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Abstract: This study addresses the underutilisation of multi-channel surface 
electromyography (sEMG) features in basketball motion recognition by 
proposing a spatiotemporal fusion network. Multi-channel sEMG signals from 
athletes’ key muscles were collected and synchronised with motion capture 
data, followed by preprocessing to reduce individual variations. The  
dual-branch architecture integrates time-frequency feature extraction using 
convolutional-recurrent networks with graph-based modelling of inter-muscle 
spatial correlations. An adaptive attention mechanism fuses temporal dynamics 
and spatial synergies for classification. Experimental results demonstrate 
superior recognition performance compared to conventional machine learning 
and single-channel deep learning approaches, with ablation studies confirming 
the critical roles of spatial modelling and feature fusion. The framework 
provides an effective solution for analysing complex sports motions through 
multi-channel physiological signals, offering applications in athletic training 
optimisation and injury risk prevention. 
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1 Introduction 

As a kind of non-invasive bioelectrical signal, sEMG can reflect the spatial and temporal 
characteristics of muscle contraction in real time (Akira et al., 2021), and has shown 
significant value in the fields of sports biomechanics analysis (Ryu and Kim, 2017), 
rehabilitation medicine and human-computer interaction (Qi et al., 2019) in recent years. 
Especially in competitive sports, accurate identification of EMG characteristics of highly 
dynamic movements such as shooting, dribbling and change of direction in basketball 
players can provide objective quantitative basis for technical movement optimisation and 
sports injury prevention. For example, by analysing the activation sequence of quadriceps 
and gastrocnemius muscles during jumping, the reasonableness of the lower limb force 
pattern can be assessed, which can then guide the adjustment of training strategies. Ding 
et al. (2021) proposed an sEMG-based motion intention prediction algorithm, which 
combined muscle synergy-enhanced convolutional autoencoder for feature compression 
and online adaptive parameter optimisation. The method achieved dual-modal prediction 
of joint motion and gait events, demonstrating enhanced robustness against sEMG  
non-stationarity. Experimental results validate significant improvements in prediction 
timeliness and cross-condition adaptability compared to conventional approaches. 
However, most existing studies focus on single-motion scenarios such as gesture 
recognition or static movement analysis (Xing et al., 2014), and there is still a lack of 
systematic exploration of basketball, which is a high-complexity, multi-muscle group 
synergistic whole-body sport. This research gap directly constrains the in-depth 
application of sEMG technology in competitive sports and highlights the urgent need to 
develop targeted algorithms (Ding et al., 2017). 

Traditional sEMG action recognition methods mainly rely on manual feature 
engineering with shallow machine learning models (Moctar et al., 2024). For example, 
they extract time-domain features such as root mean square (RMS) and  
frequency-domain features like median frequency, and combine them with support vector 
machine (SVM) or random forest for classification (Bo et al., 2021). Although such 
methods perform well in simple actions such as fist clenching and elbow flexion, they 
have significant limitations (Yogendra, 2021): first, manual features are difficult to fully 
characterise the time-frequency nonlinear properties of sEMG signals, resulting in 
insufficient recognition accuracy for continuous dynamic actions such as basketball 
change of direction (Ibraheem, 2023); and second, the traditional model ignores spatial 
correlations between multi-channel signals and fails to model the physiological 
mechanisms of muscle groups working in concert (Li et al., 2023). For example, the 
shooting action requires the temporal coordination of upper limb biceps and deltoid 
muscles, while the existing methods only process the single-channel signals 
independently, which severs the functional coupling relationship between muscles. 

With the rise of deep learning techniques, methods based on CNN and long  
short-term memory (LSTM) networks have gradually become mainstream (Bryan and 
Stefan, 2021; Yasuda et al., 2017). Such methods automatically extract spatio-temporal 
features of sEMGs through end-to-end learning, which significantly improves the 
performance of tasks such as gesture recognition. Moctar et al. (2024) systematically 
reviewed feature extraction methods for sEMG classification, spanning from handcrafted 
feature engineering to deep learning-based representation learning and revealed the 
stability advantages of handcrafted features in small datasets and the generalisation 
potential of deep learning with large-scale data by comparing the performance of 
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traditional machine learning and deep learning classifiers. The survey established a 
unified analytical framework for cross-method evaluation, while identifying data scarcity 
and clinical interpretability as critical challenges for advancing deep learning applications 
in this field. Su et al. (2021) developed a deep multi-parallel CNN framework for  
sEMG-based gesture recognition, which eliminated manual feature engineering through 
end-to-end classification architecture. Compared with five conventional machine learning 
methods, the proposed multi-scale parallel convolutional structure significantly improves 
recognition accuracy, demonstrating the superiority of deep learning in autonomous 
sEMG feature representation and information preservation. However, in basketball sports 
scenarios, existing deep learning frameworks still face two major challenges: first, 
although single-channel models like LSTM (Mao et al., 2023) can capture temporal 
dependencies, they do not effectively utilise the spatial distribution information of  
multi-electrode channels, making it difficult to portray the spatial synergy patterns of the 
muscle groups (Xiong et al., 2023); second, most studies have adopted a simple  
feature-level crosstabulation such as stacking the time-domain and frequency-domain 
features into the network, which lacks a dynamic assessment of the importance of 
features and the interactions, resulting in a model that is sensitive to noise and limited in 
its generalisation ability(Zhang et al., 2021). For example, although the multi-stream 
CNN-based gesture recognition framework (Wei et al., 2017; Xu and Jiang, 2023) tries to 
integrate multi-dimensional features, its feature selection strategy relies on empirical 
screening and fails to optimise the feature weight allocation from the perspective of 
interpretability. 

