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Abstract: Fractal art graphic design has been very popular in recent years. 
Specifically, there are many researches on computational graphics and 
scientific visualisation. As a result, we propose a SA-enhanced PSO Newton 
interactive algorithm for efficient fractal art generation. The method integrates 
simulated annealing (SA) with the PSO-enhanced Newton iterative algorithm 
together, improving the exploration ability. This combination also prevents 
early convergence, resulting in high-quality fractal art generation. The entire 
process of our algorithm is: firstly, the SA is used to enhance the optimisation 
ability of particle swarm optimisation (PSO) algorithm; subsequently, we use 
the Newton-Raphson method to produce high-quality fractal images with the 
SA-PSO-optimised parameters. According to our experimental results, the 
proposed method achieves significant enhancement in computational efficiency 
and generates high-quality images. This proves that our method can be used as 
an efficient tool for fractal art design in computer graphics. 

Keywords: fractal art; swarm optimisation; Newton iterative algorithm; 
computational graphics. 
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1 Introduction 

Fractal art graphic design is a combination of mathematics, computer science and visual 
creativity. There are a lot researches on utilising mathematics equations and computer 
algorithms to design fractal graphics. Among all of the computational techniques, the 
Newton iterative algorithm has gained the attention because of its efficiency. This 
method is primarily designed to determine the roots of nonlinear equations. However, 
according to studies, researchers find the root-exploration ability of Newton method is 
beneficial to create visually appealing fractal patterns (Alves et al., 2020; Gdawiec et al., 
2021). Nevertheless, this method still faces the disadvantages such as early convergence 
and sub-optimal exploration abilities. To solve these problems, researchers have tried to 
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combine the Newton iterative method with PSO algorithm, which can enhance the 
Newton’s root searching ability (Kannan and Diwekar, 2024). 

Meanwhile, the SA is another famous method for searching best particles. It 
introduces controlled perturbations to escape the local optima and explore the solution 
space more effectively (Morales-Castañeda et al., 2019; Alkhateeb and Abed-Alguni, 
2019; Hajji et al., 2024). According to current research, SA has been successfully applied 
to image processing and fractal generation (Wang and Chen, 2023; Ahmad et al., 2022). 
There are also researches about the integration of SA with other optimisation techniques. 
This combination has been proved that it improves the efficiency and robustness of 
optimisation processes (Gad, 2022; Zhang et al., 2015; Jahandideh-Tehrani et al., 2020). 
As a result, we aim to implement the SA to improve the PSO’s optimisation ability. 

In this paper, we propose a novel hybrid approach which name SA-enhanced PSO 
algorithm. This hybrid method is then used to optimise the parameters of Newton 
iterative method. Through this strategy, the whole method can avoid being stuck into 
local optima and find more possible high-quality solutions. With these solutions, it is 
quite easy to generate better fractal art. Meanwhile, it also enhances the overall 
effectiveness of the algorithm and achieves a balance between exploration and 
exploitation. The contributions of this work are threefold: 

1 we propose the SA-driven PSO algorithm, an adaptive optimisation algorithm that 
automatically adjusts swarm parameters and cooling schedules for optimising the 
algorithm’s performance 

2 we use the proposed hybrid algorithm to optimise the parameters of the Newton 
iterative method to overcome the local optima and solution diversity issues in fractal 
art generation 

3 we demonstrate the effectiveness of the proposed method through carrying out 
extensive experiments, proving its ability to generate visually stunning fractal images 
with improved efficiency and diversity. 

The paper structure is as follows: Section 2 reviews the background work on fractal art 
generation and optimisation algorithms. Section 3 introduces the background on the 
Newton iterative method, PSO, and SA. Besides, we also describe the design and 
implementation of the novel SA-based PSO Newton algorithm. Section 4 gives the 
experiment environment, revealing the evaluation results and analysis. Section 5 
discusses our future work. Finally, Section 6 concludes the paper. 

