

g F ij
i j

T
sum inisplit A T gini T

T= =

 
=  

 
  (8) 
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where S is the number of features, x is the number of features except DT, |Tij| is the 
number of samples when the jth feature value is taken, and gini(Tij) is the Gini index when 
the jth feature is taken, as shown below. 

( )
2

1

| |
1

| |

n
ijk

ij
ijk

TA
gini T

T=

 
= −   

 
  (9) 

The mean of the gini sums of feature A and other characteristics is computed as bellow. 

( )
( )1 1

| |
| |

s x ij
iji j

g F

T
gini T

Tsum inisplit A T
s

= =

 
 
 =

 
 (10) 

Therefore, in the feature selection process based on RF, the gini mean value between 
features is added to improve the accuracy of feature selection. After this parameter is 
added, the information gain rate is calculated as a new split information (Prasetiyowati  
et al., 2021), as shown below. 

( )
( )( )

( ) g F

Gain AGainR A
SplitInfo AT sum inisplit A T

=
−

 (11) 

From the above formula, we can see that the greater the gini between features, the lower 
the correlation between features and the lower the redundancy, and the greater the value 
of GainR(A) will be. Therefore, IRF is used to reduce the impact of variable redundancy 
on the accuracy of feature selection during feature splitting, thereby improving the 
accuracy of feature screening in the algorithm. In the process of calculating information 
gain, different feature selections correspond to different information gain values. Each 
function in Gain(A) is broken down as follows. 

( )2
1 1

1 1
2 2 2

1

1
1

1

          

( ) log

1 log ... log ... log

1             

   

 ...
2

 

k m
j

ij ij
j i

k
j j pj pj mj mj

j
j j j j j jj

k
j mj

j mj
j jj

s
Gain A p p

s

s s s s s s
s

s s s s s s s

s s
s ln s ln

ln s s s

= =

=

=

= ×

 
× + + + +  
 

    
= + +        ×     

=

 





 (12) 

To simplify the above formula, this paper mainly uses the principle of  
equivalent infinitesimal to approximately replace the formula. When x∈(0, 1), 

2 31 1ln( ) ( 1) ( 1) ( 1)
2 3

x x x x≈ − − − + − , equation (12) can be simplified as follows. 

( ) ( )2 2

3
1 1

11 211 71( )
2 6

k m
ij ij j j ij j ij

jj i

s s s s s s s
Gain A

ln s s= =

 − + −
 =

×   
  (13) 

where ln2 and s are both constants, and the magnitude of the constants does not change 
with different feature selections. Therefore, to further simplify the formula to improve 
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calculation efficiency, the two constant terms in the formula can be removed to make the 
formula more concise. The simplified formula is as follows. 

( ) ( )2 2

3
1 1

11 211 7
( )

6

k m
ij ij j j ij j ij

jj i

s s s s s s s
Gain A

s= =

 − + −
 =
 

′


  (14) 

The final information gain rate is therefore simplified as follows. 

( )
( ) '( ) '

( ) g F

Gain AGainR A
SplitInfo AT sum inisplit A T

=
−

 (15) 

4 Entity relationship recognition based on improved BiLSTM-CRF model 
and context awareness  

4.1 Selection and pre-processing of variables affecting public health economics 

To address the issue of insufficient feature extraction of a single neural network, which 
leads to low accuracy of early warning, this paper first selects public health economic 
impact variables and normalises them, and then introduces a residual CNN to extract the 
spatial features of the variables, uses a GRU to remember temporal features, and uses a 
self-attention mechanism (SAM) (Chen et al., 2023) to enhance key spatio-temporal 
features. Second, the IRF is used to screen for spatio-temporal features, and finally the 
screened spatio-temporal features are nonlinearly transformed and mapped to the 
monitoring and early warning results of public health economics. The overall model 
structure is shown in Figure 3. 

