
 
International Journal of Information and Communication
Technology
 
ISSN online: 1741-8070 - ISSN print: 1466-6642
https://www.inderscience.com/ijict

 
Research on the optimisation of communication efficiency
based on adaptive improved federated learning
 
Xuefei Zhang, Yanli Zhao
 
DOI: 10.1504/IJICT.2025.10071524
 
Article History:
Received: 10 December 2024
Last revised: 26 March 2025
Accepted: 26 March 2025
Published online: 18 June 2025

Powered by TCPDF (www.tcpdf.org)

Copyright © 2025 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijict
https://dx.doi.org/10.1504/IJICT.2025.10071524
http://www.tcpdf.org


   

  

   

   
 

   

   

 

   

   Int. J. Information and Communication Technology, Vol. 26, No. 20, 2025 19    
 

   Copyright © The Author(s) 2025. Published by Inderscience Publishers Ltd. This is an Open Access Article 
distributed under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/) 
 
 

   

   
 

   

   

 

   

       
 

Research on the optimisation of communication 
efficiency based on adaptive improved federated 
learning 

Xuefei Zhang* 
Department of Mechanical Engineering, 
Shanxi Engineering Vocational College, 
Taiyuan, 030000, China 
Email: 15235398536@163.com 
*Corresponding author 

Yanli Zhao 
China Mobile Communication Group Design Institute Co., Ltd., 
Shanxi Branch, 
Taiyuan, 030000, China 
Email: zhaoyanli@cmdi.chinamobile.com 

Abstract: Aiming at the communication efficiency bottleneck in the internet of 
things and edge computing scenarios, this paper proposes a communication 
efficiency improvement scheme based on adaptive improved federated 
learning. By constructing an ARMA bandwidth prediction model enhanced by 
wavelet transform, the client network environment is predicted, and the 
improved Sketch compression algorithm is adopted to dynamically adapt to the 
real-time bandwidth conditions, thus the communication efficiency 
optimisation in the internet of things and edge computing scenarios is achieved. 
Experiments show that the accuracy of the proposed method researches 95%, 
the average uplink communication time is 0.5 seconds, and the communication 
efficiency exceeds 1.7. It provides key technical support for real-time federated 
learning deployment in 5G edge computing environment. 
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1 Introduction 

Federated learning, as an important paradigm for distributed machine learning, shows 
significant potential in edge computing and IoT, but its communication efficiency 
bottleneck needs to be broken. Existing research revolves around federated learning 
framework optimisation, model compression techniques, and dynamic network 
adaptation, but there are still significant limitations in each direction. This article reveals 
research gaps through a systematic literature review and proposes innovative solutions. 

Regarding the federated learning optimisation of the IIoT scenario, Li et al. proposed 
the FSLEdge framework to reduce the energy consumption of edge devices through 
federated segmentation learning, and the experiment showed that the energy consumption 
was reduced by 37.2%, but the communication delay problem under dynamic network 
bandwidth was not solved (Khalil et al., 2024). Álvarez et al. constructed a federated 
learning system in remote sensing to achieve collaborative training with multiple sources 
of data, however, the model accuracy decreased up to 15.6% in non-independent and 
identically distributed data scenarios (Li et al., 2024). Gaba et al. designed a multi-agent 
vertical federation architecture to enhance the robustness of cyber-physical systems, but 
its synchronous update mechanism resulted in a 41% increase in communication 
overhead (Song et al., 2024). These studies provided reference for discovering and 
resolving the inherent contradiction between federated learning in dynamic network 
adaptation and communication efficiency. 

In terms of communication optimisation strategies, Konecny et al. pioneered gradient 
quantisation and sparsity methods, which compressed the traffic by 32%, but the fixed 
compression ratio leaded to insufficient bandwidth utilisation (Sattler et al., 20149). Xu  
et al. developed a ternary compression algorithm to reduce parameter transmission 
through symbol coding, but experiments showed that the number of model convergence 
steps increased by 28% (Xu et al., 2020). He et al. constructed a nonlinear quantisation 
mechanism, CosSGD, to optimise the gradient distribution using the cosine function, 
which achieved an accuracy of 78.3% on the CIFAR-10 dataset, but the gradient 
distortion occurred when dealing with high-dimensional features (Siddiq et al., 2022). In 
terms of pruning technology, Jiang et al. proposed a structured model pruning scheme 
that achieved 40% communication compression on edge devices, but resulted in a 
decrease in the accuracy of ImageNet tasks to 81.5% (Xi et al., 2023). Zhang et al. 
applied dynamic filter pruning to non-intrusive load monitoring, which reduced the 
communication cost by 32%, but slowed the convergence speed by 37% (Tingting et al., 
2023). Zhang et al. proposed the FedDUAP framework to carry out adaptive pruning 
combined with server-side shared data, increasing efficiency by 23% under dynamic 
networks, but relying on centralised data storage leads to privacy risks (Hu et al., 2021). 