2 Related work 

2.1 Fractal art generation 

Recently, fractal art graphic design has gained significant attention. Researchers have 
explored various computational methods to enhance design efficiency and artistic quality. 

Chao (2020) studied the application of interactive genetic algorithms (IGA) in fractal 
art design. It enhanced the fundamental theory through implementing genetic algorithm 
to improve the colour design approach. This study showed that IGA can combine user 
preferences with mathematical algorithms to create personalised fractal images, making 
the creative process more efficient. Similarly, Lv et al. (2019) also used IGA when 
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implementing a fractal pattern design system, where users interact with a simple interface 
to generate complex fractal patterns. After the evaluation, they found the system 
succeeded in using genetic algorithms to optimise the parameters to improve the design 
quality and efficiency. 

Bouteraa and Khishe (2025) present a novel chaotic map and fractal-enhanced grey 
wolf optimiser (CF-GWO) for optimising deep convolutional neural networks (DCNNs). 
It demonstrates significant improvements in image classification tasks, outpacing  
23 classifiers with 87.37% accuracy across nine datasets, while highlighting the potential 
of chaotic and fractal techniques in architecture design. 

Deep learning technique has also been applied to fractal art generation. Zhang and Jia 
(2023) proposed a fractal art graphic generation model based on convolutional neural 
networks (CNN), which is utilised to extract the features from images. They tried to 
improve the math-method-based images through minimising the total loss. After the 
training process, the model can generate high-quality images with both visual information 
and texture information. Their method achieves 96.21% in F1-score, which is 12% better 
than AlexNet and 7% better than ResNet. The fractal art generation suffers from 
unreasonable design and low-level evaluation. As a result, a CAD-based fractal pattern 
design and evaluation method is introduced by Liu and Zhu (2022). They divided the 
fractal images into two parts based on the feature trees, which helps to recognise the 
symmetrical relationships. What is more, this division allows parallel computation of the 
algorithm, reducing the computational cost. 

2.2 Newton’s iterative algorithm 

Apart from fractal art generation, there are also studies on using Newton’s iterative 
algorithm to computational optimisation and system modelling. Xu (2015) implemented 
the Newton method to determine the parameters of dynamic systems. Different for other 
researches, they separate the searching process to two stages. In the first stage, they 
estimated two parameters (gain and pole), while in the second stage, they found the 
values of another three parameters (gain and two poles). Tian et al. (2022) proposed a 
novel Newton iterative algorithm which computes the increment rather than the iterative 
solution. In the meantime, they developed the Newton method under the Fréchet 
derivative framework. Their method showed better convergence ability compared with 
existing methods. 

Zhang et al. (2020) combined stochastic parallel gradient descent (SPGD) with 
Newton iteration in order to design a hybrid optimisation approach. The combination 
helped to get adaptive interferometry in freeform surface metrology, without requiring 
computer-generated holograms or null lenses. This hybrid method beat the baseline 
methods, which proves its effectiveness. 

3 Methodology 

3.1 Background 

Fractal art is composed with the points which are generated with mathematical 
transformations. Usually, the iterative techniques are necessary to transform the points 
repeatedly. One of the most popular equation is the Newton iterative method, which can 
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be written in the form f(x) = 0. The Newton Iterative method equation is shown as 
follows: 

( )
( )1

n
n n

n

f xx x
f x+ =

′
 (1) 

Although the Newton-Raphson method is effective for finding roots, it shows high 
sensitivity to initial settings. This disadvantage will lead to the convergence to local 
optima. Meanwhile, this also limits its ability to produce diverse fractal patterns. What is 
more, the computational complexity increases with the complexity of the fractal equation, 
making it difficult to generate real-time patterns. 

