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Abstract: Excavation of the deep foundation pit is a challenging organisation 
due to unstable soil, groundwater seepage, and structural failures. Traditional 
risk assessments are useful but computationally expensive and inflexible to 
real-time conditions. This study then proposes a hybrid deep learning model 
that integrates CNN, LSTM and transformer architectures for improving 
excavation risk prediction. FEM data are used to capture spatial features, 
LSTM models sequential deformations, and the transformer incorporating 
multi-source geotechnical data. The model was validated on a Shanghai 
excavation project with an RMSE of 2.90 mm, which outperforms FEM,  
CNN-LSTM and transformer only. In addition, it achieved 94.5% F1 score for 
failure detection and had reduced inference time to 1.4 seconds. The accuracy 
and speed of these results provides confidence in the model to be deployed in 
real-time for safety monitoring and AI based geotechnical risk management. 

Keywords: deep foundation pit engineering; excavation risk prediction; hybrid 
deep learning; DL; finite element method; FEM; multi-source data fusion;  
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1 Introduction 

Modern urban infrastructure construction requires a subway system, underground tunnel, 
basement, and high-rise building foundation, all essential for deep foundation pit 
engineering (Jiang et al., 2024; Cui et al., 2020. The excavation, however, has 
geotechnical risks such as soil instability, excessive ground deformation, groundwater 
seepage, and retaining wall failure, posing a danger to the retaining wall, structure  
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beneath, other nearby structures, immediate and remote users, as well as the underground, 
and resulting in catastrophic structural collapse, economic loses, and loss of life (Zhang 
and Liu, 2022; Niu et al., 2023; van Adrichem and Adnan, 2001). These risks are further 
escalated in more complex soil conditions, such as urban environments with adjacent 
structures, high groundwater tables, or varying environmental factors like rainfall and 
seismic effects. 

Accurate risk assessment and real-time monitoring are the two main ways to mitigate 
these risks. Until now, empirical models, statistical methods, and numerical simulation 
(e.g., the finite element method, FEM) have been used by traditional geotechnical 
engineers to assess excavation stability. The detailed stress-strain analysis to be given by 
FEM simulations and its valuable insights to soil–structure interaction will be discussed 
(Aldosary et al., 2018; Yoonirundorn et al., 2024; Yin et al., 2017). However, FEM-based 
approaches are computationally expensive and depend on manually calibrated input 
parameters, and they are not easy to adapt to real-time excavation conditions (Ninić and 
Meschke, 2015). In addition, they do not effectively use one of the critical features, 
namely sensor-based monitoring information, to assess dynamic changes in soil and 
structural behaviour during excavation. 

Over the last few years, machine learning (ML) and deep learning (DL) techniques 
have been marching far surpassing human intelligence's capabilities (Painuli and 
Bhardwaj, 2022; Manta-Costa et al., 2024), thus initiating new methods of automated 
prediction of excavation risks. DL models can be fed large-scale geotechnical datasets for 
the first time, identify hidden patterns in excavation risks, and predict them accurately (Li 
et al., 2023; Liu et al., 2022; Baghbani et al., 2022). Nevertheless, the current DL models 
either do spatial analysis (convolutional neural networks (CNNs)) for available data or 
forecast temporal change (long short-term memory networks (LSTMs)) without 
integrating multi-source data. Based on this, the study presents a hybrid DL model 
integrating CNNs, LSTMs, and Transformers into a holistic, real-time excavation risk 
assessment system, taking advantage of the superior temporal and spatial location 
learning properties to improve prediction accuracy and adaptability. 

1.1 Problem statement 

A significant source of constant challenges in excavation safety is excavation failure. 
While much work has been done to improve the reliability of geotechnical risk 
prediction, this continues to be hindered by the limitations of conventional stress models. 
We can summarise the significant shortcomings of the existing risk assessment 
techniques. 

• Real-time adaptability – all of the simulations based on FEM are manually  
re-calibrated for different excavation conditions and cannot automatically adapt to 
real-time sensor data (e.g., inclinometer, piezometer, and strain gauge) data coming 
from the excavated area. 

• The inability of multi-source data integration – traditional models do not provide for 
FEM outputs, sensor reading, geotechnical parameters, and environmental conditions 
together effectively; hence doesn't offer the best risk assessments. 

• Most ML/DL models are not sufficiently accurate in predicting failures: either they 
do not include spatial features (using CNNs on FEM data) or temporal trends 
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(LSTMs on sensor data), or they cannot provide a comprehensive and multi-source 
risk assessment. 

A hybrid AI-based approach that models the spatial, temporal, and multimodal 
excavation risk factors has been designed to solve these issues. Using the actual test 
results from resort excavation, this study extends the hybrid DL model to advance 
excavation risk forecasting, enhance real-time adaptability, and accurately predict 
potential failures. 

1.2 Objectives of the study 

The study aims to construct and validate a hybrid DL framework for excavation risk 
assessment in deep foundation pit engineering. The specific objectives are: 

• For the analysis of the limitations of conventional risk assessment methods, 
empirical models, FEM simulations, and existing DL models for predicting 
excavation-induced deformations and failures. 