Figure 3 The overall model structure (see online version for colours) 

Temporal feature 
extraction

O
ut

pu
t w

ar
ni

ng
 

re
su

lts

GRU

●●● 

GRU

GRU

GRU

GRU+
Attention

●●● 

GRU+
Attention

GRU+
Attention

GRU+
Attention

Dimensional 
transformation

1st

N-1

Nth

Spatial feature 
extraction

CNN

CNN

CNN

CNN

●●● 

●●● 

1st

(2NT)th

●●● 

nonlinear 
transform

ationELU

Public health economic 
impact variables  

According to a thorough summary of previous research (Terza et al., 2008), the impact 
variables of public health economics include direct economic indicators, indirect 
economic indicators, and macroeconomic indicators. Direct economic indicators include 
medical expenditures, public health project inputs, etc. Indirect economic indicators 
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include tourism, transportation, and services. Macroeconomic indicators include GDP 
growth rate and unemployment rate. These indicators are denoted as x1, x2, …, xn. Due to 
the large difference in value ranges among the impact indicators, and in order to prevent 
overfitting caused by the differences, the impact variables are pre-processed by 
normalisation, as shown below. 

min( )'
max( ) min( )

x xx
x x
−=

−
 (16) 

where x is the impact indicator variable, min(x) and max(x) represent the maximum and 
minimum values of the impact indicator variable, respectively, and x′ is the normalised 
impact indicator variable. 

4.2 Spatio-temporal feature extraction of public health economic impact 
variables based on hybrid neural networks 

After normalising the influencing variables, this paper uses the convolution layer of RC 
to perceive the spatial relationship between features and neighbouring features, and uses 
this to extract the spatial features between variables. Then a GRU is used to remember 
temporal information, and a SAM is used to extract temporal features. 

1 Spatial feature extraction based on residual CNN. The CNN extracts adjacent data 
blocks from the normalised variables, and then performs spatial transformation and 
reorganisation on the data blocks by convolution kernel operation, so that each 
spatial position in the output features corresponds to a spatial position in the input 
features. Therefore, the convolutional level of CNN can well perceive the 
relationship between data points and adjacent data points, and capture the spatial 
relationship between features and adjacent features. The formula for calculating the 
convolution level is as follows. 

1' '
j

n n n n
j ij i j

i M

x σ w x b−

∈

 = +
 
 
  (17) 

where 'n
jx  is the jth element of the nth convolution; Mj is the feature matrix of the 

convolution input; n
ijw  is the weight matrix; 1 'n

ix −  is the input variable; n
jb is the bias 

matrix; and σ is the ReLU activation function. 

However, although deepening the convolutional layer can extract deeper spatial 
features, deepening the network can cause the problem of gradient disappearance, 
which affects the accuracy of public health economic early warning. To solve this 
problem, this paper introduces residuals into the CNN. Using the residual structure, 
deeper networks can be constructed, allowing for better information flow and more 
stable deep spatial features (Asparouhov and Muthén, 2023). The formula for 
extracting spatial features from RC is as follows. The method of constructing RC 
through residuals is shown in Figure 4. 

* ' ( ')x x C x= +  (18) 

where x* is the output of the RC; x′ is the input to the influencing variable; and C is 
the output of the last CNN layer. 
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Figure 4 The method of constructing RC through residuals (see online version for colours) 
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2 Considering the time characteristics of public health economic variables, the GRU is 
selected to capture their time characteristics. Although the GRU can directly extract 
the time information in the feature input, there may be hidden information in the 
output after convolution processing. Therefore, the output of the RC is selected as 
the input of the GRU to extract more useful information to the greatest extent. The 
GRU is stacked from two GRU layers, and the SAM is introduced in the hidden 
layer of the GRU behind, so that useful features can be accurately extracted 
according to the importance of the information, and irrelevant information can be 
ignored (Li et al., 2020). The processing process inside the GRU can be expressed by 
the following equation. 

( )*
1( ) ,u t t uu t σ W x h b−  = +  (19) 

( )*
1,t u t t rr σ W x h b− = +   (20) 

( *
1tanh , ( )t c t t t cc W x r h b−  = +  (21) 

( )1 1t t t t th u h u c−= ∗ + − ∗  (22) 

where *
tx  is the spatial feature variable of the RC output, which is used as the input 

of the GRU at the current time; rt is the reset gate; ct is the current time’s stored 
content; ht–1 is the hidden state of the previous time; and ht is the output of the GRU 
hidden layer. Then, the attention probability distribution value ak of the time 
characteristics of each variable and the feature variable v containing key information 
are calculated as follows. 
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1

N

t t
t

v a h
=

=  (23) 

( )

1

exp t
t

j
j

t

e
a

e
=

=


 (24) 

( )tanht t t t te w W h b= +  (25) 
where et is the spatiotemporal feature enhanced by SAM; wt and Wt are the weight 
coefficients input at time t; and bt is the corresponding bias at time t. 