In order to deal with these kinds of problems, we employ the global optimisation 
techniques such as PSO and SA. Swarm parameter optimisation refers to adjusting the 
settings (such as swarm size and the influence of each particle) in PSO to improve how 
particles (representing potential solutions) move and interact during the search process, 
helping the algorithm converge more efficiently to a good solution. The PSO algorithm is 
inspired by the social behaviour of bird flocking. It uses a population of particles to 
explore the solution space. Specifically, each particle updates its position and velocity 
based on its own experience and the global experience from the swarm. The velocity and 
position updates are shown as below: 

( ) ( )1
1 1 2 2

k k k k k k
i i i i iw c r c r+ = + − + −v v p x g x  (2) 

1 1k k k
i i i

+ += +x x v  (3) 

where k
iv  and k

ix  represent the velocity and position of the ith particle at iteration k. k
ip  

is the particle’s best-known position and gk represents the global best position. In spite of 
its global search capabilities, PSO also has disadvantages such as converging too early 
and arriving at sub-optimal positions. These disadvantages indicate that it is necessary to 
implement some extra mechanisms to further enhance the exploration process. 

SA is a probabilistic optimisation technique inspired by the annealing process in 
metallurgy. It implements controlled perturbations to the searching space and helps the 
algorithm to escape local optima. Meanwhile, the temperature parameter is used to 
determine how likely it is to accept the sub-optimal solutions. The temperature decreases 
according to a cooling equation: 

1k kT T+ = α  (4) 

where α is the cooling rate (0 < α < 1). The algorithm stops when the temperature Tk 
reaches the set threshold or when the fitness value of the best solution remains stable. 
This convergence criterion ensures that the algorithm will not stop too early and explores 
the solution space until a satisfactory solution is found. Temperature-controlled 
perturbation mechanism refers to a process in simulated annealing (SA) where the 
‘temperature’ is gradually reduced during optimisation. At higher temperatures, the 
algorithm allows more randomness or ‘perturbations’ in the search for solutions, and as 
the temperature decreases, it becomes more focused on finding the optimal solution by 
accepting fewer suboptimal ones. The perturbation magnitude Δx is drawn from a 
Gaussian distribution with a variance proportional to the current temperature Tk: 
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( )2Δ ~ 0,x σ  (5) 

The perturbed solution Δn nx x x′ = +  is evaluated and accepted with a probability based 
on the Metropolis criterion: 

Δ(Δ ) exp
k

EP E
T

 = − 
 

 (6) 

where ΔE represents the change in the fitness value between the perturbed and current 
solutions. This mechanism allows the algorithm to explore suboptimal regions, enhancing 
solution diversity and enabling escape from local optima. 

Figure 1 The flowchart of the SA-enhanced PSO Newton Iterative algorithm 
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3.2 Proposed SA-enhanced PSO-Newton iterative algorithm 

The whole process of the algorithm is given as below: the algorithm starts with a group of 
particles, each of them representing a potential solution to the fractal equation. The PSO 
algorithm will update its position if there is a more suitable fitness value. However, the 
SA introduces controlled perturbations to enhance this process. It will randomly keep the 
worse position without changing it to a better area. After several epochs, this  
SA-enhanced PSO will find a group of optimal parameters, including initial guesses, max 
iterations, tolerance and escape radius. These parameters will influence the convergence 
route of the Newton iterative algorithm. Finally, the convergence behaviour is mapped to 
different colours and creates fractal images with intricate patterns. 

Figure 2 The entire process of our proposed method (see online version for colours) 

Start: Initialize Particles

Update Particle Velocity (PSO)

Compute New Particle Positions

Apply Simulated Annealing (SA)

Check Convergence or Max Iterations

Apply Newton Iterative Method

No

End: Output Optimized Fractal

Yes

Iteration continues

 

4 Evaluation 

4.1 Experimental setup 

In this section, we will introduce the baseline fractal equations, algorithms and evaluation 
which are used in our experiments. Meanwhile, we also show our experimental 
environment. 

4.1.1 Fractal equations 
We conducted the experiments with two other baseline fractal equations: Mandelbrot set 
and Julia set. 

Mandelbrot set is defined as below: 



   

 

   

   
 

   

   

 

   

   92 N. Ma    
 

    
 
 

   

   
 

   

   

 

   

       
 

2
( 1)n nz z c+ = +  (7) 

where z starts at 0, while c is a complex number representing a point in the complex 
plane. 