• A hybrid DL model integrating CNN embedding for spatial feature extraction, 
LSTM for sequential risk prediction, and transformer for multi-source data fusion to 
develop a comprehensive excavation risk assessment framework. 

• The proposed model was evaluated using a real-world deep excavation project in 
Shanghai, which considers sensor readings, FEM-generated stress-strain data, and 
environmental parameters. 

• CNN-LSTM models and transformer-based models are used to compare the hybrid 
model's performance to standalone FEM simulations and to demonstrate 
improvements in prediction accuracy, real-time adaptability, and computational 
efficiency. 

• It contributes to proposing a real-time deployment strategy for the hybrid model to 
be integrated into geotechnical monitoring systems, with which excavation safety 
management and risk mitigation strategies would be feasible in an automated 
manner. 

Aiming to revolutionise excavation risk assessment by introducing an AI-driven,  
real-time, highly accurate decision support system for geotechnical engineers, this 
research accomplished these goals. 

1.3 Significance of the study 

The significance of this research is based on its findings, which have significant 
implications for geotechnical engineering, excavation safety, and AI-driven construction 
monitoring. The proposed hybrid DL model addresses several key challenges. 

• Better excavation risk prediction accuracy: with the integration of CNNs, LSTMs, 
and Transformers, better prediction accuracy is achieved at an enhanced tolerance 
for prediction failure regarding ground deformations, lateral wall movements, and 
groundwater risks. 
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• Continuous sensor data inclinometer, piezometer, and strain gauge networks are 
available, which are processed by the hybrid model continuously and hence allow for 
re-al-time risk monitoring, a feature not available with the traditional FEM models. 

• Modelling of FEM stress strain data, real-time sensor readings, and environmental 
parameters results in a multi-source data fusion approach that offers a holistic risk 
assessment and hence, improves decision-making for excavation projects. 

• Practical feasibility and computational efficiency – FOR the model to be easily 
implemented in real-world excavation projects without extensive process delays, it 
must achieve high prediction accuracy while maintaining computational efficiency. 

This study presents a new AI-based approach that improves excavation risk evaluation, 
and as a result, the excavation will be safer and more efficient. 

1.4 Contribution of the research 

This study introduces several novel contributions of excavation risk assessment and 
geotechnical AI. 

• A hybrid DL model – a CNN-LSTM-transformer hybrid model is developed to 
develop an all-encompassing, multi-source excavation risk assessment framework. 

• Higher spatial feature extraction – the CNN part is more effective in analysing  
FEM-generated stress-strain heatmaps to pinpoint high-risk excavation zones in a 
more specific way than could have been achieved by human methods. 

• LSTM component further develops time-series forecasting by learning the sequences 
of excavation-induced de-formation better to estimate the lateral wall movement and 
settlement trends. 

• The transformer part incorporates geotechnical factors, real-time sensor readings, 
and environmental factors to deliver a multimodal holistic risk assessment. 

• Real-world case study validation – the hybrid model is validated through a deep 
excavation project in Shanghai, where it surpasses the accuracy of traditional FEM 
and standalone DL models. 

• Real-time deployment capability – the research suggests deploying the hybrid model 
in IoT-based excavation monitoring systems with the capability of real-time safety 
monitoring on active construction sites. 

1.5 Organisation of the paper 

The rest of this paper is organised as follows: In Section 2: literature review,  
state-of-the-art risk assessment approaches – FEM, ML, and DL – are explored, and a 
gap in research is identified that is the focus of the proposed hybrid model. Section 3: 
deep foundation pit risk assessment using CNN-LSTM-transformer architecture describes 
the proposed CNN-LSTM-transformer architecture and discusses how it can be used in 
excavation risk prediction. Case study and preparation of the dataset is described in 
Section 4: experimental section, which also entails model training and validation. The 
results and analysis presented in Section 5 involve testing the hybrid model against other 
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approaches in terms of quantitative and qualitative evaluations. In Section 6, the 
discussion interprets the findings with a discussion of model accuracy, computational 
efficiency, and practical implications. Section 7: future work outlines potential future 
work in AI-driven excavation risk assessment. The conclusion in Section 8 summarises 
the study's contributions, key findings, and practical significance. 

2 Literature review 

Engineering bottomless foundation pit requires geotechnical processes to correct these 
problems: soil deformation, groundwater change, and structural instability (Xu et al., 
2023), which must be assessed and executed through real-time risk assessment methods. 
Previous geotechnical risk assessment methods relied on empirical models, numerical 
simulations, and statistical approaches, which can be computationally inefficient and  
non-adaptive for real-time excavation conditions. The ability to integrate multi-source 
data is limited. In the last few years, cutting-edge ML and DL methods have also 
demonstrated promise in filling these limitations, so they should be able to provide much 
more accurate, automated, and real-time excavation risk predictions. This section 
examines the relevant studies on excavation risk assessment methods, their limitations, 
and how the proposed hybrid DL model with CNNs, LSTM networks, and Transformers 
will bridge the gap. 

