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Abstract: As smart grids evolve, substation point cloud data is vital for 
management, maintenance, and monitoring. However, traditional recognition 
algorithms struggle with challenges such as noise, occlusion, viewpoint 
changes, and uneven density. This paper proposes a novel approach for 
substation equipment point cloud recognition. It first establishes a local 
coordinate system for the point cloud based on symmetry and spatial 
distribution, achieving translation and rotation invariance. A new attribute 
descriptor is then defined, considering form characteristics and viewpoint 
variations, and a template database of 20 electrical devices is created. By 
matching descriptor of a device’s point cloud with those in the template 
database, the correct device is identified. The proposed method is compared 
with two other methods, achieving a 90% identification precision with an 
average time of 3.2 seconds per device. The method demonstrates robustness, 
maintaining over 70% accuracy even with noise, occlusion, and irregular point 
cloud density. 

Keywords: substation equipment; point cloud recognition; local coordinate 
system; attribute descriptor; matching descriptor. 
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1 Introduction 

In recent years, 3D reconstruction technology has been widely used in computer vision, 
robot navigation, intelligent monitoring, and other fields (Sun et al., 2021). Especially in 
infrastructure management and maintenance, high-precision 3D modelling can provide 
more intuitive and accurate environmental information, which can help intelligent 
operation and maintenance, and fault detection. As a core component of the power 
system, substations have a wide variety of equipment and complex structures. Traditional 
inspection and management methods often rely on manual operation, which is inefficient 
and easily affected by human factors. Therefore, how to use advanced 3D reconstruction 
technology to realise intelligent management of substations has become an important 
direction of current research (Karantzalos and Paragios, 2010; Zhu et al., 2024). 

Traditional substation 3D modelling methods mainly rely on engineering blueprints 
and professional 3D modelling software (such as 3DMax) (Azevedo et al., 2021; Kokorus 
et al., 2016). However, this approach faces many challenges: first, the construction 
process of the substation may cause the final structure to be inconsistent with the original 
design drawings due to factors such as construction changes and equipment replacement; 
second, the engineering drawings may be outdated and incomplete, making it difficult for 
the blueprint-based modelling method to guarantee high accuracy; in addition, the manual 
comparison and manual modelling processes are cumbersome and error-prone, affecting 
the efficiency and quality of modelling (Wu et al., 2018; Zhang et al., 2023). 

Driven by advancements in laser scanning and building information modelling (BIM) 
technologies, Zhang et al. (2024) and Ye et al. (2023) have highlighted that 3D 
reconstruction utilising point cloud data has gradually become an effective solution. 
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By using laser scanning and BIM technologies, more accurate 3D structural 
information of substations can be captured, and discrepancies between design and actual 
construction can be detected promptly. Studies have shown that this approach notably 
enhances the precision and effectiveness of 3D modelling, particularly when handling 
incomplete construction data and outdated design data (Ye et al., 2023; Hu, 2020). 
Additionally, Ye et al. (2023) believe that the application of 3D modelling software (such 
as 3DMax) is continuously optimised. By combining point cloud data with engineering 
drawings, manual comparison errors in traditional methods can be effectively resolved. 

Currently, for 3D recognition of substation equipment, features such as projected 
boundary curvature and point cloud intensity are used, along with an improved AdaBoost 
algorithm for equipment recognition, achieving over 98% accuracy in both training and 
testing. However, the computation time is relatively long (Jawad et al., 2020; Yuan et al., 
2022). While AdaBoost performs excellently in classification accuracy, the use of 
numerous weak classifiers leads to longer computation times, limiting its real-time 
efficiency in practical substation applications. Therefore, further optimisation to balance 
recognition accuracy and computation time remains a key research direction. 

To obtain a depth image of the point cloud, preselection results are obtained by 
calculating the histogram similarity of distances to model libraries, and the most 
matching model is selected through Hough voting, achieving a recognition rate of 90.1% 
with an average recognition time of 15.6 seconds (Li et al., 2023b; Yang et al., 2024). 
This method improves matching efficiency and recognition rate by using histogram 
similarity as a point cloud preprocessing step. Hough voting effectively reduces 
misrecognition and enhances stability. Furthermore, this method outperforms the 
AdaBoost algorithm in terms of computation time, making it more suitable for real-time 
recognition in substation equipment scenarios. However, in cases with more complex 
point cloud data or numerous equipment types, issues with inaccurate similarity 
measurement may arise, requiring further research and optimisation. 

The device point cloud base completes partial identification and segmentation, but 
does not complete device identification (Yuan et al., 2022). Their method focuses on 
extracting sub-base point clouds of substation equipment through segmentation 
algorithms, laying the foundation for subsequent equipment recognition and scene 
reconstruction. However, since this method does not complete full equipment 
recognition, it cannot be directly applied for comprehensive substation equipment 
detection and monitoring. To overcome this limitation, future research could combine 
advanced techniques such as deep learning to further recognise and classify equipment, 
improving accuracy. 