Aiming at the above problems, this paper proposes a multi-channel feature fusion 
network for basketball, which aims to break through the bottleneck of traditional methods 
in terms of accuracy and robustness. With the core objective of solving the  
‘accuracy-speed trade-off’, this study designs a hierarchical fusion architecture to address 
the high dynamics and complexity of muscle synergy in basketball: firstly, GCN is 
introduced to model the spatial topology of the multichannel sEMG (Feng et al., 2021; 
Zhou and Zhou, 2021), the electrode positions are mapped as graph nodes, and the 
muscle synergies are encoded by the adjacency matrix. relations, mapping electrode 
positions to graph nodes, and encoding the functional coupling strength of muscle groups 
through the adjacency matrix; secondly, combining the bidirectional gated recurrent unit 
(BiGRU) to extract the timing-dependent features across channels, and dynamically 
weighting the contribution of key muscle channels through the attention mechanism; 
finally, designing a multi-scale feature pyramid structure, fusing local details with global 
contextual information, to enhance the model’s ability to discriminate between subtle 
differences in movements such as wrist force patterns for shooting and passing. 

Compared with existing technologies, this study not only achieves a comprehensive 
improvement of algorithm performance, but also solves practical problems such as 
equipment heterogeneity and signal noise interference in industrial scenarios through 
modular design and adaptive calibration strategy, which strongly promotes the surface 
electromyography analysis technology from laboratory research to the leap of large-scale 
industrial applications. 

The main innovations and contributions of this work include: 
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1 muscle synergy theory is integrated into the deep learning framework, and the spatial 
correlation of multi-channel sEMG is explicitly modelled by GCN, which overcomes 
the shortcomings of traditional methods that ignore the electrode arrangement 
relationship 

2 propose an interpretability-driven feature fusion mechanism that uses  
gradient-weighted class activation mapping to visualise the basis of network decision 
making and guide the optimal selection of feature channels 

3 development of a lightweight inference architecture that significantly reduces 
computational complexity while maintaining classification performance, providing a 
viable solution for real-time motion analysis of embedded devices 

4 systematic construction of multi-muscle synergistic activation maps for basketball 
movements, breaking through the limitations of traditional biomechanical research 
relying on empirical assumptions, and establishing a data-driven analysis paradigm 
for sports technique optimisation and injury prevention. 

2 Relevant technologies 

2.1 Feature extraction methods on sEMG signals 

Feature extraction from sEMG signals is pivotal for motion recognition. Traditional 
methods primarily rely on handcrafted features from time-domain, frequency-domain, 
and time-frequency analyses. Time-domain features characterise muscle activation 
intensity through signal amplitude statistics. Representative methods include the mean 
absolute value (MAV) and RMS, calculated as: 

1

1MAV
N

i
i

x
N =

=   (1) 

2

1

1RMS
N

i
i

x
N =

=   (2) 

where xi represents the signal sampling point, and N is the window length.  
Frequency-domain features analyse spectral properties via Fourier transform. For 
instance, the mean power frequency (MPF) is defined as: 
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 (3) 

where fk and Pk denote the frequency components and their corresponding power, 
respectively. Time-frequency features, such as wavelet energy coefficients, capture 
transient signal characteristics through multi-scale decomposition. The energy of discrete 
wavelet transform (DWT) coefficients is expressed as: 
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2

1

( )
M

j j
m

E d m
=

=  (4) 

where dj(m) represents the wavelet coefficients at the jth decomposition level, and M is 
the number of coefficients. 

However, handcrafted features heavily depend on expert knowledge and struggle to 
characterise the nonlinear dynamics of sEMG signals. For example, while sample entropy 
(SampEn) quantifies signal complexity: 

( )SampEn( , , ) ln
( )

m

m

A rm r N
B r

 = −  
 

 (5) 

where m is the embedding dimension, r is the similarity threshold, and Am(r)/Bm(r) count 
matched templates, its computational inefficiency and noise sensitivity limit practical 
applications. The wavelet transforms pinpoints transient signals like muscle eruptions 
through multi-scale decompositions like Daubechies basis functions, whereas 
conventional band-pass filtering may smooth out high-frequency details, resulting in loss 
of information. 

Consequently, integrating deep learning for automated feature extraction becomes 
imperative. 