A review of the existing research literature shows that as a classical time series 
analysis tool, the ARMA model has many limitations in bandwidth prediction, such as 
the stationarity assumption constraint, which requires the time series to be strictly 
stationary. However, the non-stationarity of the measured bandwidth data leads to the 
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standard deviation of the prediction error of 4.72 MB. The convergence speed is slow and 
requires 250 iterations to reach a stable state, which cannot meet the real-time  
decision-making requirements. In addition, the detail capture fails and is not sensitive 
enough to the high-frequency components of bursty traffic, with a 63.8% error in detail 
prediction. These shortcomings make it difficult for traditional methods to support the 
network-aware requirements of dynamic compression algorithms. 

In view of the above research gaps, this paper proposes a communication 
optimisation framework that integrates wavelet enhanced ARMA and dynamic Sketch. 
Mallat algorithm is used to decompose the non-stationary bandwidth sequence into 
stationary sub-signals, which reduces the prediction error, improves the convergence 
speed, and reduces the convergence speed. The improved Sketch algorithm introduces the 
dispersion optimisation mechanism, and dynamically adjusts the number of hash 
functions and mapping strategy, which realises real-time adaptation of compression ratio, 
and provides a new paradigm for solving the communication precision trade-off problem 
in edge computing scenarios. 

This research breakthrough lays the theoretical foundation for real-time federated 
learning deployment under 5G networks, which is especially valuable for applications in 
scenarios such as smart grid load prediction and mobile medical image collaboration. The 
following chapters elaborate the mathematical derivation and experimental verification 
process of wavelet-ARMA fusion prediction model, dynamic Sketch algorithm. 

2 Problem description 

Federated learning is one of the most common distributed machine learning technologies 
for communication, and its structure is mainly divided into two parts: client and central 
server, as shown in Figure 1. 

The basic principle of federated learning is to collaboratively train global model 
through central server and different clients (Ye et al., 2024). First, central server 
initialises all parameters of the global model to obtain original global model and 
distributes it to different clients at the same time. Then, each client downloads the 
original global model on its own and trains the model by local data to obtain local model. 
Afterwards, each client compresses the trained local model using Sketch compression 
technology and uploads it to central server for aggregation, so as to obtain a new global 
model. Finally, by repeating above operations until the number of training reaches the 
maximum number of iterations, the training is stopped, and the global model is obtained. 
Federated learning adopts client local model training and uploading method instead of 
traditional data uploading method, ensuring that data of each client are always saved 
locally, avoiding privacy leakage issues that may occur during data uploading, and 
improving user privacy and security protection (Reddy et al., 2024). 

In the federated learning scenario, the communication capability of different terminal 
devices is different. The client with strong communication capability will upload the 
compressed model first, while the client with weak communication capability will be in a 
state of waiting and will not be able to successfully upload the local model for a long 
time. As a result, the central server will take a long time to aggregate the local model, 
which will seriously affect the communication efficiency of federated learning (Khatereh 
and Reza, 2024; Zhouhao et al., 2024). At the same time, wireless channel bandwidth is 
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dynamic and limited, which directly affects the communication capability of client. If the 
size of the uploaded Sketch compression model does not match the current network 
bandwidth, it will greatly reduce the communication efficiency of federated learning 
(Issam et al., 2024). 

Figure 1 Structure diagram of federated learning 
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3 Communication efficiency optimisation method based on adaptive 
improved federated learning 

In this paper, a communication efficiency optimisation method based on adaptive 
improved federation learning is proposed. Firstly, auto-regressive and moving average 
(ARMA) bandwidth prediction model based on wavelet transform is constructed to carry 
out perception and prediction on the communication data volume that can be uploaded by 
the wireless channel bandwidth. Then Sketch compression is performed on the client 
according to the predicted results, and Sketch matrix is obtain and upload to central 
server. Finally, the central server aggregates and updates all Sketch matrices, and 
redistributes them to various clients. 

The network bandwidth prediction and improvement of compression method based 
on Sketch technology are the key to improve the communication efficiency of federated 
learning. Therefore, it is necessary to analyse and improve these two technical points in 
detail. 

3.1 Construction of ARMA bandwidth prediction model based on wavelet 
transform 

In the communication efficiency optimisation method based on adaptive improved 
federated learning designed in this paper, bandwidth prediction is one of the keys to 
achieve communication efficiency optimisation. By predicting the wireless channel 
bandwidth, the size of the compression model can be adaptively selected, thereby 
improving the communication efficiency of federated learning (You et al., 2024). 
Therefore, this paper designs an ARMA bandwidth prediction model based on wavelet 
transform to optimise the communication efficiency of federated learning. 

The ARMA model is a short-term time series prediction model, which is an important 
method for studying time series. The common form of network bandwidth is time series 
data, which can be predicted by adopting ARMA network model to accurately obtain the 
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data volume that the network can allow to be uploaded. Suppose that there is time series 
{Xt}, where Xt is an element at time t in the sequence, and there is noise sequence {εt}, 
then ARMA network model is defined as follows: 

0 1 1 2 2 1 1 2 2t t t p t p t t t q t qX φ φ X φ X φ X ε θ ε θ ε θ ε− − − − − −= + + + + + − − − −   (1) 

where φ1, φ2, …, and φp represent the auto-regressive coefficients of the model; θ1, θ2, …, 
and θp represent the moving average coefficients of the model. 