Some scholars first divide the bounding box of substation equipment point clouds into 
subspaces. Nader et al. (2021) optimised the feature weights of subspaces using particle 
swarm optimisation (PSO) and then used the K-nearest neighbour (KNN) algorithm for 
classification (Yang et al., 2024). By dividing point cloud data into multiple subspaces, 
the method effectively reduces computational complexity and uses PSO to optimise 
feature weights, thereby improving classification accuracy. However, this method is 
sensitive to noise, especially when point cloud data is of poor quality or contains 
significant background noise, which can affect recognition results. To address this, recent 
studies have attempted to integrate deep learning models to enhance noise robustness, but 
the issue of high algorithm complexity remains. 
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Sun et al. (2022) first extract geometric features from the coloured point cloud, then 
determine the optimal feature subset, and finally use the random forest algorithm to 
classify the point cloud. Al-Durgham (2014) used the RANSAC algorithm to extract 
semi-surface features for model preselection, followed by key point extraction based on 
point cloud curvature information, and precise recognition through the iterative closest 
point (ICP) algorithm. This method reduces computational load by initially extracting 
features using RANSAC and achieves precise matching through ICP. Although this 
method excels in recognition accuracy, the computation time is long, particularly in 
large-scale substation equipment point cloud data processing, where ICP requires 
numerous iterations, resulting in poor real-time performance. Thus, optimising 
computation time while ensuring accuracy remains a significant research challenge. 

Numerous studies (Arastounia and Lichti, 2015; Arastounia and Lichti, 2013; 
Arastounia and Lichti, 2014; Zhang et al., 2018) in leverage prior knowledge of 
equipment models to automatically extract specific equipment models, such as insulators, 
transformers and circuit breakers (Yu et al., 2021). These studies combine prior 
knowledge with point cloud data to improve equipment recognition efficiency and reduce 
interference from irrelevant objects. However, reliance on prior knowledge limits the 
generalisation ability of these methods, particularly when faced with new, unseen 
equipment models. 

Zhang et al. (2024) divided the bounding box and used the point count within each 
segment as features for equipment 3D data recognition, achieving fast recognition speed, 
but without considering the posture of the equipment 3D data. This method is 
advantageous in terms of fast calculation and high recognition efficiency, making it 
suitable for real-time detection tasks. However, it does not effectively account for posture 
changes (such as rotation and translation), which may reduce recognition accuracy when 
dealing with equipment point clouds in different postures. Therefore, future research can 
enhance this method by introducing posture-invariant features or employing posture 
estimation techniques to improve applicability and accuracy. 

This study introduces an innovative substation equipment 3D data identification 
method aimed at overcoming the limitations of traditional 3D data recognition methods in 
handling uneven density, posture variations, and noise interference. This method not only 
enables efficient and rapid equipment point cloud recognition but also demonstrates 
significant improvements in recognition accuracy. First, a local coordinate system for the 
equipment point cloud is constructed, effectively avoiding the impact of posture changes 
(such as rotation or scaling) on recognition results, while reducing errors during point 
cloud data transformation. 

Next, to better describe the spatial form of the equipment characteristics, the paper 
combines the shape characteristics from the 3D data with differences at various viewing 
angles, designing a feature descriptor. This descriptor captures local spatial data 
regarding the equipment 3D model and remains stable across different viewpoints. This 
method enhances the feature representation capability from the 3D data and ensures 
elevated recognition accuracy even with uneven 3D data density. This innovation not 
only strengthens the 3D model’s descriptive power but also reduces errors caused by 
viewpoint changes, thus improving robustness. 

In terms of recognition efficiency, the proposed method significantly enhances 
recognition speed. Experimental results show that the average recognition time for each 
equipment is only 3.2 seconds, which adequately satisfies real-time criteria of large-scale 
substations. Compared with traditional equipment 3D model recognition algorithms, this 
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approach demonstrates notable advantage during recognition performance, making it 
especially suitable for environments with an array of equipment as well as large 3D 
model data volumes. This method ensures both efficient processing speed and elevated 
recognition accuracy, making substation real-time monitoring and maintenance more 
efficient. 

The key findings of this study are outlined as follows: 

• A localised coordinate system construction method for equipment 3D data is 
proposed, effectively avoiding the impact of posture variations (such as rotation or 
scaling) and reducing errors during 3D data transformation. 

• A stable and efficient feature descriptor is designed, combining the structural shape 
attributes of the equipment 3D model with differences at various viewpoints, 
ensuring high recognition accuracy even with uneven 3D data density. 

• The new feature descriptor enhances the descriptive ability of the 3D model, 
effectively reducing errors due to viewpoint changes and improving the robustness of 
3D model recognition. 

• While ensuring high recognition accuracy, the proposed method significantly 
enhances recognition speed, with an approximate recognition duration of 3.2 seconds 
per equipment, meeting the real-time monitoring needs of large-scale substations. 

2 Related work 

Over the past few years, the processing and recognition of equipment point cloud data 
have seen extensive use in fields such as power systems and substation equipment 
automation inspection. With the continuous development of laser scanning, deep 
learning, and computer vision technologies, improving the precision, reliability, and 
performance of point cloud data handling has become a hot research topic. This section 
reviews and analyses recent studies on point cloud feature extraction, local coordinate 
system establishment, and template matching, discussing the advantages and 
disadvantages of existing methods. 