2.1 Traditional risk assessment approaches 

The excavation risks have been widely predicted by empirical models relying on 
simplified assumptions and pre-existing geotechnical datasets. Classical theories, such as 
Rankine and Coulomb's earth pressure models, estimate lateral earth pressure acting on 
retaining walls (Galvin, 2016; Zhao, 2023; Askaripour et al., 2022). Terzaghi's bearing 
capacity theory and Meyerhof's settlement equations are analytical soil stability and 
settlement solutions (Mohamed, 2014). Assumptions are oversimplified because they do 
not reflect complex on-site behaviour due to soils. Insufficiency to adapt to site-specific 
variations and the need for manual calibration for each excavation project (Carter and 
Barnett, 2022). It is limited in dynamic excavation conditions by its inability to capture 
real-time monitoring data, which affects its effectiveness (Rao et al., 2022). However, 
these limitations lead researchers to complete empirical models with additional numerical 
simulations, such as the FEM (Kudela and Matousek, 2022), to provide more accurate 
predictions of excavation risks. 

Soil structure interaction problems in deep excavation projects can be solved using a 
numerical method, i.e., FEM-based geotechnical modelling (Maleki et al., 2022; Gu  
et al., 2024). Predictors of stress-strain behaviour, lateral wall displacements, and the 
seepage effects under various excavation scenarios are typically software like PLAXIS, 
ABAQUS, and FLAC3D (Lin et al., 2023; Lohar et al., 2024). FEM has been 
successfully applied to excavation risk assessment (Bozkurt and Akbas, 2023). However, 
there are several challenges associated with it, such as computation cost – FEM models 
for engineering large excavation projects require a high computational cost. Dependency 
on manually calibrated parameters, such as soil cohesion, internal friction angle, and 
permeability coefficients and their uncertainties (Ou, 2016). Once a FEM simulation is 
complete, the model is not adaptable to actual real-time conditions, which include 
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inclinometers, piezometers, and strain gauges (Kumar et al., 2024). These limitations 
reveal the necessity of data-driven approaches such as ML and DL that can be used 
alongside FEM simulations to offer real-time risk prediction and flexibility in 
reproducing conditions at the site. 

2.2 Machine learning and deep learning in geotechnical engineering 

Automate risk assessment and predictions of excavation failure. ML has often been 
applied in geotechnical engineering (Firoozi, 2023; Phoon and Zhang, 2023; Fan et al., 
2025). Standard ML techniques include SVM, which is used for soil classification, slope 
stability analysis, and excavation failure prediction (Mahmoodzadeh et al., 2022). The 
prediction of landslide occurrence, ground settlement, and excavation deformations are 
made with random forest (RF) and gradient boosting machines (GBMs) (Ali et al., 2024). 
We can get better predictions from the ML models, but not without limitations, which our 
method also has. Inability to process high dimensional geotechnical data, e.g., FEM stress 
tensors, multifold sensor readings, and environmental parameters. It is subject to 
dependence on manually selected features such that engineers can choose which 
geotechnical parameters affect excavation stability, possibly leading to bias. Less able to 
capture sequential dependencies in the excavation behaviour and thus less effective for 
the time series forecasting of soil deformation trends. Due to these limitations, DL 
models have become a more robust alternative for excavation risk assessment. 

The performance of the DL approaches in geotechnical risk assessment is superior to 
previous approaches by automating feature extraction, revealing complex spatial and 
temporal dependencies, and aggregating data from multiple excavation sources (Pan  
et al., 2024; Zhou et al., 2024; Zhou et al., 2023). Some of the most used DL architectures 
are process FEM-generated stress-strain heat maps, site imagery, and deformation maps, 
and analysing spatially distributed excavation risks with CNNs. By extracting localised 
excavation risk features, CNNs enhance the ability of landslide high-risk zones to be 
identified in retaining walls and soil layers (Su et al., 2024; Morgenroth et al., 2019; Pu  
et al., 2025). However, CNNs do not absorb the temporal risks of excavation; therefore, 
they are insufficient for sequential excavation monitoring. The LSTM networks are a 
type of neural network that is effective for working with time series data (Song et al., 
2020; Sherstinsky, 2020; Lindemann et al., 2021) and have been applied for analysing 
deformations caused by excavation over time in geotechnical applications. Sensor 
readings, including inclinometer, piezometer, and strain gauge, are processed sequentially 
by LSTMs to predict ground displacement and structural stability trends. LSTM 
demonstrates its strength in time-dependent risk prediction (Wengang et al., 2023; Li  
et al., 2020; He et al., 2024). Still, they cannot integrate multiple data sources when 
predicting excavation risks, hence being unable to correlate the risks among different 
geotechnical parameters. Due to self-attention mechanisms, Transformers previously 
developed for natural language processing (NLP) are effective in multimodal applications 
for excavation risk assessment (Liu et al., 2024; Amel et al., 2024; Zhang et al., 2022). 
Unlike CNNs and LSTMs, transformers can process FEM outputs, real-time sensor data, 
and other environmental inputs in parallel. Determine relationships between complicated 
geotechnical properties, excavation-induced stress changes, and external factors (such as 
rainfall seismic activity) (Fang et al., 2024; Garakani et al., 2024). Implementation of 
long-range dependency learning helps forecast excavation risk beyond short-range trends. 
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However, Transformers have obvious advantages; they need large and computationally 
expensive training datasets, which makes their real-time deployment problematic. 