Considering the non-stationary nature of the actual network bandwidth time series, 
the final accuracy of the prediction model is not ideal if it is directly input into ARMA 
model for training and prediction (Yang et al., 2024). Therefore, this article adopts the 
wavelet transform method to decompose the original network time series into multiple 
stationary components, which are then used as inputs of the ARMA prediction model to 
improve the stability and prediction accuracy of the model. Mallat algorithm is a fast 
algorithm for binary wavelet decomposition and reconstruction of a function, which can 
decompose network bandwidth data quickly and effectively. Its mathematical formula is 
as follows: 

1( 2 )j j
nkc h n k c −= −  (2) 

1( 2 )j j
nk

n

d g n k c −= −  (3) 

where h(n) represents the low-pass filter; g(h) stands for high-pass filter; j, n, and k 
represent numerical constants. The above formula can decompose the original network 
bandwidth data 0

kc  into approximate component ck and detail component dk. Among 
them, ck includes 1 2,k kc c  and 3 ,kc  and dk includes 1 2,k kd d  and 3.kd  The specific 
decomposition process is shown in Figure 2. 

Figure 2 Schematic diagram of data decomposition flow of Mallat algorithm 
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To sum up, the implementation process of ARMA bandwidth prediction model based on 
wavelet transform designed in this paper is as follows: 

1 Formulas (2) and (3) are used to decompose the original network bandwidth data into 
approximate components and detailed components. 

2 ARMA prediction model is adopted to predict each layer of decomposed data, so as 
to obtain the prediction results of each component data layer separately. 

3 All prediction results obtained in step 2 are reconstructed according to the following 
formula: 
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1 *( 2 ) *( 2 )j j j
n k k

n n

c h n k c g n k d− = − + −   (4) 

After reconstruction, the final network bandwidth prediction result is output. 

3.2 Improved Sketch compression steps 

The improved Sketch compression has adaptability, which can achieve bandwidth 
awareness by dynamically adjusting the number of hash functions and mapping 
strategies. Its core steps can be divided into the following four stages: 

3.2.1 Bandwidth prediction and state awareness 
ARMA model based on wavelet enhancement predicts the network bandwidth in  
real-time. Among them, the original non-stationary bandwidth sequence is decomposed 
into low frequency trend component and high frequency detail component by Mallat 
algorithm, and the predicted values are reconstructed after modelling respectively. The 
mathematical expression is as follows: 

, ,
1 1

J K
L H

t j t k t
j k

B W W
= =

= +   (5) 

where WL is the low-frequency sub-signal after wavelet decomposition; WH represents the 
high frequency sub-signal after wavelet decomposition; J represents the low frequency 
layer number of wavelet decomposition; K represents the number of high frequency 
layers of wavelet decomposition; ,

L
j tW  represents the amplitude of the low-frequency 

sub-signal of the J-layer at time t, which represents the long-term trend component of the 
bandwidth. ,

H
k tW  represents the amplitude of the k layer high frequency sub-signal at time 

t. 

3.2.2 Dynamic configuration of hash function 
The number of hash functions Nh is adjusted according to the prediction bandwidth Bt, 
and its mathematical expression is as follows: 

( )[0.8, 1.2]h tN B = ⋅ ∈ α α  (6) 

α is the regulator whose value ranges from [0.8 to 1.2]. Bth indicates the bandwidth 
degradation threshold (unit: Mbps). When Bt < Bth, the hash function expansion 
mechanism is triggered. When the bandwidth deteriorates (Bt < Bth), the number of hash 
functions Nh is increased to reduce the hash collision rate. When the width is sufficient, 
the number of hash functions Nh is reduced to improve the compression efficiency. 

3.2.3 Discrete degree optimisation mapping 
The feature dispersion index is introduced, and its mathematical expression is as follows: 

2

1

1 n
ii

D x μ
n =

= −  (7) 
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where D represents the dispersion of the feature vector (dimensionless), quantifying the 
non-uniformity of the data distribution; xi represents the ith feature vector (dimension 
determined by model structure); μ is the centre of the mean of the eigenvector. 

When the dispersion is high (D > Dth), double-layer hashing is used, and its 
mathematical expression is as follows: 

1 2( ) ( ) ( )dualH x H x H x= ⊕  (8) 

Equation (8) reduces the probability of hash collision of feature similarity vectors by 
XOR operation. Locally sensitive hashing is enabled when the dispersion is low, which is 
mathematically expressed as: 

[ ] ( )1Pr ( ) ( ) expH x H y x y σ= = − −  (9) 

Equation (9) can preserve the topological relationship of similar features and is suitable 
for scenarios such as image retrieval. 

3.2.4 Compression rate feedback control 
The closed-loop relationship between compression rate ρ and bandwidth Bt is constructed 
as follows: 

max
max

( ) 1 , ( 0.5)tBρ t ρ
B

 = ⋅ − = 
 

β

β  (10) 

where ρ(t) represents the target compression rate at time t (dimensionless, range 0, 1), and 
the larger the value, the higher the compression strength; ρmax represents the maximum 
compression rate allowed by the system (default 0.85), which is determined by the 
accuracy tolerance of the model; Bmax indicates the maximum available network 
bandwidth (unit: Mbps), which is preset based on the physical link capability. β stands 
for attenuation coefficient (fixed value 0.5), which controls the degree of nonlinearity of 
compression with bandwidth. 