2.1 Point cloud feature extraction and descriptor construction 

Feature extraction using point cloud information is a core step for achieving automatic 
equipment recognition. Over the years, scientists have introduced multiple feature 
extraction methods to enhance the precision and robustness of point cloud recognition. 
Ye et al. (2022) presented a point cloud-based feature extraction method based on local 
shape descriptors. This approach combines the point cloud data’s normal direction, 
curvature, and local geometric features to effectively distinguish between different shapes 
of equipment. 

By calculating local curvature changes and normal vector changes, unique geometric 
features of the equipment are extracted. However, while this method performs well with 
standard point clouds, it is sensitive to noise, particularly when the point cloud is sparse 
or occluded, resulting in significant accuracy degradation. To address the noise impact, 
Li et al. (2023a) proposed a multi-scale voxel grid-based feature extraction method. This 
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technique segments the point cloud into multi-scale grids and constructs feature 
descriptors based on the geometric information within each voxel. Empirical findings 
show that this approach efficiently reduces the impact of noise and enhances the 
robustness of point cloud features, but it remains computationally complex, especially 
when processing high-density point clouds, requiring greater computational resources. 

In recent years, deep learning methods have seen extensive application to point cloud 
feature extraction, with convolutional neural networks (CNNs) being particularly useful. 
Sun et al. (2018) proposed a 3D convolutional neural network (3D-CNN)-based feature 
extraction method for point clouds. This method models point cloud data using deep 
learning to automatically extract both local and global features, achieving higher 
recognition accuracy. However, the method requires significant computational resources, 
especially when dealing with large point cloud datasets, leading to bottlenecks in 
processing speed and storage requirements. 

2.2 Establishment of local coordinate system and equipment alignment 

Establishing a local coordinate system for equipment point clouds is fundamental to point 
cloud recognition. Traditional methods often use principal component analysis (PCA) for 
coordinate system derivation, but PCA is sensitive to noise and occlusion, leading to poor 
robustness. Over the past few years, numerous approaches have been introduced to 
overcome this limitation. Wu et al. (2021) suggested an approach relying on the balance 
and spatial density of the point cloud data to establish the local coordinate system of 
equipment. This technique first analyses the symmetry of the point cloud data and 
combines the spatial distribution density of the point cloud data in various directions to 
deduce the directions of the coordinate axes. 

This approach can effectively handle variations in equipment shape and noise 
interference, establishing a more robust local coordinate system. However, when dealing 
with highly complex equipment geometries, misjudgements may still occur, especially 
for devices with irregular or complicated shapes. Hu et al. (2023) proposed a deep 
learning-based point cloud alignment method. By training a self-supervised learning 
model, this method can automatically align equipment point clouds from different 
viewpoints, significantly improving the alignment accuracy. While this method 
eliminates the need for manual calibration data, it requires significant training time and 
computational complexity when dealing with large-scale data. To enhance robustness, 
Patil et al. (2017) proposed a method based on adaptive coordinate systems for point 
cloud alignment. This method adjusts the coordinate system’s direction adaptively by 
detecting local features and global information of equipment point clouds, ensuring 
consistent coordinates for equipment regardless of its posture. While this approach 
handles noise and occlusion effectively, it incurs high computational costs and demands 
more advanced hardware. 

2.3 Template matching and recognition 

Early template matching methods mainly used Euclidean distance as the similarity 
metric. Zheng et al. (2023) employed Euclidean distance as the standard for point cloud 
template matching, calculating the matching error between the feature representations of 
the equipment for recognition and the templates in the template library. This method is 
simple and effective, with relatively low computational complexity, but its performance 
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is poor when dealing with significant shape changes, especially when equipment is 
partially occluded or undergoes large morphological variations. 

Over the past few years, deep learning techniques have found extensive application in 
point cloud matching, particularly with the introduction of CNNs and GCNs, which have 
significantly improved the accuracy and robustness of template matching. Liu et al. 
(2019) proposed a point cloud template matching method based on deep convolutional 
neural networks. By leveraging machine learning models to automatically derive 
complex, high-dimensional characteristics from point clouds, this method significantly 
improves matching accuracy. It can adapt to changes in equipment shape and missing 
point clouds, but the training phase demands substantial annotated data, and the time 
required for training is quite extensive. 

To address the issue of equipment point cloud variations, Zhang et al. (2021) 
introduced a point cloud approach relying on generative adversarial networks (GANs). 
This method generates diverse point cloud data samples to enhance the diversity of the 
template library, improving the robustness of template matching. Experimental results 
show that the GAN model effectively handles shape variations in equipment, but the 
training of the generated model is challenging and requires considerable computational 
resources. 

In comparison to these methods, the approach presented in this paper combines 
feature descriptors with template matching, reducing computational complexity while 
enhancing the precision and robustness of equipment recognition. 