4.3 Variable selection based on the temporal and spatial characteristics of the 
improved random forest algorithm 

After obtaining the spatio-temporal features of the influencing variables, this paper uses 
IRF to obtain the importance scores of the spatio-temporal feature variables and perform 
feature screening. Since IRF is an integration of several DTs and each DT contains many 
decision nodes, when using IRF to evaluate the importance of each spatio-temporal 
feature variable, the change in the Gini index before and after the decision node branch is 
used to measure the spatio-temporal feature variable. The specific steps for calculating 
the importance score of a temporal feature variable in IRF are given below. 

1 Calculate the Gini index of decision node m in the ith tree for ej, |y| is the total 
number of categories, and pmk implies the proportion of the kth category at decision 
node m. 

( ) ( )
| |

2

1 1

| |

1 1
y

im j mk mk mk
k k k k

y

gini e p p p
− ≠′ =

= − = −   (26) 

2 Calculate the importance of the Gini index of ej before and after the m branch of the 
above decision node. l represents the left branch and r represents the right branch. 

( ) ( ) ( ) ( )im j im j il j ir jVIM e gini e gini e gini e= − −  (27) 

3 Calculate the information gain rate GainR(A)′ of each tree, extract the features whose 
GainR(A)′ is 0, calculate the sum of the Gini index changes of ej on all decision 
nodes in the ith tree, and M is the set of all decision nodes. 

( ) ( )i j im j
m M

VIM e VIM e
∈

=   (28) 

4 Calculate the total change in the Gini index ( ) ( )
1

n

j i j
i

VIM e VIM e
=

=  of variable ej 

over all DTs in the IRF, n is the number of decision trees. 

5 Repeat step (1) to step (4) to calculate the total Gini index change of all spatio-
temporal features on the IRF and sum them up. Normalise a spatio-temporal feature 
to finally obtain the importance score of the spatio-temporal feature in the IRF. A 
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feature subset is generated by removing one feature at a time from the sorted feature 
set. The accuracy of the feature subset is calculated, and the subset with the highest 
accuracy is finally selected as the screened feature subset. 

( ) ( )
( )

j
j

j

VIM e
VIM e

VIM e
∗ =  (29) 

4.4 Output of early warning results of public health economic monitoring 

Finally, the spatio-temporal feature data filtered by the IRF feature is used as the input of 
the output layer. At this time, the spatio-temporal feature data contains the correlation 
information of space and time. The relationship between spatio-temporal features is 
captured through a nonlinear transformation and mapped to the results of public health 
economic monitoring and early warning. The calculation equation is as follows. 

( )i i iy σ we b= +  (30) 

where yi is the early warning value for public health economic monitoring; σ is the ReLU 
activation function; w is the weight matrix; and bi is the bias matrix. 

5 Experimental results and analyses  

The dataset used in this article is from the global burden of disease (GBD) dataset. This 
dataset contains data on the global burden of different diseases, injuries and risk factors 
in countries around the world, such as disease incidence, mortality, disability-adjusted 
life years (DALY), etc., as well as various factors related to public health economics, 
such as direct economic indicators, indirect economic indicators and macroeconomic 
indicators. There are a total of 26,941 items. The dataset is divided into a training set, a 
validation set and a test set in a ratio of 7:2:1. This article classifies the results of public 
health economic monitoring and early warning into excellent, good, average, cold, light, 
medium, heavy and huge warning states, and labels their warning levels in order as 1, 2, 
3, …, 8. All models are built using Python 3.8 and the Pytorch 1.6 framework. In 
addition, the experiment was performed on a computer configured with 16GB of RAM, 
an Intel i5-13400 F CPU and an RTX 4070 GPU. In the experiment, the optimiser used 
Adam, with an initial learning rate of 0.001, a training batch of 128, and a maximum 
epoch number set to 6,000. 