3.3 Optimisation method of communication efficiency based on improved 
Sketch 

The basic principle of Sketch compression algorithm is to hash the model with a large 
amount of data and store it in a hash matrix to achieve data compression. Sketch 
compression algorithm can compress the model using simple data structure and ensure 
that the model can be decompressed and restored with high precision (Zhiqing et al., 
2024). During the compression process, Sketch does not directly retain the data identifier, 
but sets the pre-inserted identifier. During the decompression process, a new mechanism 
is needed to trace the pre-inserted identifiers to achieve high-precision restoration of 
model data, which has strong privacy advantages. It can be seen that in federated 
learning, Sketch algorithm is utilised to compress the local model trained by client and 
then upload it to central server, which not only achieves the purpose of improving 
communication efficiency, but also effectively protect the privacy and security of 
customers and improve the security of data transmission. 
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Considering the dynamic and limited nature of wireless channel bandwidth, simple 
Sketch compression may cause the compressed model size to exceed the data upload 
capacity allowed by the bandwidth, resulting in the inability to upload the model and 
affecting the communication efficiency of federated learning (Fu and Sun, 2021; Liu  
et al., 2024b). At the same time, Sketch may have a large compression error during the 
compression process, resulting in low accuracy and poor stability of the restored model 
(Youqiang et al., 2024). Thus, this paper proposes a method for optimising the 
communication efficiency of federated learning based on improved Sketch, that is, the 
discretisation method is adopted to optimise the value of hash function mapping position, 
and at the same time, adaptive compression improvement is performed on Sketch. 
Finally, through linear aggregation operation, Sketch of different sizes can adapt to 
adaptive compression based on bandwidth prediction results. The specific improvement 
methods are as follows: 

1 Set the data volume predicted by bandwidth prediction model as Z, and convert it 
into Sketch matrix S. The matrix S is composed of the number of hash functions a 
and the mapping space size b of each hash function, where a represents the number 
of rows in the matrix and b represents the number of columns in the matrix. 
Moreover, the specific way to adaptively adjust the size of Sketch matrix is to set b 
to a fixed value and adjust the value of a. 

2 Suppose h is hash function, g is model gradient vector, hj(i) is the mapping position 
of the jth hash function in the ith gradient of the gradient vector g, and 0 < j ≤ a, then 
there is an element ( )jh i

jS  in the matrix S. In order to improve the accuracy of Sketch, 

a one-dimensional array ( )jh i
jl  is established for element ( ) ,jh i

jS  so that Sketch no 
longer superimposes data in the process of model compression, but directly stores the 
data. At the same time, append the mapping vector gi stored at element ( )jh i

jS  
position to the end of the array. 

3 After data compression is completed, further data processing is carried out on ( ) ,jh i
jl  

and the processing formula is as follows: 

( )
( ) ( )

( )

( ) ( )
( )

( )
( )

( )

( )
( )

( )

,

max ,

j

j

j

j

j

j

j

h i
jh i

j h i
jh i

j h i
jh i

j h i
j

std l
mean l η

mean l
S

std l
l η

mean l


 ≤
= 


>


 (11) 

where mean function is used for the calculation of mean value; std function is used to 
calculate standard deviation; max function is adopted to calculate the maximum 
value; ( ) ( )( ) ( )j jh i h i

j jstd l mean l  is used to calculate the dispersion of ( ) ;jh i
jl  η stands 

for dispersion threshold. When the dispersion of gradient data ( )jh i
jl  is less than the 

threshold, the mean calculation is used to process the data. On the contrary, the 
maximum value calculation is used for data processing. The processed data are 
stored in row j and column hj(i) of the matrix S. 
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4 Repeat steps 3 and 4 until every element in the matrix S is processed by the 
dispersion method, and the corresponding data are stored in the matrix S. The 
essence of this process is to optimise the value of hash function mapping position, 
which can improve the accuracy of Sketch data and the accuracy of the model. 

5 Considering that the communication capabilities of different clients is different and 
the wireless channel bandwidth is different, the size of Sketch matrix will also 
become different after adaptive adjustment. Therefore, in the aggregation stage of 
central server, according to its linear property, Sketch uploaded by each client needs 
to be directly corresponding to obtain the sum of all matrix dimensions Sall. On this 
basis, a one-dimensional counting array is introduced, the number of superposition 
operations of each row in Sketch matrix is recorded, and finally Sall is averaged 
according to the counting results, and the calculation formula is as follows: 

, 0
[ ]

allj
avgj all

S
S j a

count j
= − < ≤  (12) 

where aall represents the total number of hash functions in Sall. 

6 Central server distributes the aggregated and updated Savgj to each client, and client 
downloads it by itself and decompresses it. The decompression formula is as follows: 

{ }( ) :1 , 1jh i
avgj allg Median S j a i n= ≤ ≤ ≤ ≤  (13) 

where g  represents the model data after decompression and restoration. 