2.4 Equipment recognition using multi-modal data fusion 

Recently, the integration of point cloud and image information has gained increasing 
attention in equipment recognition. By combining different types of data, recognition 
accuracy can be enhanced, especially in complex environments. The fusion of point cloud 
and image data can efficiently compensate for the limitations of individual data sources. 
Cui et al. (2020) proposed an equipment recognition method based on integrating point 
cloud and image data. They utilised a deep learning model for joint training of point 
cloud and image information, achieving higher accuracy in equipment recognition 
through multi-modal feature fusion. Experimental results show that integrating point 
cloud information can significantly improve recognition precision, particularly when the 
equipment is occluded or has irregular shapes, as image data can fill in the missing point 
cloud information. 

However, this method requires large amounts of training data and has high 
computational complexity. Yuan et al. (2022) proposed an equipment recognition 
approach utilising the integration of point cloud and LiDAR data. By combining the  
high-precision spatial information from LiDAR sensors with the detailed features of point 
cloud data, and using machine learning techniques for joint training, this method 
significantly improves recognition accuracy and robustness. This method is especially 
effective in complex environments, such as when equipment is partially occluded or 
when point cloud data is sparse, providing strong robustness. 
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3 Method 

This section introduces the proposed substation equipment point cloud recognition 
method. In Section 3.1, an overview of the overall design process for equipment 
recognition methods is provided. Then, the specific processes of the design are described 
in detail in Sections 3.2, 3.3, 3.4 and 3.5. 

3.1 Design process 

The identification algorithm process of the point cloud of substation equipment is shown 
in Figure 1. 

Figure 1 Flowchart of point cloud recognition of substation equipment 

 

Firstly, establish the local coordinate system of the device’s point cloud for identification. 
This local coordinate system has translational and rotational invariance and is robust to 
noise. This is a crucial step in ensuring that the device point cloud is accurately 
identified. 

Secondly, the feature descriptors of point clouds for computing devices. According to 
the established local coordinate system of the point cloud of the device, the point cloud is 
projected to the xoy, xoz and yoz planes, and each projection is finally converted into a 
feature vector. The three plane projected eigenvectors are connected to obtain the feature 
representation of the device’s point cloud object. 

Ultimately, the template retrieval was performed. After obtaining the feature 
representation of the device’s point cloud object to be identified, match the feature 
descriptor with the feature descriptor in the template library, find the template with the 
smallest distance error, and complete the identification of the device. 

3.2 Establish the local device point cloud’s coordinate system 

The commonly used method of establishing point cloud local coordinate system is mainly 
component analysis method (PCA), but PCA is very prone to noise and occlusions. 
Therefore, in this paper, the symmetry and distribution density of device point cloud in 
space, as shown in Figure 2. Since the substation scene is in an outdoor open 
environment, the terrain is flat, and the substation equipment and the ground are vertical, 
the z-axis orientation of the local reference system of the equipment point cloud. And the 
point cloud is subsequently mapped to the x-y plane to calculate the minimum enclosure 
box of the projection, which is the rectangle with the smallest area in all enclosure boxes, 
as shown in Figure 3. After obtaining the minimum surround frame of the device point 
cloud, take the boundary of the surrounding frame as the x-axis and the longer edge as 
the y-axis. Then establish the minimum surround box of the device point cloud as the 
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bottom side, and take the centre of the minimum surround box as the origin of the local 
coordinate system of the device point cloud, as illustrated in Figure 4. 

Figure 2 Flowchart of establishing a local coordinate system of equipment point cloud 

 

Figure 3 Minimum bounding box of the projection of equipment point cloud in xoy plane  
(see online version for colours) 

 

When the proportion between the two edges of the minimum enclosure is less than 1.1, 
the horizontal and vertical axes are judged for the first time; however, due to the 
possibility of noise interference, further judgement is needed to identify the horizontal 
and vertical axes. This requires analysing the symmetry of the device point cloud about 
the yoz and xoz planes on the basis of the x and y axes determined in the first time. 

As illustrated in Figure 5, if the device point cloud object has better symmetry about 
the xoz plane, then the horizontal and vertical axes are modified; otherwise, the current  
x-axis and y-axis are unchanged. 
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Figure 4 Determination of x and y axes of the local coordinate system (see online version  
for colours) 

 

Figure 5 The symmetry of equipment point cloud on plane xoz and plane yoz (see online version 
for colours) 

 

To calculate the symmetry of a device point cloud about the plane pl, initially, the 
smallest bounding box for the device’s point cloud is subjected to voxel partitioning, 
resulting in the voxel grid of the point cloud, denoted as V. The determination of voxel 
size necessitates consideration of the data density of the point cloud, the impact of noise, 
and computational efficiency. Through experimentation, the voxel size is defined as 0.1 
meters. 