The Julia set uses a similar format as Mandelbrot set but with a constant parameter C: 
2

( 1)n nz z C+ = +  (8) 

These two methods are utilised to evaluate the generation of Newton method. The 
formula of Newton Iterative method is: 

( )
( )1

n
n n

n

f zz z
f z+ = −

′
 (9) 

zn is the current approximation of the root and f(zn) represents the functions. If we set f(z) 
as: 

3( ) 1f z z= −  (10) 

We get the formula: 
3

1 2
1

3
n

n n
n

zz z
z+
−= −  (11) 

Table 1 The key parameters and convergence condition of three methods 

Fractal type Key parameters Convergence condition 
Mandelbrot set Complex plane range, max iterations - 
Julia set Choice of c, complex plane range, max 

iterations 
- 

Newton fractal Polynomial f(z), complex plane range, max 
iterations 

Convergence to root of f(z) 

These equations provide a diverse method for evaluating the proposed algorithm’s 
performance in fractal art graphic design (Nishonov, 2022; Antal et al., 2021). 

4.1.2 Baseline methods 
We compared our proposed algorithm with three other baseline methods: standard 
Newton iterative algorithm, PSO-enhanced Newton iterative algorithm and simulated 
annealing with Newton iterative algorithm. 

The standard Newton iterative algorithm follows the standard Newton-Raphson 
update equation without any optimisation process, which aims to evaluate the 
effectiveness of PSO and SA. The PSO-enhanced Newton iterative algorithm integrates 
the PSO algorithm only, which is used to evaluate the benefits of adding SA algorithm. 
Finally, the simulated annealing with Newton iterative algorithm applies SA to the 
method without PSO, aiming to evaluate the SA’s ability of improving solution diversity. 
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4.1.3 Evaluation metrics 
In this study, we implement three metrics to evaluate the performance of different 
algorithms. Above all, in order to indicate the accuracy of the fractal equation’s root, we 
use the solution quality, which is measured by the fitness value calculated from the best 
solution. Meanwhile, we measure the algorithm’s exploration ability of the solution space 
through the metric diversity of solutions. This metric is influenced by the entropy of the 
solution distribution. Computational efficiency is assessed by the runtime of generating 
fractal images. It includes the time for both iterative updating and perturbation processes. 
At last, we evaluated the visual quality of the generated fractal images with visual appeal, 
which focuses on the images’ complexity, symmetry, and aesthetic appeal. 

4.1.4 Implementation details 
The proposed algorithm was implemented in Python. We used the NumPy library for 
numerical computations and the PyCUDA library for GPU acceleration. The PSO 
algorithm was implemented with a size of 50 particles, while the SA algorithm was set 
with an initial temperature T0 = 100 and a cooling rate α = 0.95. What is more, the 
Newton-Raphson method was applied with a convergence threshold of 10–6. All 
experiments were conducted with an NVIDIA RTX 3090 GPU and an AMD Ryzen 9 
5950X CPU. For the fractal generation, the Mandelbrot and Julia sets were generated 
with a maximum of 500 iterations, a complex plane range of [–2, 2], and a resolution of 
1,000 × 1,000 pixels. The Newton fractal used 100 iterations and a convergence tolerance 
of 0.000006. Newton’s method was tuned with an appropriate number of iterations to 
ensure high precision without excessive computational time. 

4.2 Experimental results 

4.2.1 Comparison between three fractal methods 
We compare the Newton iterative method with other two baseline methods: Mandelbrot 
set and Julia set. We evaluate the convergence speed and computational cost across. The 
results are in Table 2. 
Table 2 The convergence speed and computation time for three methods 

Fractal type Avg. iterations to converge Computation time (ms) 
Mandelbrot 50–100 1,500 
Julia 40–80 1,200 
Newton 5–15 300 

As shown in Table 2, the Newton’s method converges the fastest since it refines towards 
the roots directly. Meanwhile, Mandelbrot and Julia require computational time. The 
results indicate that the Newton iterative method is superior to baseline methods. 