2.3 Research gaps 

Although DL has significantly improved the prediction of excavation risk, the following 
challenges remain. 

• FEM models are not real-time adaptable and must be manually re-calibrated for 
different excavation conditions. 

• High-dimensional geotechnical datasets challenge ma-chine learning models that 
select destructive features in their implementations. 

• For example, CNNs cannot process time series data, LSTMs cannot fuse multiple 
data sources, and Trans-formers require high computational resources. 

These gaps support the need for a hybrid DL model by integrating the strengths of CNNs, 
LSTMs, and Transformers as part of an improved Exodus risk assessment modelling. 

3 Hybrid deep learning approach 

The risk assessment of the excavation-induced failure requires a comprehensive and 
adaptive approach for integrating multi-source geotechnical data to predict excavation-
induced failures accurately, as shown in Figure 1. However, FEM based stress-strain 
analyses employ high accuracy but are time-consuming and not real-time adaptable. 
Single DL architectures, however, can process sensor-based time series data and learn 
about past excavation failures. Still, they only capture the spatial and temporal 
dependencies to a limited extent. To address these limitations, this study suggests a 
hybrid DL model that combines CNNs, LSTM networks, and Transformers. With  
FEM-generated data to extract the temporal stress strain, the LSTM component on  
real-time sensor data learns the sequential deformation trends; the Transformer 
component enables the extraction from multi-source data, in the end, to predict failure 
more effectively. Investigating the synergistic use of analytical and numerical methods 
for deep excavation risk assessment yields a hybrid approach that provides improved 
predictive accuracy, real-time adaptability, and computational efficiency, and this 
approach promises to be suitable for such an undertaking. 

3.1 Data collection and pre-processing 

As part of the model training and validation dataset, multi-source geotechnical data is 
gathered from a real-world deep excavation project in Shanghai. Over the internet of 
things (IoT) based sensor networks deployed in modern excavation sites constantly 
monitor excavation stability. It can help measure the lateral displacement of the retaining 
walls to detect the lateral displacements caused by the excavation. Seepage shape 
dynamics are controlled by groundwater pressure fluctuations and their effects on soil 
stability. Identify stress variations in retaining walls and bracing systems and sense of 
failures. To do structural integrity analysis on bracing elements, measure forces acting on 
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bracing elements. The sensor readings belong to a time-series dataset that, in further 
experiments, is fed into the LSTM and transformer models. 

Subsurface soil conditions depend highly on the excavation stability and require 
thorough geotechnical investigation. Data for which hydraulic data is collected from 
borehole logs and laboratory tests includes: 

• Influences slope stability: soil cohesion (c). 

• Internal friction angle (φ): determines shear resistance. 

• Unit weight (γ): affects vertical stress distribution. 

• Permeability coefficient (k): governs groundwater seep-age. 

The stress-strain maps of excavation sites are high precision generated by FEM 
simulations. The key outputs from PLAXIS 3D-based FEM model are: 

• Displacement field (ux, uy, uz): tracks ground movement in different directions. 

• Stress components (σxx, σyy, σxy): represent forces within soil masses. 

Figure 1 A structured mindmap of a hybrid deep learning approach for excavation risk 
assessment integrating the multi-source geotechnical data, pre-processing techniques 
(see online version for colours) 

 

Notes: The deep learning architecture (CNN, LSTM, and transformer), risk prediction 
process, and experimental validation. 

The excavation stability mainly depends on external environmental factors, particularly 
climate changes and seismic activity. The collected ecological parameters include: 
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• Rainfall (Rt): increases soil water content, affecting slope stability. 

• Temperature (Tt): impacts thermal expansion/contraction of excavation structures. 

• Seismic activity (S): triggers additional lateral forces on retaining walls. 

Several pre-processing steps on the raw excavation dataset are needed to ensure 
consistent, scalable, and high performance of the DL: 

• All numerical features (sensor readings, FEM outputs, geotechnical parameters) are 
scaled to the range [0, 1] using min-max scaling; data normalisation. 

min

max min

X XX
X X

−′ =
−

 (1) 

• Principal component analysis (PCA) is applied to FEM outputs to feature select and 
extract stress-strain dominant features. 

• Sensor data are structured into fixed-length overlapping windows suitable for 
sequential analysis with LSTM networks. 

3.2 Model architecture 

Based on this, the hybrid DL model has three major components: CNNs for spatial 
feature extraction, LSTMs for sequential risk prediction, and Transformers for  
multi-source data fusion. FEM-generated stress-strain heatmaps are processed with CNNs 
to detect high-risk excavation zones. The application of a filter f over the FEM stress 
matrix X is a convolutional layer. 