2.2 Deep learning models in sEMG analysis 

CNN leverage local receptive fields to extract temporal patterns from sEMG signals. The 
convolution operation is formulated as: 

1
1

K

t k t k
k

y w x b+ −
=

= ⋅ +  (6) 

where wk denotes the convolutional kernel weights, xt is the input signal, and b is the bias 
term. LSTM networks model temporal dependencies via gating mechanisms: 

[ ]( )1,t f t t ff σ W h x b−= ⋅ +  (7) 

[ ]( )1,t i t t fi σ W h x b−= ⋅ +  (8) 

where ft and it represent the forget gate and input gate, respectively, and σ is the sigmoid 
function. 

However, single-channel models such as LSTM focus solely on temporal dynamics, 
neglecting the spatial distribution of multi-electrode signals. For instance, basketball 
shooting involves coordinated activation of the biceps brachii and deltoid muscles, yet 
traditional methods fail to model inter-channel functional couplings. GCNs address this 
by encoding muscle topology through adjacency matrices. The node feature update is 
defined as: 

( )1 1
2 2( 1) ( ) ( )l l lH σ D AD H W− −+ =    (9) 
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where A A I= +  is the adjacency matrix with self-loops, D  is the degree matrix, and 
H(l) denotes features at layer l. GCNs explicitly model muscle synergy mechanisms, 
overcoming the limitations of conventional approaches. 

The basic structure of CNN is shown in Figure 1. 

Figure 1 Basic structure of CNN (see online version for colours) 
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2.3 Multi-modal feature fusion strategies 

Early fusion concatenates time-domain and frequency-domain features directly but risks 
redundant feature interference. Late fusion aggregates predictions from independent 
branches but overlooks feature interactions. Attention mechanisms enhance fusion 
efficiency by dynamically weighting feature importance: 

( )
( )

1

exp

exp
i

i C
jj

e

e
=

=


α  (10) 

where ei is the energy score of feature i, and C is the number of feature channels. 
Existing studies explore multi-stream CNNs for time-frequency fusion but lack 

interpretability-guided optimisation. Shapley additive explanations (SHAP) quantify 
feature contributions via game theory: 

\{ }

!( 1)![ ( { } ( )]
!i

S F i

S F S f S i f S
F⊆

− −= ∪ −φ  (11) 

where F is the feature set, S is a subset, and f is the prediction function. While SHAP 
enables feature selection, its synergy with deep learning frameworks requires further 
exploration. 
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2.4 Lightweight design and real-time optimisation 

Industrial applications demand real-time inference on embedded devices such as sEMG 
armbands. Depthwise separable convolution reduces computational costs by decoupling 
spatial and channel convolutions: 

, , , , ,
,

ˆi j k m n k i m j n
m n

y w x + += ⋅  (12) 

, , , , ,i j l k l i j k
k

z w y= ⋅  (13) 

where ŵ  and w are depthwise and pointwise kernels, respectively. 
Additionally, independent component analysis (ICA) separates mixed signals: 

X AS=  (14) 

where A is the mixing matrix and S are source signals. However, ICA’s linear assumption 
limits its efficacy in modelling sEMG’s nonlinear properties. 

3 Multi-channel spatiotemporal synergistic sEMG feature fusion network 
design 

3.1 Dynamic convolution and multi-scale feature extraction 

Traditional CNNs with fixed kernels struggle to adapt to the non-stationary nature of 
sEMG signals. Muscle activation intensity varies significantly across motion phases – for 
instance, high-frequency spikes in the biceps during shooting versus sustained activation 
patterns in forearm muscles during dribbling. Fixed kernels cannot dynamically adjust 
their receptive fields, limiting their ability to capture transient and steady-state signals. To 
address this, we propose a dynamic convolution mechanism that adaptively adjusts kernel 
parameters based on local signal energy distributions. 

For an input signal xi, the dynamic kernel wk is generated as: 

1

J

k j j
j

w σ E
=

 
=   

 
α  (15) 

where Ej is the RMS energy of the jth channel, reflecting instantaneous muscle activation 
intensity; αj are learnable weights optimised via backpropagation; and σ is the sigmoid 
function, mapping energy values to the range [0, 1] to stabilise kernel parameters. This 
mechanism mathematically constructs an energy-driven nonlinear mapping function, 
enhancing robustness against noise and nonlinear distortions. 

To model multi-scale sEMG characteristics, we design a multi-scale feature pyramid 
using dilated convolutions with varying expansion rates. For example, a dilation rate  
d = 1 captures short-term myoelectric spikes, while d = 5 extends the receptive field to 
200 ms for modelling long-term muscle fatigue trends. The output feature Fm at the mth 
layer is computed as: 
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m m d
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F w x
=

 
= ∗  

 
  (16) 

where wm,d represents the convolutional kernel with dilation rate d. This multi-scale 
design avoids feature loss from single-scale convolutions while resolving short-term 
bursts and long-term coordination patterns. 

The real-time interactive system based on sEMG motion recognition is shown in 
Figure 2. 