If V(i, j, k) contains a point within the object’s point cloud, then V(i, j, k) = 1; 
otherwise, V(i, j, k = 0. The plane pl splits the voxel grid into two sections, denoted as pl+ 
and pl–, where the number of voxels with V(i, j, k) = 1 in each of these sections is denoted 
as pln +  and ,pln −  respectively. When the two symmetrical parts have V(i, j, k) = 1, the 
voxel is considered to possess symmetry. The number of all symmetrical voxels in V is 
denoted as nsym. The symmetry of the object point cloud with respect to the plane pl is 
calculated according to equation (1). 

( )
( )

2 min ,
sym

pl pl

n
sym pl

n n+ −

=
⋅

 (1) 
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After determining the x and y axes, the distribution density of the cloud of points in space 
serves to identify the positive directions of the x and y axes. The cloud of points is split 
into two parts by the xoz plane and the yoz plane, as shown in Figures 6(a) and 6(b). The 
two sections separated by the xoz plane are labelled as Ypos and Yneg, respectively, while 
the two sections separated by the yoz plane are labelled as Xpos and Xneg. According to 
equation (2), the volume densities of these four parts are calculated as follows: 

( ) P

scale

ndensity P
n

∗∗ =  (2) 

where Pn ∗  indicates the voxel count in part P*, where V(i, j, k) = 1; nscale represents the 
overall count of voxels in part P*, including voxels, where V(i, j, k) = 1 and V(i, j, k) = 0. 

Based on the calculated volume densities of these four parts, the direction of the part 
with the larger volume density is taken as the forward direction of the respective 
coordinate axis. For example, for the two parts Xpos and Xneg divided by the yoz plane, if 
the volume density of Xpos is greater than that of Xneg, then the forward direction of the  
x-axis coordinates moves towards Xpos. Similarly, the forward direction of the y-axis can 
be determined based on the volume densities of Ypos and Yneg. Using this approach, the 
point’s local coordinate system for the device is established, as illustrated in Figure 6(c). 
This local coordinate system is invariant under translation and rotation, guaranteeing 
resistance to noise. 

Figure 6 Determination of the positive direction of x and y axes, (a) divided by the xoz plane  
(b) divided by the yoz plane (c) establishment of the local reference coordinate system 
(see online version for colours) 

 
 (a) (b) (c) 

3.3 Feature description 

This paper defines a novel feature descriptor by combining the variations in the form of 
the substation equipment point cloud with the equipment image. The specific calculation 
steps are outlined as follows: 

Step 1 Segment the smallest bounding box for the equipment point cloud and divide it 
into a 12 × 12 × 12 voxel grid, where the voxel size is 
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;
12

;
12

.
12

Ll

Ww

Hh

 =

 =



=

 (3) 

where L, W and H represent the dimensions (length, width, and height) of the 
minimum enclosure box for the equipment point cloud, respectively; l, w and h 
denote the dimensions of each voxel. 

A voxel space V is established for the equipment point cloud object, through 
which a 3D spatial distribution matrix M12×12×12 is obtained for the equipment 
point cloud object. M12×12×12 represents the spatial arrangement features of the 
object point cloud within three-dimensional space. If a point falls into a voxel 
V(i, j, k), the corresponding value of the distribution matrix is set to 1, i.e.,  
M(i, j, k) = 1; otherwise, M(i, j, k) = 0. 

Step 2 The equipment point cloud is mapped to the xoy, xoz, and yoz planes, resulting 
in three two-dimensional distribution matrices: 12 12 ,xoyM ×  12 12

xozM ×  and 12 12.yozM ×  

12

1
1, ( , , ) 0;( , )
0, otherwise

xoy k
M i j k

M i j =
 ≠= 


  (4) 

12

1
1, ( , , ) 0;( , )
0, otherwise

xoz k
M i k j

M i j =
 ≠= 


  (5) 

12

1
1, ( , , ) 0;( , )
0, otherwise

yoz k
M k i j

M i j =
 ≠= 


  (6) 

Step 3 Convert the two-dimensional distribution matrix of each projection plane into a 
feature representation, and concatenate the three feature representations to 
construct the final feature descriptor of the equipment point cloud object. For a 
given projection plane’s two-dimensional distribution matrix 12 12 ,M ∗

×  it is 
transformed into a feature representation 24v∗  according to equation (7): 

12

1
24 12

1

( , ), 12;
( )

( , ), otherwise

j

j

M i j i
v i

M j i

∗
=∗

∗
=

 ≤= 






 (7) 

Each projection plane is converted into a 24-dimensional feature vector. Then, 
the feature vectors of the three projection planes are concatenated to obtain the 
final feature descriptor 24 24 24( , , ),xoy yozxozf v v v  with a dimensionality of 24 × 3 = 72. 
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3.4 Template matching 

Since there is currently no publicly available dataset of point clouds in substation 
scenarios, nor a public template library for substation electrical equipment, this paper 
establishes a template library for electrical equipment, which includes 54 standard 
electrical equipment templates. The standard electrical equipment includes categories 
such as circuit breakers, disconnectors, and isolating switches. Each type of electrical 
equipment is assigned a unique identification number. The feature descriptor of each 
template point cloud is calculated and stored together with the corresponding template’s 
category, identification number, and 72-dimensional feature descriptor information. The 
template library is organised as a 54 × 72 two-dimensional matrix and stored in a 
structured format, facilitating retrieval. When the shape of a device changes or new 
equipment types needs to be identified, the template library can be updated or 
supplemented to ensure its dynamic consistency. 