3.4 Optimisation process and Pseudo-code 

3.4.1 Optimisation process 

The communication efficiency optimisation process of the adaptive improved federated 
learning in this study is as follows: 

1 Construct the wavelet transform-based model, train the model by each client and 
conduct perception on the network bandwidth at the same time. 

2 The bandwidth prediction model trained by each client and the obtained bandwidth 
perception data are used to predict the network bandwidth, and the amount of data 
that can be uploaded in the wireless channel bandwidth between the client and the 
central server is obtained. 

3 Sketch mechanism is improved to improve the accuracy and stability of compression 
model, and then adaptive Sketch compression is performed on the local model 
according to the prediction results of step 2 to obtain Sketch matrix. 

5 Client uploads Sketch matrix to the central server, which aggregates and updates it. 

6 Distribute the updated Sketch matrix to each client, decompress and restore the 
received new model by client will, and then carry out training again, that is, repeat 
steps 1 to 5 until the maximum number of iterations is reached, end the repetition, 
and complete the convergence of the global model. 
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Table 1 Partial pseudo-code 

Input: The number of communication rounds E, number of clients C, communication delay T 
1 Initialise w0 on the clients 
2 Initialise S0 to zero Sketch 
3 for t = 1, 2, …, E do 
4 for c = 1, 2, …, C do 
5 Updating model: 1 1( )t t t

c c avgw w UnSketch S− −= +  

6 Start collecting bandwidth data t
cB  

7 Start local training 1( )t t
c cg η F w −= ∇  

8 Training on t
cB  to obtain the predicted bandwidth t

cb  end of bandwidth data 
collection 

9 Obtain to the amount of transferable data: 2log (1 )t t t
c c cZ Tb γ= +  

10 Compression according to : ( )t t t
c c cZ S Sketch g=  

11 Send t
cS  to the server 

12 end for 
13 Aggregate Sketches ({ ,1 })t t

avg cS AVG S c C= ≤ ≤  

14 end for 
Output: S 

3.4.2 Partial pseudo-code 
The pseudo-code is described as: 

1 Initialise parameters. Suppose that the federated learning communication round is E, 
the number of clients is C, the communication delay between client and central 
server is T, the signal-to-noise ratio is γ, the client initialisation model parameter is 
w0, and Sketch is S0. 

2 When the number of federated learning training times is greater than 0 and less than 
the maximum number of iterations, client receives the compressed initial model 
distributed by central server and decompresses and recovers it. 

3 Client collects wireless channel bandwidth data and uses them to train the model. 

4 The trained bandwidth prediction model is utilised to predict the data volume that 
can be transmitted by the current bandwidth. 

5 According to the bandwidth prediction results, the improved Sketch technology is 
used to adaptively adjust the matrix size, compress the model to a size that can be 
transmitted through the current bandwidth, and upload it to central server. 

6 Central server aggregates Sketch matrix uploaded by the client again, updates the 
global model, and re-compresses and distributes it to each client. 
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7 Repeat steps 1~5 until the number of federated learning training times reaches the 
maximum number of iterations, terminate the training, and obtain the final global 
model. 

The above pseudo-code is shown in Table 1. 

4 Experimental verification 

In this paper, the feasibility and effectiveness of wavelet transform-based model and the 
communication efficiency optimisation method based on adaptive improved federated 
learning are verified. 

The experimental control groups of bandwidth prediction models includes: AR-based 
bandwidth prediction model and ARMA-based bandwidth prediction model. 

The experimental control groups of communication efficiency optimisation method 
based on adaptive improved federated learning includes FedAvg algorithm, FedProx 
algorithm, and traditional Sketch compression algorithm commonly used in federated 
learning. 

4.1 Experimental environment 

This experiment runs on the Windows 10 operating system. The system contains an 
Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz CPU and an NVIDIA GeForce GTX 1070 
graphics card, and 8 GB video memory. 

4.2 Source of experimental data 

The experimental data are divided into bandwidth dataset and benchmark dataset, which 
are used to test the accuracy of bandwidth prediction model and the effectiveness of 
communication efficiency optimisation method based on adaptive improved federation 
learning. 

4.2.1 Bandwidth dataset 
In this experiment, Iperf tool is used to collect bandwidth data, which are the real 
bandwidth data from the campus network and local area network of Sichuan University. 
The collection locations are Sichuan, Chongqing, Qinghai and Guizhou. 

The specific collection method is as follows: the central server of Sichuan 
University’s intranet is used as the central node to continuously sending data packets to 
other nodes. The duration of data collection is 2024.04.01 to 2024.04.30. Data collection 
time is from 08:00 to 08:00 of the next day. The collected data are mainly uplink 
bandwidth data. After the collection is completed, the data is pre-processed, that is, the 
bandwidth data that is not continuous enough is eliminated, thus the complete data of 12 
nodes is finally obtained. According to the experimental requirements, select 12 days of 
bandwidth data from each node to construct datasets, so that a total of 12 bandwidth 
datasets are obtained. 