, , ,i j m n i m j nm n
h f X b− −= +   (2) 

where hi,j represents the extracted feature at the position (i, j). fm,n, denotes the 
convolutional kernel. After being supplied with the CNN extracted localised stress 
patterns, the Transformer model has multi-source risk prediction. 

The evolution of excavation deformations over time makes it an iterative problem, 
and the corresponding sequential risk prediction models are necessary. An LSTM 
network processes sensor data sequences; output is obtained as future ground movement 
patterns. At each time step, the hidden state ht is updated as: 

( )tanht t th o c=  (3) 

where ot is the output gate and the memory cell state. The early warning of ground 
instability with LSTMs is made possible by capturing the long-term excavation trend. 

FEM outputs, real-time sensor readings, and environmental conditions are integrated 
using self-attention mechanisms where the Transformer based encoder is used. 

max
T

k

QKA soft V
d

 
=   

 
 (4) 

It is what is an attention mechanism in the Transformer model that has the input matrices 
Q(query), K(key), and V(value), and dk scaling factor. The model's ability to make this 
correlation across the range of geotechnical parameters is enhanced using this 
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mechanism, which increases overall prediction accuracy. Finally, the final risk score was 
generated by CNN, LSTM, and Transformer model outputs being combined in a fully 
connected fusion layer: 

( ), ,c CNN LSTM Transformer cR σ W h h h b= +    (5) 

where Wc, represents learnable weights. Safety recommendations with appropriate 
actionability are given at the low, moderate, or high-risk level. 

3.3 Advantages of the hybrid model 

The proposed hybrid DL model has significantly improved the excavation risk. CNNs 
take FEM stress maps and return high-risk excavation zones. LSTMs capture long-term 
excavation-induced deformations accurately. Transformer promotes integrated resource 
use (geotechnical, environmental, and sensor-based) to improve prediction robustness in 
the presence of comprehensive multi-source data fusion. The model processes continuous 
data from model excavation monitoring and generates safety alerts in real-time. A DL 
architecture has been optimised to balance accuracy and inference speed, making it 
computationally efficient for real-time deployment on active construction sites. It 
describes the hybrid approach as offering a breakthrough in using AI in geotechnical 
engineering for safer, more innovative, and more efficient excavation. 

4 Experimental setup 

The experimental setup that is used to test the proposed hybrid DL model to evaluate 
excavation risk is described in this section. The experiment is conducted on a real-world 
case study of a deep excavation project in Shanghai and structured model training and 
validation. The case study is an actual excavation around which accompanying sensor 
readings, FEM-generated stress-strain outputs, and environmental conditions exist. The 
hybrid CNN-LSTM-Transformer model is rigorously evaluated regarding prediction 
accuracy, computational efficiency, and real-time adaptability using the training and 
validation process. 

4.1 Case study: deep excavation project in Shanghai 

For the sake of validating the effectiveness of the hybrid model, a deep excavation 
project in Shanghai was selected. This site is subject to challenging geotechnical 
conditions such as soft to very soft silty clay and a high groundwater table with high 
lateral soil movement risks. The bracing system was constructed as a diaphragm wall and 
used to excavate; continuous monitoring was necessary to avoid instability and failure of 
the structure. Key specifications of the excavation site are summarised, as shown in  
Table 1. 

The high moisture content and low shear strength of silty clay increase risks such as 
groundwater seepage, lateral wall deformation, and soil instability. As such, these 
challenges make the site an appropriate case study for evaluating the performance of the 
hybrid DL model. 
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Table 1 Site specifications. 

Parameter Value /description 
Excavation depth 15 metres 
Soil type Silty clay with a high groundwater table 
Retaining structure Diaphragm wall with a bracing system 
Excavation duration 6 months 
Monitoring period Continuous monitoring during excavation 

4.2 Model training and validation 

The dataset was divided into three subsets to train and evaluate the hybrid model, as 
shown in Table 2. 
Table 2 Dataset partitioning 

Dataset Percentage Purpose 
Training set 70% Used for model learning and parameter optimisation 
Validation set 20% Used for hyperparameter tuning and overfitting prevention 
Testing set 10% Evaluate model performance on unseen data 

However, since excavation failures are rare, the synthetic minority over-sampling 
technique (SMOTE) was also used to balance the number of failures versus non-failure 
samples to ensure the model was balanced and without bias. To enhance the hybrid DL 
model efficiency and optimise the training parameters. The model was trained using MSE 
as the loss function:  

( )2

1

1 ˆ
n

i ii
MSE y y

n =
= −  (6) 

where yi is the actual excavation-induced deformation ˆiy , is our predicted deformation, 
and is the total number of data points. Adam optimiser was chosen to achieve efficient 
convergence. The updated rules are: 

( )1 1 11t t tm m g−= + −β β  (7) 

( ) 2
2 1 21t t tv v g−= + −β β  (8) 

1
t

t t
t

mθ θ
v−= −

+ ∈
α  (9) 