Figure 2 Real-time interactive system based on sEMG motion recognition (see online version  
for colours) 
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3.2 GCNs and muscle synergy modelling 

Basketball motions inherently rely on spatiotemporal synergy among muscle groups, yet 
traditional single-channel models process signals independently, neglecting inter-channel 
functional couplings. For example, shooting requires coordinated activation of the deltoid 
and biceps, but single-channel models focus only on local temporal dynamics. To address 
this, we construct a muscle functional graph G = (V, E), where nodes vi ∈ V represent 
sEMG electrode channels, with node features as concatenated time-frequency domain 
descriptors, and edges eij ∈ E encode muscle synergy strength, with weights Aij computed 
via mutual information: 

( ) ( )
( ) ( ),

,

,
, log i j

i j i j
i jx y

p x x
A p x x

p x p x
=  (17) 

Based on this, a GCN aggregates spatial features through neighbourhood propagation: 

( )1 1
2 2( 1) ( ) ( )ReLUl l lH D AD H W− −+ =    (18) 

where A A I= +  is the adjacency matrix with self-loops, and D  is the degree matrix. 
The GCN layer explicitly models functional couplings between key muscles such as 
biceps brachii and deltoid, resolving the spatial fragmentation issue in single-channel 
models. 

To explicitly integrate muscle synergies into the graph structure, the adjacency matrix 
weights Ai,j are calculated via mutual information. For instance, during a basketball 
shooting motion, the deltoid and biceps exhibit high functional coupling, with mutual 
information values reaching 0.89 for professional athletes, compared to 0.72 for 
amateurs. These weights are normalised to the range [0, 1] and directly reflect the 
physiological coordination between muscle groups. The GCN layer propagates spatial 
features through neighbourhood aggregation, enabling the model to capture synergistic 
patterns such as the sequential activation of the deltoid (early phase) and biceps  
(late phase) during shooting. 

3.3 Attention-driven feature fusion mechanism 

Early fusion such as feature concatenation introduces redundant noise, while late fusion 
like voting mechanisms overlooks feature interactions. This paper proposes a dual-branch 
attention fusion framework: 

1 Temporal branch: BiGRU extracts cross-channel temporal dependencies: 

( )1BiGRU ,t t th x h −=  (19) 

BiGRU outperforms unidirectional LSTM by capturing both forward and backward 
timing dependencies by a bidirectional gating mechanism. For example, in the 
jumping and throwing manoeuvre, the sEMG signals of the triceps during the  
pre-activation phase (200 ms before jumping) differ significantly from those of the 
relaxation phase (100 ms after landing), and the bidirectional structure models such 
cross-phase dependencies more completely. In the case of the jump shot, the forward 
layer of BiGRU captures the explosive activation of the triceps brachii muscle prior 



   

 

   

   
 

   

   

 

   

   74 X. Fu and Y. Hu    
 

    
 
 

   

   
 

   

   

 

   

       
 

to the jump, and the backward layer models the pattern of relaxation of this muscle 
after the landing, with the fusion of the two completely characterising the movement 
cycle. 

2 Spatial branch: GCN outputs muscle synergy features HG. The fusion stage 
incorporates cascaded channel attention and spatial attention mechanisms: 

[ ]( )Soft max ;c c G TW H H=α  (20) 

( )Sigmoids S CW= ⋅β α  (21) 

where Wc and Ws are learnable parameters. αc quantifies channel importance, while 
βs enhances critical spatial regions. This mechanism prioritises upper-limb muscle 
channels during shooting actions while suppressing noise from lower limbs. 

3.4 Lightweight classification and regression module 

For real-time deployment on embedded devices, this paper proposes dynamic depthwise 
separable convolution (DDSC): 

, , ,, ,
,

d
i j k i m j nm n k

m n

y w x + += ⋅  (22) 

, , , , ,
,

i j l k l i j k
m n

z y= ⋅α  (23) 

where , ,
d
m n kw  is the dynamic kernel, and αk,l is the channel attention weight. Compared to 

standard depthwise separable convolution, DDSC reduces parameters by 58% while 
preserving adaptability. 

The network architecture in this paper consists of a signal adaptive layer, a muscle 
co-modelling layer, an attention fusion layer and a lightweight decision-making layer to 
form a closed loop of end-to-end feature learning and classification. The signal adaptive 
layer resolves local and global patterns of non-smooth signals through dynamic 
convolution and multi-scale design, where the generation of dynamic convolution kernel 
relies on the energy distribution of the input signal, and the multi-scale cavity 
convolution covers muscle activation patterns over different time spans. The muscle  
co-modelling layer maps electrode channels to graph nodes, explicitly encoding spatial 
topological relationships, e.g., the high mutual information weights of the deltoid and 
biceps muscles directly reflect the strength of their functional coupling. 

The attentional fusion layer dynamically balances the importance of spatio-temporal 
features by cascading channel and spatial attention mechanisms. Channel attention 
quantifies the contribution of each channel, while spatial attention strengthens the 
response of key regions, e.g., the temporal branch dominates the weight in dribbling 
manoeuvres, while the spatial branch is significantly weighted in shooting manoeuvres. 
The lightweight decision layer combines dynamic depth-separable convolution with 
SHAP feature optimisation to compress the number of parameters while preserving 
discriminative feature dimensions. The synergy of the network modules is reflected in the 
complementary enhancement of temporal and spatial features such as the temporal 
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branch resolves the dribbling rhythm, the spatial branch strengthens the shooting synergy, 
and ultimately achieves high-precision classification through the attention fusion. 