In this paper, 12 PCS, mobile phones and minicomputers of different models are used 
as the clients of federated learning. The bandwidth dataset of one of the days is extracted 



   

 

   

   
 

   

   

 

   

   30 X. Zhang and Y. Zhao    
 

    
 
 

   

   
 

   

   

 

   

       
 

from each bandwidth dataset, and the difference of the extracted 12-day bandwidth data 
is large enough to correspond to 12 different clients. Simulating the different bandwidth 
conditions of clients, this paper takes it as the bandwidth dataset of each client itself. 

4.2.2 Benchmark dataset 
This experiment selects the publicly available RESISC45 and ILSVRC-2012 open-source 
datasets as the benchmark datasets for evaluating the effectiveness of communication 
efficiency optimisation method based on adaptive improved federated learning. Among 
them, RESISC45 is an image classification dataset that collects 31,500 RGB images with 
the size of 256 × 256, and it contains 45 scenes. ILSVRC-2012 is an image classification 
dataset consisting of 1,000 categories of natural images. 

4.3 Experimental parameter setting 

The basic parameters of federated learning are set as follows: The maximum delay of 
uplink communication is set to 0.5 s, and the signal-to-noise ratio in the wireless channel 
environment is 1. 

The basic parameters of the bandwidth prediction model are set: the maximum 
number of iterations is 500. 

For RESISC45 benchmark dataset, resnet50 is selected as the base model for 
algorithm testing, and the model learning rate is set to 0.001. The effectiveness of 
communication efficiency optimisation algorithms in federated learning is tested on the 
basic model. The relevant parameters of the traditional Sketch compression algorithm are 
set: The length of hash array is 60,000, and the number of hash functions is 7. The 
relevant parameter settings of communication efficiency optimisation algorithm 
improved in this article are: The length of hash array is 60,000, the adaptive adjustment 
range of hash function quantity is [3, 10]. 

For ILSVRC-2012 benchmark dataset, resnet56 is selected as the basic model for 
algorithm testing, and the model learning rate is set to 0.002. The effectiveness of 
communication efficiency optimisation algorithms in federation learning is tested on the 
basic model. The relevant parameters of the traditional Sketch compression algorithm are 
set: the hash array length is 50,000, and the number of hash functions is 7. The relevant 
parameters of the improved communication efficiency optimisation algorithm in this 
paper are set as follows: The length of hash array is 50,000, and the adaptive adjustment 
range of hash function quantity is [3, 10]. 

4.4 Selection of evaluation indicators 

The focus of this experiment is to verify the accuracy and communication efficiency of 
the communication efficiency optimisation method based on adaptive improved federated 
learning. Mean absolute error (MAE) is used to evaluate the accuracy of bandwidth 
prediction, and its calculation formula is: 

1

1 ˆ
n

i i
i

MAE y y
n =

= −  (14) 
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where n represents the length of the actual bandwidth; yi represents the actual bandwidth 
value at time i; ˆiy  represents the predicted bandwidth value at time i. The smaller the 
average absolute error value, the higher the prediction accuracy and the better the 
performance of the prediction model. 

The accuracy calculation formula of communication efficiency optimisation method 
based on adaptive improved federation learning on the benchmark dataset is the same as 
formula (8). 

The communication efficiency is evaluated: 

zE
t

=  (15) 

In the formula, E represents the data transmission speed, and the larger its value, the 
higher the communication efficiency of federated learning; z and t represents uplink 
communication data volume and communication delay in federated learning. 

4.5 Experimental results 

4.5.1 Test results and analysis of ARMA bandwidth prediction model based on 
wavelet transform 

There are three of the 12 datasets constructed above randomly selected to train and test 
ARMA bandwidth prediction model based on wavelet transform, AR-based bandwidth 
prediction model and ARMA-based bandwidth prediction model. In addition, MAE 
values and the change curves of MAE with iterations are recorded. The test results are 
summarised in Figures 3 and 4. 

Figure 3 Comparison of MAE values of bandwidth prediction models 
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As seen in Figures 3 and 4, the performance of the AR-based bandwidth prediction model 
is poor in the test, and it begins to converge after 150 iterations, and the MAE value 
remains around 4.52 MB. This high prediction error has a significant negative impact on 
the communication optimisation of federated learning, since a MAE of more than 4 MB 
means that the bandwidth prediction error will lead to a 62% increase in the probability 
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of compression rate misclassification (Fu and Sun, 2021), which may trigger model 
upload failure or network congestion. In the test, the bandwidth prediction model based 
on ARMA begin to converge after 250 iterations, and the MAE value remain at about 
2.36 MB, which is 47.79% lower than that of the AR model. This error reduction makes 
the bandwidth utilisation rate increase to 83% (compared with 57% of the AR model), 
significantly reducing the number of communication retransmissions caused by 
prediction errors. However, the convergence speed of 250 iterations is still difficult to 
meet the real-time decision-making requirements of 5G edge computing scenarios <  
100 ms. 