In other words, the gradient of the loss function is gt moment estimates vt, and the 
learning rate is α. This adaptive learning rate keeps the network from overfitting and 
converges the network faster. The trained model was evaluated using three key metrics, 
as shown in Table 3: 

Then, this real-world excavation site in Shanghai was used to validate the hybrid DL 
model in this experimental study. Integration of FEM data, sensor readings, and AI-based 
predictive modelling led to high accuracy and efficiency in the model. Experimental 
results and the model performance analysis are presented in the next section. 
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Table 3 Performance evaluation metrics 

Metric Description 
RMSE Measures the deviation between predicted and actual deformations 
F1-score Evaluates the model's ability to detect excavation failures 
Computation time Assesses model efficiency in real-time deployment 

5 Results and analysis 

This section presents the experimental results by applying the hybrid DL model to the 
Shanghai deep excavation case study. The RMSE, F1 score and computation time were 
evaluated on the model's performance. The model prediction of excavation-induced 
deformations, lateral wall displacements, and groundwater seepage risk is demonstrated 
by analysing the results. The improvements in accuracy, adaptability, and efficiency are 
compared against FEM simulations, individual DL models (CNN-LSTM, transformer), 
and hybrid models (CNN + LSTM + transformer). 

5.1 Predictive accuracy of the hybrid model 

The RMSE values of the hybrid model were compared to those of FEM-only simulations, 
CNN-LSTM models, and transformer-only models to assess prediction accuracy. Table 4 
and Figure 2 encompass the results. 

Figure 2 Compared to fem-only simulations, the hybrid model outperforms other models and 
reduces the prediction errors in excavation risk prediction by about 44.2% (see online 
version for colours) 

 

The predictions obtained from these results for excavation-induced deformations are 
lower (minimum RMSE = 2.90 mm) than any other method, and the hybrid model 
outperforms the different methods in predicting these deformations. It was found that 
manual parameter calibration and computational limitations do not allow the FEM-only 
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model to reach the highest prediction error (5.20 mm). Another model, CNN-LSTM and 
transformer, reduces the prediction errors. Still, they fail to perform optimally and rely on 
multi-source data fusion and sequential risk prediction. 
Table 4 RMSE comparison for different models 

Model type RMSE (mm) 
FEM-only 5.2 
CNN-LSTM 3.8 
Transformer-only 3.5 
Hybrid model 2.9 

5.2 Excavation failure classification performance 

Besides RMSE, the model's performance in correctly classifying the excavation failures 
was evaluated based on the F1-score, which is the arbitration between the precision 
(correctly predicted failures) and recall (actual failures detected). In Table 5, the models' 
F1-score values are shown. 

Figure 3 The hybrid model's steeper precision-recall curve validates its ability to accurately 
identify excavation risks, eliminating false alarms and failure to catch (see online 
version for colours) 

 

Table 5 F1-score comparison for failure prediction 

Model type F1-score (%) 
FEM-only 81.4 
CNN-LSTM 89.7 
Transformer-only 91.2 
Hybrid model 94.5 

Although the performance for the FEM-only model is 81.4%, it is significantly 
outperformed by the hybrid model (94.5%). The results of this improvement further 
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imply that DL models can be combined with multiple sources of geotechnical data and 
precision-recall curves shown in Figure 3. 

5.3 Computational efficiency analysis 

Excavation risk prediction should be performed in near real-time for real-world 
applications so that proactive decisions can be made. The training was conducted on an 
NVIDIA Tesla V100 GPU with 32GB memory, and inference was tested on an NVIDIA 
RTX 3080 GPU with 10GB memory. Table 6 and Figure 4 compare the computation 
time for training and inference. 
Table 6 Computation time comparison 

Model type Training time (s) Inference time (s) 
FEM-only 180.0 3.0 
CNN-LSTM 55.0 0.9 
Transformer-only 68.0 1.2 
Hybrid model 72.5 1.4 

Figure 4 The hybrid model achieves optimal trade-off between inference speed and 
extraordinarily high prediction accuracy, a plausible solution for monitoring excavation 
risk (see online version for colours) 

 

5.4 Visualisation of risk predictions 

Finally, predicted ground deformation values from the hybrid model were used to 
visualise the excavation risk predictions on heatmaps in Figure 5. 
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Figure 5 The hybrid model predicts high-risk zones (red) that coincide with recorded excavation 
failures, giving evidence of the reliability of the hybrid model in predicting instability 
patterns (see online version for colours) 

 

5.5 Results summary 

Results indicate that the hybrid DL model performs much better than FEM simulations 
alone and standalone DL models. The key findings are: 

• Improves excavation risk prediction precision: the hybrid model has an RMSE of 
2.90 mm. 

• Improved F1: the hybrid model leads to an improved precision of 94.5%. 

• Inference times: the model has an inference time of 1.4 s, which is sufficiently low 
for real-time monitoring. 

• Practical effectiveness: the hybrid model's excavation risk heatmaps follow practical 
failure events. 