4.2.2 Comparison of convergence behaviour 
To evaluate the convergence ability of the proposed SA-enhanced PSO Newton 
algorithm, we compared its convergence performance with the baseline methods.  
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Figure 3 illustrates the mean fitness value (error) across three fractal equations for each 
algorithm. The proposed method shows a significant improvement in convergence speed. 
Meanwhile, compared with the standard Newton iterative algorithm and the  
PSO-enhanced Newton iterative algorithm, our proposed method indicates higher 
solution quality. The results mean that the integration of the SA method allows the 
proposed algorithm to escape local optima, resulting in a more efficient search process. 

Figure 3, fitness value progression over iterations for the proposed SA-enhanced PSO 
Newton algorithm, compared with baseline methods (standard Newton, PSO-enhanced 
Newton, and simulated annealing with Newton). The figure demonstrates how the fitness 
value improves over iterations, with the proposed algorithm consistently achieving better 
optimisation results than the baseline methods. The faster convergence of the proposed 
approach indicates its effectiveness in optimising fractal generation. Notably, the 
proposed algorithm shows a quicker reduction in the fitness value, suggesting a more 
efficient approach to achieving high-quality solutions. 

Figure 3 Fitness value over iterations for the proposed algorithm compared with all other 
baseline methods (see online version for colours) 

 

4.2.3 Solution diversity and exploration capabilities 
The diversity of solutions generated by the proposed algorithm was assessed using the 
entropy of the solution distribution. Figure 4 shows the distribution of solutions in the 
search space for the proposed algorithm and the baseline methods. The proposed method 
exhibits a broader and more uniform distribution, indicating enhanced exploration 
capabilities due to the SA perturbation mechanism. This diversity is crucial for 
generating visually appealing fractal images with complex and intricate patterns. 
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Figure 4 Distribution of solutions in the search space for the proposed algorithm versus baseline 
methods (see online version for colours) 

 

 

4.2.4 Computational efficiency and runtime analysis 
We tested how fast our algorithm is by measuring the time it takes to create fractal 
images. Table 3 shows the runtime for each algorithm using three fractal equations. 
Compared with the baseline methods, our method has less cost than the standard Newton 
iterative and SA with Newton iterative. Although PSO-enhanced Newton iterative 
method shows a shorter runtime, its generation ability is lower than our method. The 
results indicate that our proposed method achieves a balance between solution quality and 
computational efficiency. 
Table 3 Runtime comparison for generating fractal images across different algorithms 

Algorithm Mandelbrot set (s) Julia set (s) Newton fractal (s) 
No optimisation 12.5 10.8 14.2 
PSO-enhanced 8.3 7.1 9.6 
SA-enhanced 9.7 8.4 10.9 
Proposed SA-enhanced PSO 8.5 7.3 9.8 
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4.2.5 Visual quality of generated fractals 
We evaluate the quality of the fractal images by visual inspection. Figure 5 compares the 
fractal images generated by the proposed SA-enhanced PSO Newton algorithm and the 
baseline methods. As shown in Figure 5, our proposed method produces fractals with 
higher complexity, better balance, and aesthetic appeal. The results prove the 
effectiveness of our proposed method in enhancing visual quality. 

Figure 5 Comparison of fractal images generated by the proposed algorithm and baseline 
methods (see online version for colours) 

 

 

4.2.6 Ablation study 
To furtherly understand the contributions of each part in our proposed algorithm, we 
conducted an ablation study. We removed the SA and PSO one at a time and generate 
two more method, comparing their results. Table 4 presents the results of the ablation 
study. Here, both the methods without SA and without PSO have a worse fitness value 
and a longer runtime than our method. The results confirm that the integration of both SA 
and PSO is essential for achieving the best performance. 
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Table 4 Ablation study results for the proposed algorithm 