From the theoretical level, the design has the following advantages: 

1 the dynamic convolution mechanism adjusts the receptive field through energy drive, 
which enhances the model’s adaptability to the dynamic characteristics of the signal 

2 the combination of muscle function map and GCN makes the feature learning 
conform to the principles of biomechanics, which improves the interpretability of the 
model 

3 the cascade attention mechanism optimises the feature space through sparse 
constraints, which reduces the redundant computation 

4 the SHAP framework provides a transparent decision basis to support model iteration 
and action mechanism analysis. 

4 Signal calibration and model optimisation 

4.1 Signal alignment and denoising 

Multi-channel sEMG signals are susceptible to device asynchrony and individual 
physiological differences during acquisition, resulting in degraded signal quality and 
limited model generalisation. 

Temporal misalignment across channels caused by device latency or motion artefacts 
directly impacts the accuracy of spatiotemporal feature fusion. Using a reference channel 
xref(t) as the baseline, the time delay for the kth channel xk(t) is calculated via  
cross-correlation: 

,
0

( ) ( ) ( )
T

k ref k ref
t

R τ x t x t τ
=

= +  (24) 

where T is the signal window length, and τ is the time delay offset. The optimal delay kτ∗  
is determined by maximising Rk,ref(τ), yielding aligned signals as: 

( ),arg max ( ), ( )k k ref k k k
τ

τ R τ x t x t τ∗ ∗= = −  (25) 

Post-alignment, adaptive wavelet threshold denoising is applied to suppress motion 
artefacts and powerline interference. The threshold λj for each wavelet decomposition 
level is dynamically adjusted based on noise energy: 

2 lnj jλ σ N=  (26) 

where σj is the standard deviation of the jth level wavelet coefficients, and N is the total 
number of signal samples. This method preserves muscle burst spikes while effectively 
attenuating low-frequency drift and high-frequency noise. 
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4.2 Individualised adaptation via transfer learning 

Variations in muscle mass and subcutaneous fat thickness among athletes induce 
amplitude distribution shifts in sEMG signals. A two-stage transfer learning framework is 
designed: pre-training on the UCI HAR dataset to capture cross-action features, followed 
by fine-tuning the top classifier on target basketball motion data: 

2
, ,

top

adapt CE s l t l
l

λ θ θ
∈

= + −


   (27) 

where CE  is cross-entropy loss, represents the set of top network layers, top  denotes 
top layers, θs,l and θt,l are the parameters of the lth layer in the source and target domains, 
respectively, and λ controls adaptation strength. This strategy ensures rapid adaptation 
with minimal target data while mitigating overfitting. 

For example, the running action in the UCI HAR dataset was mapped to the 
basketball change-of-direction action through spatio-temporal feature alignment such as 
signal energy distribution, frequency characteristics. Specifically, the fast knee  
flexion-extension pattern of the change-of-direction manoeuvre has similar sEMG  
time-frequency features as the periodic gait of the running manoeuvre, and the 
commonalities can be captured by a multi-scale design with dynamic convolution. 

Comparing the signal-to-noise ratio of wavelet denoising with 20–500 Hz band-pass 
filtering, the results show that the wavelet method preserves muscle burst signals like 
transient spikes in the biceps during a shot while improving the SNR by 8 dB, which is 
better than the 5 dB of conventional filtering. 

4.3 Multi-objective optimisation 

To balance classification accuracy and computational efficiency, a multi-objective 
optimisation problem is formulated: 

( )1min CE infer
θ

θ γ T+ ⋅ + ⋅⋅ βα   (28) 

where α, β, γ are weighting coefficients, ||θ||11 is the L1 regularisation term for model 
sparsity, and is the per-sample inference time. The NSGA-II algorithm is employed to 
solve the Pareto front, selecting models that satisfy accuracy (≥93%), latency (≤20 ms), 
and size (≤5 MB) constraints. The optimised model reduces parameters to 30% of 
conventional CNNs, enabling efficient embedded deployment. 

5 Action recognition and biomechanical applications 

5.1 Real-time action classification system implementation 

The optimised multi-channel feature fusion network is deployed to the embedded 
platform to build a real-time movement classification system, which is combined with 
muscle synergy analysis and closed-loop feedback mechanism to provide a complete 
solution for athletes’ technique optimisation, injury prevention and training strategy 
adjustment. Through the biomechanical quantitative index and adaptive regulation 
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strategy, it breaks through the limitation of traditional sports analysis relying on 
subjective experience, and realises data-driven intelligent training management. 

The core objective of the system is to achieve low-latency and high-precision action 
recognition in embedded devices. The hardware platform selects NVIDIA Jetson TX2 
edge computing unit, whose parallel computing capability and energy-efficiency ratio are 
suitable for real-time signal processing requirements. The software architecture is based 
on a modular design and adopts a multi-threaded pipeline processing mechanism to 
ensure the seamless integration of data acquisition, pre-processing, inference and decision 
making. 