To compare the results of public health economic early warning of different models, 
RFCART (Botz et al., 2022), PCA-CNN (Sansone and Zhu, 2023), CNN-LSTM (Azadi 
et al., 2023) and the proposed model FSCNN were selected for comparative experiments, 
as shown in Figure 5. RFCART and PCA-CNN have relatively high rates of misjudging 
the warning level. Among the 34 samples, the numbers of misjudgments are 7 and 8 
respectively, and the accuracies are 79.41% and 76.47% respectively. The PCA-CNN had 
4 false alarms and an accuracy of 88.23%, while the FSCNN had the best early warning 
results, with an accuracy of 94.12%. A longitudinal comparison shows the overlap 
between the predicted sample grades and the actual sample grades. A higher overlap 
indicates a better early warning effect. The grade recognition effect of FSCNN is better 
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than the other three models. This shows that the FSCNN’s public health economic 
monitoring and early warning results are better. 

Figure 5 Public health economic early warning results from different models (a) monitoring and 
early warning results of RFCART (b) PCA-CNN (c) CNN-LSTM and (d) FSCNN  
(see online version for colours) 
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(c)     (d) 

The loss curves of different models are shown in Figure 6. As can be seen from the 
figure, when the number of iterations reaches 1,500, the loss of FSCNN reaches about 
0.05, while the loss of CNN-LSTM only reaches 0.05 after 2,000 iterations. The loss 
values of RFCART and PCA-CNN are generally lower than those of CNN-LSTM and 
FSCNN. FSCNN, a hybrid network model that incorporates an attention mechanism, has 
lower loss values during model training, better fitting results and faster training speed 
than the other three types of network models. 

In addition to analysing the early warning results and loss functions of each model, 
this paper also uses quantitative indicators such as Accuracy, MAE, RMSE and the 
coefficient of determination R2 to fully evaluate the early warning performance of 
different models, as shown in Table 1. The FSCNN has an accuracy of 93.36%, which is 
an improvement of 14.85%, 12.31% and 5.07% over RFCART, PCA-CNN and  
CNN-LSTM, respectively. The MAE and RMSE of the FSCNN are 0.3518 and 0.7159 
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respectively, which is at least 11.21% lower than the other three models. Comparing R2 
again, FSCNN’s R2 is closest to 1, indicating its highest accuracy in early warning. 
Although RFCART screens the characteristics of public health economics through RF, it 
does not optimise RF. It only uses a single model to provide early warnings of the results 
of public health economic monitoring, resulting in large forecast losses. PCA-CNN is an 
early warning model based on a single neural network. It can only extract local features 
through the CNN and does not consider other features. CNN-LSTM does not filter 
features, so its early warning performance is not as good as that of the FSCNN model. 
Therefore, FSCNN has excellent early warning accuracy and precision, and can more 
accurately monitor and warn of public health emergencies. 

Figure 6 The loss curves of different models (see online version for colours) 
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Table 1 Comparison of warning performance indexes of different models 

Model Accuracy MAE RMSE R2 
RFCART 78.51% 0.4861 0.8452 0.8381 
PCA-CNN 81.05% 0.4289 0.8163 0.8936 
CNN-LSTM 88.29% 0.3962 0.7841 0.9156 
FSCNN 93.36% 0.3518 0.7159 0.9439 

6 Conclusions 

For the goal of dealing with the issue of insufficient feature extraction and feature 
redundancy in the current early warning method for public health economic monitoring, 
the RF split feature selection function is first simplified based on the principle of 
equivalent infinitesimal to improve the efficiency of function operation. The Gini 
coefficient value of the non-category attribute is introduced to overcome the experimental 
errors caused by variable redundancy and improve the calculation efficiency and 
screening performance of the RF algorithm. Then, public health economic impact 
variables are selected and normalised. Next, a hybrid neural network model is designed to 
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extract the temporal and spatial features of the variables. A residual structure is 
introduced to improve the CNN to extract deeper spatial features. Meanwhile, the time 
features are extracted by GRU and integrated into SAM to enhance the temporal and 
spatial features. Finally, the IRF is used to further screen the spatio-temporal features to 
obtain the most important spatio-temporal features for the early warning results, and then 
perform a nonlinear transformation to map them to the monitoring and early warning 
results of public health economics. The experimental outcome indicates that the MAE 
and RMSE of the offered model are at least 11.21% lower than those of the other three 
models. It has high early warning accuracy and can achieve accurate monitoring and 
early warning of public health economics. 
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