During the template matching stage, after obtaining the feature representation of the 
target equipment point cloud, the similarity between this representation and the feature 
representations of each template in the template library is calculated to find the  
best-matching template. Since the Euclidean distance assessment approach is simpler and 
more effective than other methods, the Euclidean distance between the feature 
representation of the target equipment point cloud and the feature descriptor of the 
template is calculated according to equation (8) and used as the discrepancy between the 
two. 

( ) ( )72 2

1
, ( ) ( )o o o oi

ε f f f i f i′ ′
=

= −  (8) 

where fo represents the feature descriptor of a template in the template library; ft 
represents the feature descriptor of the equipment point cloud to be identified. 

4 Experiments and analysis 

4.1 Experiment details 

The computer used in the experiment is configured with an Intel® Core™ i5-10300H 
CPU, 8 GB of memory, and a 64-bit Windows 10 operating system. The experimental 
platform is Visual Studio 2019, utilising the PCL open-source C++ library for point cloud 
programming. The substation equipment point cloud recognition algorithm proposed in 
this paper was evaluated using 90 point cloud datasets of equipment for identification. 
The experimental data in this paper was obtained by using a 3D laser scanner mounted on 
a vehicle to scan parts from the Songshan 500 kV substation. 

4.2 Compare with other methods 

For each equipment point cloud to be identified, its feature descriptor is calculated and 
then compared with the feature descriptors of all templates in the template library to find 
the template with the highest similarity. This completes the recognition of the 
equipment’s point cloud. Among the 90 tested equipment point clouds, 81 were correctly 
recognised, while 9 were misidentified, resulting in a recognition accuracy of 90%. The 
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average time to identify one equipment point cloud was 3.2 seconds, showing a 
comparatively high recognition speed. 

The method introduced in this study was evaluated against two other existing point 
cloud of substation equipment recognition methods, and the findings are presented in 
Table 1. The recognition accuracy of all three methods exceeds 85%, with the proposed 
algorithm achieving 90%, marginally below the 92.33% performance reported in Yuan  
et al. (2023), but higher than the 87.78% accuracy in Guo et al. (2019). Although there is 
a minor variance in accuracy, the proposed algorithm has a recognition time of only  
3.20 seconds, which is considerably faster than the 19.41 seconds in Arastounia and 
Lichti (2013) and 17.56 seconds in Ji et al. (2019). 

The accuracy difference may be related to feature extraction and model complexity. 
The higher-accuracy method in Yuan et al. (2023) may have used more complex feature 
descriptors and deep learning models, while the proposed algorithm simplifies the feature 
extraction process, reducing computational complexity and thus significantly shortening 
recognition time. This makes it more suitable for applications that require fast responses. 

In terms of balancing efficiency and accuracy, the proposed algorithm effectively 
reduces recognition time while maintaining high accuracy, making it suitable for  
real-time monitoring and dynamic recognition tasks for substation equipment. Although 
its accuracy is slightly lower than that of Yuan et al. (2023), the shorter recognition time 
gives it a significant advantage in practical applications that demand high real-time 
performance. Therefore, the proposed algorithm shows good potential for application in 
equipment point cloud recognition. 
Table 1 Comparison of different methods 

Algorithm Recognition time (s) Recognition accuracy (%) 
Proposed algorithm 3.20 90.00 
Method in Guo et al. (2019) 17.56 87.78 
Method in Hu (2020) 19.41 92.33 

As shown in Table 2, when comparing the performance of our, GOOD (a), and VFH (b) 
methods, it can be observed that our method outperforms other methods in terms of 
precision, recall, and accuracy, exhibiting strong overall advantages. Specifically, the 
recall rate of our method in all test samples remained above 0.659 and reached a 
maximum of 0.738, which was significantly higher than that of GOOD (a) and VFH (b), 
indicating that the method has strong recognition ability when retrieving matches, and 
can effectively reduce missed detections. In addition, in terms of accuracy, the highest 
value of this method is 0.710, indicating that it can maintain a low false detection rate 
while ensuring the recall rate, thus improving the overall recognition effect. In contrast, 
the GOOD (a) method performs relatively well in terms of recall rate, reaching a 
maximum of 0.719, indicating that it has a wide coverage of sample matching. However, 
its precision and accuracy are significantly lower than our method, with the highest being 
0.622 and 0.544, respectively, indicating that although this method can retrieve more 
matching samples, it has more false detections and reduces the overall accuracy. On the 
other hand, the accuracy of the VFH (b) method is relatively high, reaching a maximum 
of 0.698, which is slightly better than that of GOOD (a), but the recall rate is generally 
low, resulting in its limited effect in some sample matching tasks. In addition, the overall 
accuracy of the VFH method is between GOOD (a) and our method, reaching a 



   

 

   

   
 

   

   

 

   