The data preprocessing stage starts with receiving 12-channel sEMG signals via 
Bluetooth 5.0, with the sampling frequency set to 1,000 Hz to ensure signal integrity. 
Subsequently, timing alignment, adaptive wavelet denoising and Z-score normalisation 
are performed sequentially. Timing alignment is based on the inter-correlation function to 
eliminate the phase deviation between channels, e.g., the activation delay of the left and 
right leg muscles in the change-of-direction manoeuvre can be controlled within 5 ms by 
the time-delay correction. Wavelet denoising preserves muscle burst spike signals 
through dynamic thresholding, while suppressing motion artefacts and IF interference, 
resulting in an improvement in signal-to-noise ratio of about 8 dB. The normalisation 
process uses a sliding window to calculate the mean μ versus the standard deviation σ, 
eliminating the effect of inter-individual amplitude differences on the model. 

In the online inference stage, a dynamic convolutional layer extracts local muscle 
activation features, and its convolutional kernel parameters are dynamically adjusted by 
the input signal energy to enhance the adaptability to non-smooth signals. The graph 
convolutional network models the muscle synergistic topology, and the weight matrix of 
the spatial branching output reflects the functional coupling strength of different muscle 
groups. The attentional fusion layer weights spatiotemporal features through channel and 
spatial attention mechanisms, e.g., assigning higher weights to the upper limb muscle 
channels during shooting motions. The lightweight classifier employs dynamic  
depth-separable convolutional compression of parametric quantities, outputs action 
probability distributions and filters low-quality predictions through a confidence 
threshold. 

In terms of performance optimisation, the end-to-end reasoning time is compressed to 
14.7 ms by accelerating key computational modules such as GCN adjacency matrix 
update, attention weight calculation with CUDA, supporting 30 FPS real-time processing. 
The system can process multi-athlete data streams in parallel to meet the demands of 
team training scenarios. Measurement results show that the system maintains 93.5% 
recognition accuracy in complex stadium environments such as spectator noise, 
equipment vibration, which is significantly better than traditional embedded deployment 
solutions. The network architecture is shown in Figure 3. 

5.2 Quantification and biomechanical analysis of muscle synergy patterns 

Based on the channel weight matrix W output from the graph convolutional network, the 
muscle synergy activation map is constructed to reveal the muscle collaboration law of 
different actions. The muscle synergy index (MSI) is defined as: 
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where N = 8 is the total number of channels, Wij denotes the synergistic strength of 
channel ith with channel jth is the autocorrelation weight. The closer the MSI value is to 1, 
the stronger the functional coupling between muscles. 

Figure 3 Overall network architecture diagram (see online version for colours) 
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The reliability of the MSI was validated through multi-dimensional analyses. For 
professional athletes, the MSI during shooting actions reached 0.89, demonstrating a 
strong positive correlation with expert technical evaluations averaging 9.2 out of  
10 points, as evidenced by a Pearson correlation coefficient of r = 0.86 and p < 0.01. 
Under fatigue conditions, the MSI for the quadriceps-gastrocnemius muscle pair 
decreased by 12%, from 0.85 to 0.75, while blood lactate concentration increased 
significantly from 4.8 to 8.2 mmol/L, yielding a negative correlation of r = –0.79 with  
p < 0.05. Further analysis highlighted that professional athletes exhibited a significantly 
shorter activation interval between the deltoid and biceps muscles, at 15±3 ms, compared 
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to amateurs at 45 ± 10 ms, alongside a 30% difference in signal amplitude during critical 
movement phases. These results confirm the MSI’s robustness in quantifying 
neuromuscular synergy efficiency. 

To improve the interpretability of the analysis results, an interactive muscle synergy 
heat map tool was developed. Coaches can visually assess the quality of the movement 
through colour shades and side weights, e.g., green highlighted areas indicate highly 
synergistic muscle groups, while red warning areas indicate imbalances in force 
generation or potential risk of injury. The tool also compares historical data and generates 
personalised training recommendations, such as adjusting the jump angle to optimise the 
lower body power chain. 

5.3 Adaptive closed-loop feedback training system 

Integrating movement recognition and biomechanical evaluation, the system builds a 
closed-loop training system of execution-assessment-regulation, which breaks through 
the limitation of traditional training relying on subjective experience. After the athlete 
completes the standardised movement wearing the sEMG device, the system calculates 
the MSI, joint angular velocity (acquired by IMU synchronously) and force timing 
parameters in real time, and dynamically adjusts the training load based on the PID 
controller: 

0

( )( ) ( ) ( )
t

p i d
de tu t K e t K e τ dτ K

dt
= + +  (30) 

where e(t) = MSItarget – MSIactual is the synergistic exponential error. Kp = 0.8, Ki = 0.2,  
Kd = 0.05 are empirical tuning parameters. 

The regulation strategy contains two types of mechanisms: positive reinforcement and 
negative correction. When the athlete has five consecutive MSI ≥ 0.9, the system 
automatically increases the load by 0.5 kg or shortens the shooting distance to increase 
the training intensity; if the MSI is <0.8 for three consecutive times, the system triggers 
voice prompts and reduces the training difficulty to avoid the curing of incorrect 
movements. For injury prevention scenarios, the system will pause training and 
recommend a rehabilitation programme if unilateral muscle over-activation like rotator 
cuff injury risk is detected. Measurement data shows that athletes using the system 
increased their shooting percentage by 19.3% and reduced muscle strain rate by 37.6% 
within 6 weeks. 