The profound foundation pit risk assessment results indicate that CNN + LSTM + 
transformer can achieve higher accuracy, reliability, and computational efficiency than 
other hybrid DL models (CNN + LSTM + GRU or CNN + LSTM + BiGRU). It reduces 
prediction errors, helps classify excavation failure, and can be applied to real-time 
monitoring. The results validate the model's ability as an advanced decision-support tool 
in geotechnical engineering. 

6 Discussion 

The study's main findings are provided in this section, and the advantages of the hybrid 
DL model in deep foundation pit risk assessment are discussed. It has been found that 
integrating CNNs, LSTMs, and Transformers brings substantial accuracy improvement, 
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real-time adaptability, and computational efficiency in predictive accuracy. In addition, 
this section incorporates the limitations of the proposed approach, such as the 
computational complexity, data dependency, and model interpretability. 

6.1 Key findings 

Analysing complex stress-strain distributions in excavation sites is one of the main 
challenges of the excavation risk assessment. FEM simulations traditionally produce 
high-resolution stress maps, but engineers must tediously pore over those results to find 
the high-risk zones. The hybrid model automates this process by incorporating CNNs. 
Critical spatial features from FEM-generated stress-strain heatmaps can then be 
extracted. Estimating the probability of the stress transfer zone resulting in high 
deformation. Learning patterns of soil structure interaction for enhancing spatial 
awareness. Using the stress tensors, soil displacement field, and retaining wall 
deformation map, the CNN component can successfully process the excavation risk 
analysis and is more data-driven and automated. 

Soil movements, wall deformations, and structural loads increase over weeks and 
months in excavation projects, significantly impacting the project's timing and success. 
Delayed failure detection is the biggest issue with traditional models, as they cannot 
incorporate the sequential excavation phase data. The hybrid model integrates LSTM 
networks. It learns from the historical inclinometer and piezometer readings to predict 
future excavation-induced deformations. It identifies the recurring instability trends and 
warns early of excessive lateral wall movements. It enhances the temporal resolution of 
risk assessments by forecasting deformation trends before failure. It allows engineers to 
make proactive decisions, such as adjusting bracing systems to avoid structural damage 
before it occurs, which only requires analysing sequential excavation data by the LSTM 
component. 

The excavation risk is a function of multiple interdependent factors like the 
geotechnical properties, real-time sensor readings, and environmental conditions. 
However, these existing DL models cannot incorporate these dissimilar datasets well. 
The transformer component of the hybrid model processes multiple sensor readings while 
obtaining real-time risk assessment. The environmental variation (e.g., rainfall intensity, 
seismic activity) is correlated with the excavation-induced stress variation. Weigh the 
importance of each geotechnical parameter used in long-term risk prediction with a self-
attention mechanism. The transformer component integrates a wide range of geotechnical 
datasets in a more complete excavation risk assessment framework than the analysis of 
the single source datasets. 

The result is an AI-driven risk assessment model that is adaptive, scalable, and highly 
accurate, a product of the combination of CNNs, LSTMs, and transformers. The hybrid 
model was compared with the traditional. It achieves a considerable RMSE reduction to 
2.90 mm and thus improves deformation prediction accuracy. It achieves an F1-score of 
94.5% compared to the previous F1-score of 55.4% during the classification of 
excavation failure. It keeps an inference time of 1.4 seconds, is computationally efficient, 
and is capable of real‐time applications. It verifies that the hybrid model outperforms 
FEM-only simulations and standalone DL procedures, making the excavation risk 
assessment safer and more reliable. 
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6.2 imitations 

The hybrid model substantially improves over traditional excavation risk assessment 
methods but notes its few limitations. Training and running the real-time deployment of 
DL models, especially transformers, takes many computational resources. FEM  
stress-strain tensors, multi-sensor source input, and environmental data are all used as 
high-dose input. Increase the number of trainable parameters (DL layers, like CNN, 
LSTM, transformer, and so on), which have longer training times compared to simpler 
ML models, as shown in Table 7. 
Table 8 Computational complexity across models 

Model type Training time (s) Inference time (s) Hardware requirements 
FEM-only 180.0 3.0 High CPU usage 
CNN-LSTM 55.0 0.9 Medium GPU usage 
Transformer-only 68.0 1.2 High GPU usage 
Hybrid model 72.5 1.4 High GPU/TPU usage 

The generalisation of DL models mainly relies on large-scale, labelled datasets. The 
history of excavation failures is rare, so obtaining sufficient training data from real-world 
excavation failures is challenging. Suitable datasets that comprise standardised 
geotechnical data with labelled stress-strain outputs. Measurable multi-source sensor data 
(i.e., inclinometer readings or piezometer data). For these challenges, this study used data 
augmentation techniques, using the SMOTE. Future work needs to concentrate on 
building open-access geotechnical datasets for generalisation. 