Configuration Fitness value Runtime (s) 
Without SA 0.012 8.1 
Without PSO 0.015 9.2 
SA-PSO Newton 0.008 8.5 

Table 5 Comparison of the proposed method with baseline approaches 

Metric 
Proposed  

SA-enhanced 
PSO Newton 

Standard 
Newton method 

PSO-enhanced 
Newton 

Simulated 
annealing with 

Newton 
Computational 
efficiency 

Faster 
convergence due 
to hybrid 
optimisation 

Slow 
convergence due 
to traditional 
iterative 
refinement 

Faster than 
standard Newton 
but still slower 
than hybrid 
approaches 

Slower due to 
random 
perturbations 
from SA 

Accuracy Higher accuracy 
with better 
fractal detail 

Moderate 
accuracy with 
standard 
iterative method 

Improved 
accuracy by 
refining guesses 
with PSO 

Good accuracy, 
but less precise 
due to SA 
randomness 

Fractal 
complexity 

More detailed 
fractals with 
higher resolution 

Limited 
complexity with 
standard 
iterative 
resolution 

Generates 
moderately 
complex fractals 

Can generate 
detailed fractals, 
but prone to 
noisy patterns 
due to SA 

Convergence 
speed 

Fast 
convergence 
with quick 
optimisation of 
fractal 
parameters 

Slow 
convergence due 
to simple 
iteration 

Faster 
convergence 
than standard 
Newton 

Slower 
convergence due 
to the 
perturbation of 
SA 

Robustness Highly robust to 
local minima 
due to SA and 
PSO integration 

Less robust; 
prone to getting 
stuck in local 
minima 

More robust than 
Standard 
Newton, but still 
sensitive to 
initial conditions 

Robust in 
escaping local 
minima but 
slower overall 

Scalability Scalable to 
higher resolution 
fractals with 
little loss in 
efficiency 

Less scalable for 
complex fractals 

Scalable, but 
efficiency drops 
with larger 
fractals 

Less scalable 
due to SA’s 
random nature 

5 Conclusions 

The fractal art generation quality has been improved by the proposed SA-enhanced PSO 
Newton algorithm in our research. This method solves many problems, such as getting 
stuck in local optima, limited solution variety, and slow computation. The algorithm 
maintains a balance between exploration and refinement by using this method, which 
helps to find better and more solutions. Also, the temperature control scheme for 
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disturbance and cooling is very effective. This scheme could prevent the method from not 
only converging but also optimise the final solution. Generally, our previous experiments 
have demonstrated that the proposed algorithm is better than the old algorithm. The 
proposed algorithm shows better quality, diversity and computational cost of the 
solutions. In various fractal equations, it consistently outperforms the Newton iteration 
method, the enhanced PSO Newton method, and the SA method combined with the 
Newton method. The fractal patterns generated possess richer details, more elegant 
symmetries and more attractive appearances. Meanwhile, this research on ablation has 
confirmed that combining SA and PSO can significantly enhance performance. 

The experimental results show that the SA-enhanced PSO Newton algorithm has a 
significant ability of generating fractal images with higher quality and better efficiency. 
However, there are still a few areas worth discussing to improve the algorithm’s 
performance in the future. 

Above all, our proposed method works well for the tested fractal equations, but it still 
needs further testing on more complex and higher-dimensional fractal systems. Our 
future work could focus on the behaviour of the algorithm when we use fractals from 
higher-degree polynomials or nonlinear equations. It can also be extended to generate 3D 
fractals, and even higher dimensions. Within such ability, new uses could be explored in 
the arts and sciences. According to current research, the version of PSO and SA adopts 
fixed parameters, such as population size, cooling rate and disturbance amplitude. 
However, considering of the progress of the problem or algorithm, if there is a way to add 
adaptive features to adjust these parameters, then its performance would be highly 
improved. For example, machine learning is good for predicting the best parameter 
settings for a particular fractal equation. By using such method, the algorithm could be 
more efficient and robust. 
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