6 Experimental results and analyses 

The experiment is based on the psublicly available dataset UCI HAR. The dataset 
contains multichannel sEMG signals from 10 healthy subjects covering five common 
types of movements. Data were acquired using a Delsys Trigno wireless sensor system 
with a sampling frequency of 2,000 Hz and electrode attachment locations that strictly 
followed the SENIAM standard, including key muscle groups such as the biceps, deltoid, 
and quadriceps. Each type of movement was performed 20 repetitions by subjects under 
standardised conditions, with a total sample size of 12,000 entries. 
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In the pre-processing stage, the raw signals were first passed through a 20–500 Hz 
band-pass filter to eliminate industrial frequency noise and baseline drift, and then 
segmented with a 200 ms window length and 50 ms overlap to generate time-domain 
sample segments. Each sample was Z-score normalised to eliminate inter-subject 
differences in amplitude of muscle activation strength. The experiments were  
cross-validated using the leave-one-out method. The entire data of one subject at a time 
was selected as the test set, and the data of the remaining nine were used for training to 
ensure an objective assessment of the model’s generalisation ability. The training phase 
was done on NVIDIA RTX 3090 GPUs, with the optimiser chosen to be Adam, the initial 
learning rate set to 0.001 and a cosine decay strategy. The final model is deployed on the 
Jetson TX2 embedded platform to verify the real-time performance and resource 
consumption. 

In order to comprehensively evaluate the performance of the proposed multi-channel 
spatio-temporal fusion network (MCFFN), this paper compares five types of mainstream 
methods, including traditional machine learning methods SVM (Fu et al., 2023),  
single-channel deep learning models 1D CNN (Ankit et al., 2021) and LSTM (Rezaie et 
al., 2023) and multi-stream CNN (Wei et al., 2017). Table 1 summarises the average 
accuracy, F1-score, number of parameters and inference time of each method on the test 
set. 
Table 1 Motion recognition performance comparison (%) 

Method Accuracy(%) F1-score Number of 
participants (M) 

Reasoning time 
(ms) 

SVM 82.1 80.3 - 2.1 
1D CNN 89.5 88.7 2.1 5.7 
LSTM 85.2 83.9 1.8 8.3 
Multi-stream CNN 91.3 90.1 3.4 10.2 
MCFFN 96.2 95.8 4.2 14.7 

The experimental results show that MCFFN significantly outperforms other methods with 
96.2% accuracy. Compared to traditional SVM, its 14.1% performance improvement 
validates the advantages of automatic feature extraction for deep learning; the 6.7% gain 
compared to single-channel CNN stems from the explicit modelling of muscle synergistic 
relationships by the multi-channel spatio-temporal fusion mechanism. Despite the slightly 
higher parameter count of MCFFN, its inference time still meets the real-time 
requirement 30 FPS, indicating that the lightweight design of dynamic deep separable 
convolution and attention mechanism effectively balances the computational efficiency 
and accuracy. 
Table 2 Results of ablation experiments (average accuracy, %) 

Model variants Accuracy Performance degradation 
Complete MCFFN 96.2 - 
Remove GCN branch 88.9 7.3 
Remove attention mechanism 91.6 4.6 
Fixed convolution (non-dynamic) 92.4 3.8 
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To quantify the contribution of each module, we progressively remove key components 
of the MCFFN for ablation experiments. The result is shown in Table 2. 

Experiments show that the absence of the GCN branch leads to a 7.3% performance 
drop, especially in the change of direction and sharp stop actions where the error rate 
spikes from 15% to 22%, indicating that explicitly modelling muscle synergy is crucial 
for complex action recognition. The removal of the attentional mechanism makes it 
difficult for the model to distinguish the primary and secondary relationships of  
spatio-temporal features, e.g., the leg noise channel is mistakenly considered as a key 
feature in shooting actions, leading to a 4.6% decrease in accuracy. After dynamic 
convolution was replaced with fixed convolution, the model’s ability to adapt to signal 
non-stationarity decreased, and the recognition accuracy of the change-of-direction action 
was reduced by 6.2%, verifying the necessity of its energy-driven mechanism. 

The average accuracy of the model on new subjects who are not involved in training 
improves from 73.4% to 91.2%, thanks to the fine-tuning of the transfer learning strategy. 
Specifically, freezing the underlying feature extraction layer, dynamic convolution and 
GCN, and fine-tuning only the top-level classifier, fully connected layer and attention 
module, converged in ten iterations with ten sets of target data. Table 3 quantifies the 
differences in amplitude of key muscle channels before and after migration. 
Table 3 Mitigating effect of transfer learning on individual differences (% standard deviation 

of magnitude) 

Muscle channel Pre-migration (%) Post-migration (%) 
Biceps 38.2 11.7 
Triceps 29.5 9.8 
Quadriceps 33.1 12.3 
Gastrocnemius 27.5 10.5 

After migration, the inter-individual variation in biceps signal amplitude was reduced 
from ±38% to ±12%, validating the mitigating effect of the parameter constraint strategy 
L2 regularisation on distributional bias. 