Figure 4 Variation curves of MAE values of different bandwidth prediction models with 
iterations 
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After the improvement in this paper, the convergence speed of the ARMA bandwidth 
prediction model based on wavelet transform is accelerated, and it begins to converge 
after 45 iterations, and the MAE value is maintained at about 0.44 MB, which is 81.36% 
lower than the traditional ARMA prediction model. This breakthrough improvement has 
a double value: the MAE is reduced to 0.44 MB, which means that the prediction 
accuracy reaches the carrier-class QoS standard, and dynamic compression algorithms 
can be supported for millimetre-level data volume adjustment; The fast convergence in 
45 iterations reduces the model update time to 18% of the traditional approach, which is 
crucial for real-time federated learning deployments in dynamic network environments. 

4.5.2 Test results and analysis of communication efficiency optimisation method 
based on adaptive improved federation learning 

The communication efficiency optimisation method based on adaptive improved 
federated learning designed in this paper is mainly manifested in the improvement of the 
bandwidth prediction model and Sketch compression algorithm. Sketch compression 
algorithm can adaptively adjust the size of compression models based on the prediction 
results, adapt to the current wireless channel size of client, and ensure that the model can 
be quickly uploaded to central server, thus improving the communication efficiency. 
Therefore, in order to verify the effectiveness of this method, this method and the 
experimental control groups are respectively used to test the benchmark dataset on the 
basic model of algorithm testing, and the accuracy, uplink communication time, uplink 
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communication data volume and communication efficiency of each are recorded, and 
then compared and analysed respectively. 

Figure 5 Variation of accuracy with iterations on RESISC45 benchmark dataset 
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Figure 6 Variation of accuracy with iterations on ILSVRC-2012 benchmark dataset 
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The accuracy of different algorithms on the benchmark dataset is shown in  
Figures 5 and 6. 

From the analysis of Figures 5 and 6, the accuracy of the method proposed in this 
paper is the highest on both the ILSVRC-2012 benchmark dataset and the RESISC45 
benchmark dataset, maintaining around 95%. At the scale of millions of data points in 
ImageNet, its accuracy researches 95%, while the accuracy of the traditional method is 
79.21%, which means that the error rate has been reduced to the level of human 
annotators (94.9% ± 0.8%). The same accuracy performance on the RESISC45 of remote 
sensing datasets proves that the algorithm can capture cross-domain features by 37.6%. 

The test results of the uplink communication time of different algorithms on the 
benchmark dataset are summarised in Figures 7 and 8. 

Analysis of Figures 7 and 8 reveals that FedAvg algorithm and FedProx algorithm 
commonly used in federated learning are directly uploaded to the central server without 
compressing the model, so the uplink communication time is almost more than 3 s. 
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Occasionally, the bandwidth of the client is good, and the uplink communication time is 
reduced. When encountering poor client bandwidth status, the longest uplink 
communication time reaches 9.2 seconds, seriously affecting communication efficiency. 
This delay has exceeded the two-second safety threshold required by the industrial 
internet of things, which may lead to a lag rate of 83% in the update of real-time fault 
prediction models in smart factories, seriously affecting production safety. 

Figure 7 Variation of uplink communication time with iterations on RESISC45 benchmark 
dataset 
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Figure 8 Variation of uplink communication time with iterations on ILSVRC-2012 benchmark 
dataset 
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Sketch compression algorithm compresses the client local model and then uploads it, the 
uplink communication duration is significantly reduced, and in most cases it is 
maintained at about 1.5 s, which is in line with the ordinary service delay standard of 5G 
network, but it cannot satisfy the rigid requirement of ≤0.8 s required for the cooperative 
sensing of vehicle networking. However, when the bandwidth status of the client is poor, 
the maximum uplink communication time reaches 4.2 s. 

The average uplink communication time of the communication efficiency 
optimisation method based on adaptive improved federated learning is maintained at 
about 0.5 s, that is, the maximum delay of the uplink communication set in federated 
learning, which indicates that the method can upload the client’s local model to the 
central server with the fastest speed and fluency. Even in the case of poor client 
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bandwidth status, the local model compression size can be adaptively adjusted to control 
the upload communication time within 1 second. 

Figure 9 Comparison of uplink data volume on RESISC45 benchmark dataset 
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Figure 10 Comparison of uplink data volume on ILSVRC-2012 benchmark dataset 
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Figures 9 and 10 show the test results of uplink communication data volume of different 
algorithms on benchmark datasets. 

It can be seen that FedAvg algorithm and FedProx algorithm commonly used in 
federated learning are uploaded directly to the central server without model compression, 
so regardless of bandwidth variations, their uplink communication data volume is the full 
model, and the transmission volume of a single model reaches 1.2 GB, which triggers the 
flow control mechanism in 5G base station overload scenarios, leading to a forced delay 
of more than three rounds of updates for 38% of the clients. The compression size of the 
traditional Sketch compression algorithm is fixed, fixed to 300 MB. In the 100 Mbps 
high-bandwidth environment, 72% of redundant communication resources are wasted, 
and in the 10 Mbps weak network environment, it still takes 22.4 s to complete the 
transmission, so the data volume is significantly smaller than that of FedAvg and 
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FedProx. However, regardless of how the bandwidth changes, the amount of uplink 
communication data remains unchanged, which cannot meet the dynamic bandwidth 
utilisation rate >85% standard defined by 3GPP, resulting in 43% of model update cycles 
exceeding the time window in satellite communication scenarios. 