    3D point clouds recognition method for substation equipment 15    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

maximum of 0.568, which is still significantly lower than the 0.666 of our method. 
Further analysis of the advantages of our method shows that it exhibits relatively stable 
performance in all three indicators, especially while ensuring a high recall rate, it still 
maintains a high precision and accuracy. 
Table 2 Performance comparison with other existing methods 

Our  GOOD (a)  VFH (b) 
Precision Recall Accuracy  Precision Recall Accuracy  Precision Recall Accuracy 
0.696 0.721 0.640  0.503 0.615 0.410  0.575 0.629 0.472 
0.651 0.659 0.552  0.516 0.581 0.400  0.698 0.615 0.552 
0.687 0.706 0.619  0.589 0.719 0.544  0.631 0.668 0.544 
0.710 0.738 0.666  0.622 0.613 0.497  0.649 0.649 0.544 
0.702 0.727 0.650  0.607 0.671 0.527  0.653 0.677 0.568 

4.3 Ablation experiments 

To evaluate the resilience of the equipment point cloud recognition method presented in 
this study, experiments were conducted under scenarios involving noise, irregular point 
cloud density, and occlusions. 

1 Noise: Gaussian noise with different variances σ was added to the 90 equipment 
point clouds to be identified, as illustrated in Figure 7. 

Figure 7 Equipment point cloud with different degree of Gaussian noise, (a) original equipment 
point cloud (b) σ = 0.05 (c) σ = 0.15 (d) = σ = 0.30 (see online version for colours) 

 
 (a) (b) (c) (d) 

2 Uneven point cloud density: the 90 equipment point cloud objects were divided into 
layers along the z-axis at intervals of 0.5 m, and voxel down-sampling was applied to 
each layer. The voxel size for the 0th layer was set as VoxelSize0, and the voxel size 
for the ith layer was set as VoxelSizei. Different levels of down-sampling were 
applied to the equipment point clouds by setting different VoxelSize values, as 
illustrated in Figure 8. 
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Figure 8 Equipment point cloud with different degree of uneven density, (a) original equipment 
point cloud (b) 0.005 (c) 0.010 (d) 0.030 (see online version for colours) 

 
 (a) (b) (c) (d) 

3 Occlusion: a variable cube with a fixed angle was applied to segment the point cloud 
of the equipment objects, as depicted in Figure 9. The rate of occlusion for the point 
cloud is determined by calculating the proportion of points that are blocked or 
removed relative to the total points in the original point cloud. 

Figure 9 Equipment point cloud with different degrees of occlusion, (a) no occlusion (b) 15% 
occlusion (c) 25% occlusion (d) 60% occlusion (see online version for colours) 

 
(a)     (b) 

 
(c)     (d) 

Figure 10 shows the comparative results of the suggested algorithm and two other 
substation equipment point cloud recognition algorithms under conditions of noise, 
uneven density, and occlusion. From Figure 10(a), it is observed that as the noise level in 
the point cloud increases, the recognition precision of all three methods drops rapidly. On 
noise-free data, all three methods achieve good recognition performance, but under high 
noise levels, the proposed method achieves slightly superior to the other two methods. 
This is because the method in Guo et al. (2019) uses the cosine value of the angle 
between the centroid of the subspace and the centroid of the entire point cloud as the 
subspace feature. 
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Figure 10 Comparison of recognition accuracy of different algorithms, (a) under noise 
conditions (b) when the point cloud density is uneven (c) under occlusion conditions 
(see online version for colours) 

 
(a) 

 
(b) 

 
(c) 
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When the point cloud is noisy, the characteristics of the subspaces containing noise points 
deviate from 0. If the point cloud contains too numerous noise points, which results in 
significant changes to the subspace feature vectors, making it difficult to effectively 
recognise the point cloud. The method in (Yuan et al., 2023) predicts the template by 
identifying the planar characteristics of the equipment point cloud. However, since 
substation equipment is generally symmetrical along the central axis, the extraction of 
planar features requires high precision. When the point cloud contains a large amount of 
noise, the planar features of the equipment point cloud may fail to select the correct 
template, leading to recognition errors. In contrast, the descriptor introduced in this study 
leverages the existence of points in the 2D grid of each projection plane, which helps 
mitigate the negative impact of noise on recognition. 

From Figure 10(b), it can be seen that the proposed equipment point cloud 
recognition algorithm maintains an identification accuracy of over 70% even when the 
point cloud density is uneven, showing significant advantages over the other two 
recognition methods. The method in Guo et al. (2019) uses the cosine value of the angle 
between the centroid of the subspace and the centroid of the entire point cloud as the 
subspace feature. This method is highly sensitive to point cloud density. When the point 
cloud density is uneven, the overall centroid of the point cloud undergoes severe shifts, 
resulting in features that cannot effectively recognise the equipment point cloud. 
Consequently, as the sampling level increases, the recognition accuracy drops rapidly. 
The method in Yuan et al. (2023) uses the RANSAC algorithm to extract planar features. 
However, when the point cloud density is uneven, planar features cannot be accurately 
extracted, leading to a decline in recognition accuracy. In contrast, the proposed 
equipment point cloud recognition method describes the equipment point cloud based on 
the existence of points in the 2D grid of each projection plane. When the point cloud 
density is uneven, the shape features of the equipment point cloud are not directly 
affected. Therefore, the proposed feature descriptor can still effectively describe the 
equipment point cloud, maintaining a high recognition accuracy. 