On the Jetson TX2 platform, MCFFN has a single-sample inference time of 14.7 ms 
and an end-to-end processing latency (including preprocessing) of 48.2 ms, which meets 
real-time action recognition requirements (>20 FPS). With only 0.8 G floating point 
operations (FLOPs), the model demonstrates high efficiency suitable for real-time 
deployment on edge devices. The model occupies a peak memory of 320 MB and a 
storage size of 4.2 MB, making it suitable for embedded deployments. The power 
consumption test shows that the average power consumption is 8.3 W for 1 hour of 
continuous operation, and with a 2,000 mAh battery, it can support 6 hours of continuous 
monitoring, which meets the needs of court training scenarios. The real-time performance 
comparison is shown in Figure 4. 

Based on the channel weight matrix output from the GCN, the MSI was calculated 
and compared with the expert assessment results. The MSI for the shooting manoeuvre of 
professional athletes was 0.89, which was significantly higher than that of the amateur 
group as 0.72, and was strongly and positively correlated with the biomechanical expert 
scores on a 10-point scale, with a Pearson correlation coefficient of r = 0.86 and p < 0.01. 
Under fatigue conditions, the MSI of the quadriceps and gastrocnemius decreased by 
12%, which was negatively correlated with blood lactate concentration from  
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4.8–8.2 mmol/L. The correlation analysis yielded r = –0.79 and p < 0.05, confirming the 
MSI’s reliability as a quantitative biomarker for fatigue detection. These findings align 
with physiological principles, where muscle coordination deteriorates with accumulated 
metabolic byproducts. 

Figure 4 Real-time performance comparison (see online version for colours) 
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The confusion matrix showed that the model had the highest rate of confusion, between 
the change of direction and the sharp stop manoeuvre, mainly due to the fact that both 
relied on rapid knee flexion and extension and had similar sEMG signal morphology. 
Further analysis revealed that the timing of gastrocnemius activation was delayed by 15 
ms for the change-of-direction manoeuvre compared to the sharp stop, while the current 
model did not explicitly model such subtle differences. Future work could enhance the 
discriminative nature of the timing features by fusing joint angular velocity data from the 
inertial measurement unit (IMU). In addition, the absence of adversarial actions such as 
collision interference in the dataset limits the robustness of the model in real race 
scenarios, and further expansion of the dataset is needed. 

On the whole, the multi-channel spatio-temporal fusion network proposed in this 
paper demonstrates significant advantages in the basketball action recognition task, and 
its performance significantly outperforms that of traditional machine learning methods 
and single-channel deep learning models. By introducing a graph convolutional network 
to explicitly model the muscle synergy relationship and combining the dynamic attention 
mechanism to optimise the feature fusion, the model is able to effectively capture the 
spatio-temporal dependence in complex actions. Ablation experiments further validate 
the necessity of each key module, with muscle synergy modelling and dynamic feature 
weighting contributing most significantly to performance improvement. The  
cross-subject test confirms the generalisation ability of the transfer learning strategy, and 
the model still maintains high recognition accuracy on data from individuals not involved 
in training. In addition, the proposed muscle synergy index provides a quantifiable 
biomechanical basis for movement quality assessment and physiological state 
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monitoring, and its strong correlation with professional scores highlights the 
interpretability of the model output. The embedded deployment test shows that the 
system meets the practical application requirements in terms of real-time and energy 
efficiency, and provides a reliable tool for intelligent analysis of competitive sports and 
mass fitness. 

7 Conclusions 

In this paper, a deep learning framework based on spatio-temporal collaborative 
modelling is proposed to address the multi-channel feature fusion challenges of surface 
EMG signals in basketball action recognition. By adaptively extracting local muscle 
activation patterns through dynamic convolution, combining with graph convolutional 
network to encode muscle functional topology, and designing a cascading attention 
mechanism to achieve multi-level feature optimisation, the model demonstrates superior 
performance in complex action classification tasks. The cross-domain transfer learning 
strategy effectively mitigates the distribution bias problem caused by individual 
physiological differences, while the introduction of muscle synergy index establishes a 
data-driven evaluation paradigm for sports technology analysis and injury warning. 
Experiments demonstrate that the framework not only has high accuracy and strong 
generalisation, but also its lightweight design can support real-time embedded 
applications, which provides theoretical support and technical path for the development 
of intelligent sports equipment. 

The current study is based on a generic dataset adapted to basketball actions, and in 
the future, sEMG data will be collected from real game scenarios to eliminate the 
semantic gap and improve the model robustness. Future research could further explore 
multimodal data fusion methods, such as combining inertial sensing and optical capture 
information, to enhance the model’s ability to characterise multidimensional motion 
features. In the direction of lightweighting, automated techniques such as neural 
architecture search can be tried to optimise computational efficiency for low-power 
devices. In addition, expanding the model to other sports scenarios and carrying out  
long-term clinical validation will help to promote the transformation of the technology 
from the laboratory to the industry, and ultimately serve the practical needs of athletes’ 
training optimisation and public health management. 
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