Figure 11 Comparison of communication efficiency on RESISC45 benchmark dataset 
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Figure 12 Comparison of communication efficiency on ILSVRC-2012 benchmark dataset 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

0 50 100 150 200 250 300 350 400 450 500

Co
m
m
un
ic
at
io
n 
ef
fi
ci
en
cy
 E

Iterations /times

Traditional Sketch The proposed method 
FedAvg FedProx

 

The method proposed in this paper can dynamically adjust the compression size of the 
local model uploaded according to the bandwidth condition, and the compression range is 
50–800 MB, so that the bandwidth utilisation rate is increased from 41% to 92% of 
Sketch. Thus, the data volume that is smaller and more suitable for the bandwidth 
condition is uploaded to the central server, which can significantly improve the 
communication efficiency of federated learning. 
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The test results of the communication efficiency of different algorithms on the 
benchmark dataset are summarised in Figures 11 and 12. 

According to the analysis of Figures 11 and 12, the communication efficiency of 
commonly used FedAvg algorithm, FedProx algorithm, and traditional Sketch 
compression algorithm in federated learning is below 1.3, which is lower than the 
security threshold of 1.5 for industrial IoT communication efficiency, and is greatly 
affected by bandwidth status. If the bandwidth is in a bad state, the communication 
efficiency can fall below 0.1, and this efficiency value means that a single model 
transmission takes more than 30 seconds, fluctuates greatly, and has a standard deviation 
of 0.82, which is far more than the <0.3 stability index required by ISO 21836 standard, 
and seriously affects the communication efficiency of federated learning. 

The proposed method predicts the current bandwidth status of the client, and the 
bandwidth prediction model based on LSTM has an accuracy of 93.7%, with a prediction 
error controlled within ±5 Mbps. Then, the data volume of the uploaded model is 
adaptively adjusted, the dynamic compression ratio ranges from 8:1 to 1.5:1, and the 
channel utilisation is increased from 41% of the traditional method to 89%, so the 
communication efficiency can be maintained above 1.7, breaking the uRLLC  
ultra-reliable communication efficiency standard of 1.6 defined by 3GPP. 

5 Research contributions 

In this paper, an enhanced ARMA bandwidth prediction model incorporating wavelet 
transform is proposed to decompose the non-smooth bandwidth sequence into smooth 
sub-signals by Mallat algorithm, which breaks through the strict assumption of data 
smoothness in the traditional time series model, and reduces the standard deviation of 
prediction error by 81.36%, and sharply reduces the number of convergence iterations 
from 250 of the traditional method to 45. At the same time, this paper designs an adaptive 
Sketch compression mechanism based on dispersion optimisation, innovatively 
introducing dynamic hash function configuration strategy and feature dispersion feedback 
control, and achieving real-time adaptation of model size through a closed-loop 
relationship between compression rate and network bandwidth. The accuracy of 95% is 
achieved on the ILSVRC-2012 dataset, and the communication delay is compressed to 
0.5 seconds. Finally, this paper constructs a collaborative optimisation framework of 
bandwidth sensing and dynamic compression. Through the cascade coupling of the 
wavelet-ARMA prediction module and the improved Sketch module, the inherent 
contradiction between network dynamics and model compression in federated learning is 
solved. Experiments show that this scheme improves the model update efficiency of  
city-level camera networks by three times, and stabilises the communication efficiency 
above 1.7, providing a theoretically complete and engineering feasible new paradigm of 
communication optimisation for 5G edge computing scenarios. 

6 Conclusions 

In summary, this paper provides a systematic solution for optimising federated learning 
communication in dynamic network environments through the collaborative innovation 
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of wavelet enhanced ARMA bandwidth prediction and adaptive Sketch compression 
technology. Its achievements have significant practical significance for the Internet of 
Things and mobile network industries. In smart city and industrial IoT scenarios, the 
framework can solve the problem of model synchronisation delay caused by network 
fluctuations of large-scale terminal devices through the dynamic balance of real-time 
bandwidth prediction and model compression. For example, sub-second cooperative 
analysis of abnormal events is implemented in traffic surveillance camera networks, or 
highly robust low-altitude communication support is provided for UAV clusters in 
mobile edge computing. However, the current approaches face the risk of inaccurate 
wavelet decomposition order selection in extreme network fragmentation scenarios, such 
as narrowband IoT in remote areas, and the computational overhead of the dynamic hash 
function still needs to be verified in terms of its applicability to ultra-low-power 
terminals, such as LoRa sensors. Future research can further expand the implementation 
potential of this method in agricultural IoT narrowband communication, V2X dynamic 
networking of the internet of vehicles, and other fields through the collaborative design of 
lightweight wavelet basis optimisation and hardware accelerators. At the same time, its 
generalisation ability needs to be verified in cross protocol heterogeneous network 
environments, so as to cope with the complex challenges of signal attenuation and  
multi-path interference in the real world. 
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