From Figure 10(c), it can be seen that once the occlusion rate exceeds 30%, the 
recognition accuracy of all three methods decreases. This is due to the presence of some 
substation equipment with central axis symmetry. When occlusion is present in the point 
cloud, the plane normal vectors extracted by the RANSAC algorithm in the method of 
Yuan et al. (2023) become inaccurate, leading to a decline in recognition accuracy. The 
method in Yuan et al. (2023) is more affected by occlusion because when occlusion 
occurs in the point cloud, not only does the centroid of the entire point cloud shift, but the 
subspace features of the missing parts also become 0, which causes the final feature 
descriptor to fail to describe the original equipment point cloud, resulting in lower 
recognition accuracy. In contrast, the proposed method extracts the feature descriptor of 
the equipment point cloud based on its shape, which provides strong descriptive ability. 
However, when occlusion is present, the shape of the point cloud changes to some extent, 
leading to a decrease in recognition accuracy. Nonetheless, it still outperforms the other 
two methods overall. 

In order to solve the significant performance degradation under high occlusion rate 
(more than 30%), we will explore the improved feature extraction algorithm, which can 
develop an algorithm that can adjust the strategy adaptively according to the occlusion 
situation. When high occlusion rate is detected, it automatically shifts to focus on local 
feature extraction. An in-depth analysis of the unblocked local point cloud area extracts 
representative local features to make up for the lack of overall shape features. Multi-scale 
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feature fusion can also be used, which shows different performance of point cloud 
features at different scales. When high occlusion rate is combined with large-scale 
features to grasp the general information of the overall structure, small-scale features can 
be used to capture the details of the unblocked part, and the two can be effectively fused 
to enhance the expression ability of feature descriptors to the occluded point cloud. In 
terms of optimising the data processing flow, the occluded point cloud data can be 
enhanced and repaired before identification. 

With the help of a generative adversarial network (GAN)-based method, the occluded 
part of the data can be generated according to the characteristics of the unoccluded part of 
the point cloud, and the noise or error data can be repaired at the same time. Improve data 
quality; a model can also be established to predict the shape and location of the occluded 
area. According to the prior knowledge of the unoccluded part of the point cloud and 
equipment, the predicted occluded area can be compensated and adjusted during the 
identification process to reduce the impact of occlusion. In addition, other techniques for 
processing closed data are also feasible paths. In multi-modal data fusion technology, 
visual image data can be combined, and its rich texture and colour information can be 
complementary to the geometric information of point cloud data under high occlusion 
rate. The deep learning algorithm is used to fuse the two to participate in the device point 
cloud recognition and improve the accuracy. 

On the other hand, if the point cloud data is obtained by using lidar, its multiple echo 
information can be used. When occluding, subsequent echoes may penetrate or reflect 
from the edge of the occlusion to obtain partial information of the occluded object, so as 
to gain a more comprehensive understanding of the point cloud scene and enhance the 
recognition ability of the occluded device. In the semantic segmentation technology 
based on deep learning, a dedicated model can be trained for the point cloud data of 
substation equipment under high occlusion rate, and the model can learn the 
characteristic patterns of equipment under various occlusion situations through a large 
number of labeled samples. According to the context, the occluded part can be inferred to 
achieve accurate segmentation and recognition. It can also use pre-trained models on 
large-scale general point cloud datasets for transfer learning, and fine-tune the 
characteristics of high occlusion rate to quickly utilise existing model knowledge, reduce 
the amount of training data and time, and better adapt to high occlusion rate closed data 
scenarios to improve recognition performance. 

5 Conclusions 

This paper proposes a novel approach to address the issue of substation equipment point 
cloud recognition. First, the local reference system for the target equipment point cloud is 
established by utilising the balance and spatial distribution of the point cloud of the 
equipment in space. Second, a feature descriptor is defined based on the differences in the 
geometric structure of the point cloud of the equipment and the equipment view. This 
descriptor is used for the description and recognition of point clouds. A template library 
containing 54 template point clouds is created, and the feature descriptors of the target 
equipment point cloud are matched with those in the template library to find the template 
with the smallest matching error, thereby completely identifying the equipment point 
cloud. Finally, experiments validate the effectiveness and advantages of the suggested 
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approach. The recognition accuracy reaches 90%, and the average time to recognise a 
single piece of equipment is 3.2 seconds, effectively balancing recognition accuracy and 
efficiency. When the target point cloud’s density is uneven, the proposed method can still 
sustain a recognition accuracy of over 70%. Moreover, the established local coordinate 
system of the equipment point cloud can be used to calculate the transformation matrix 
linking the target point cloud and the template point cloud, facilitating subsequent 3D 
reconstruction of substation scenarios. 
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