A significant obstacle with DL models lies in their opacity, as they function as black 
boxes, and it is impossible to explain why a particular excavation risk prediction was 
made. Interpretability of promising engineering decision-making, where interpretability is 
required to validate predictions. Such as regulatory compliance in which a preferred 
construction risk assessment can be derived from explainable models. To resolve this 
problem, XAI techniques ought to be embedded into future versions of the hybrid model. 
CNN visualisation highlights what stress-strain regions contribute to risk predictions 
using gradient weighted class activation mapping (Grad-CAM). Attention heat maps for 
Transformer models should be examined to find which geotechnical parameters strongly 
influence the excavation failure forecasts. Neural networks (NNs) are augmented with 
hybrid AI + physics-informed neural networks (PINNs) to guarantee physically 
consistent outputs. 

7 Future work 

The proposed hybrid DL model dramatically improves the accuracy of excavation risk 
assessment. Nevertheless, there are opportunities for further research and development to 
improve the efficiency and make the model more valuable in the real world. Future work 
will have to optimise computational efficiency, expand dataset availability, enhance 
model interpretability, and develop a real-time monitoring system for automated 
excavation safety management. However, the computational complexity of CNN, LSTM, 
and Transformer architectures in deploying DL models makes it one of the key 
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challenges for geotechnical risk assessment. Future work is the exploration of the use of 
lightweight neural network architectures (such as quantised neural networks (QNNs), 
knowledge distillation, and edge AI for (on-site) excavation monitoring at low-power 
devices. Most existing methods are based on historical and real-time sensor data, while 
limited and non-standardised labelled excavation failure datasets exist. Future research 
should aim to develop multi-source sensor readings, excavation failure case studies, and 
standardised stress-strain data to enhance model generality and robustness. Model 
interpretability is a second critical gap, especially in DL models, often black-box 
predictors that engineers do not quickly validate. Future work will integrate explainable 
AI (XAI) frameworks, such as attention-based visualisation techniques for transformers, 
Grad-CAM for CNN feature mapping, and feature attribution methods for time-series 
predictions, to address the issue of transparency and trust regarding the AI-driven risk 
assessment. Secondly, PICC can be integrated with DL models to ensure that the 
predictions can be consistent with the geotechnical engineering principle for model 
reliability in real-world applications. Finally, the proposed hybrid model can include a 
time IoT-based sensor network for automated excavation risk monitoring. It is suggested 
that future work should be focused on further developing an AI-driven digital twin of 
excavation sites, where real-time sensor data continues to be fed into the hybrid model, 
providing continuous risk assessment, early warning alerts, and predictive maintenance 
recommendations. This research utilises cloud-based AI analytics and wireless sensor 
networks to enable autonomous excavation risk management systems to increase safety, 
reduce project delays, and increase construction efficiency. 

8 Conclusions 

In this study, a DL hybrid model using CNNs, LSTMs, and Transformers is presented to 
reduce errors in the probabilistic predictiveness and enhance real-time adaptability and 
multi-source data fusion for excavation risk assessment in deep foundation pit 
engineering. FEM simulations are valuable to assess the stress-strain distribution and 
soil-structure interaction. Still, they pay high computational costs, are manually 
dependent on parameters, and lack flexibility in real-time excavation conditions. 
However, existing DL models also have disadvantages when applied separately. CNNs 
rely on spatial feature extraction, and LSTMs only know the time series. Transformer is 
excellent for combined multi-source data but requires large-scale datasets and a lot of 
computational capacity. 

This study presents a hybrid AI-driven risk assessment framework to overcome these 
challenges, utilising CNNs for stress-strain feature extraction from FEM simulation, 
LSTMs for predicting the sequential excavation-induced deformations, and Transformers 
for integrating available geotechnical, sensor-based, and environment risk factors. The 
model was validated using a real-world deep excavation project in Shanghai using an 
inclinometer, piezometer, strain gauge readouts, and FEM-generated stress-strain data. 
The experiment results in an RMSE of 2.90 mm, which is much smaller than the RMSE 
of traditional FEM-only simulations (5.20 mm RMSE), CNN-LSTM models (3.80 mm 
RMSE), and Transformer models (3.50 mm RMSE). The model also has a 94.5% failure 
classification F1 score, which proves that the model can correctly classify the excavation 
instability with greater accuracy than current methods. The hybrid model can be 
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computed in real-time (inference time of 1.4s), and its computational efficiency also 
makes it suitable for real-time deployment in excavation safety monitoring systems. 

The study also presents several limitations, such as a higher computational resource 
demand, the dependency on the preceded labelling of the excavation failure dataset, and 
the lack of interpretability of the DL architectures. Future research should inspect 
lightweight AI architectures, explainable AI (XAI) frameworks, and PINN integration to 
enhance the model efficiency, transparency, and generality. In addition, integrating  
IoT-based real-time excavation monitoring systems and cloud-based AI analytics in the 
practical deployment of the AI-based excavation risk assessment in any substantial 
project is also possible. 

Finally, a hybrid deep-learning model establishes a new benchmark for AI-derived 
excavation safety, predictive accuracy, and real-time adaptability. This research will pave 
the road for safer, smarter, and more efficient excavation projects by integrating DL with 
geotechnical monitoring systems. It will lead to the next generation of AI geotechnical 
engineering solutions. 
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