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Abstract: Health monitoring, a key component of the smart campus system, 
involves multimodal health data. Aiming at the problem of insufficient 
intermodal interactivity in existing research, we first vectorise the multimodal 
health data, such as audio, image and text, and design a multiscale 
convolutional neural network (MCNN) to extract the multimodal data features 
and carry out statistical pooling to obtain the standard deviation, maximum 
value and average value of the feature vectors. Then, the dense attention 
mechanism (DAM) is designed to realise the interactive fusion of multimodal 
data, the multivariate Gaussian distribution is utilised to classify the health 
states, and the multilayer perceptron is combined to construct the health data 
analysis algorithm. The experimental results show that the fusion efficiency of 
the proposed method is greater than 85% and the classification accuracy 
reaches 95.07%, which significantly improves the monitoring of multimodal 
health data. 
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1 Introduction 

In the context of the deep integration of education informatisation and artificial 
intelligence technology, the smart campus system has become an important carrier to 
enhance the efficiency of education management and optimise the allocation of resources 
(Dong et al., 2020). As one of the core functional modules of the smart campus, the 
student health monitoring system continuously collects multimodal health information of 
students through multi-source terminals. However, these data are often characterised by 
strong heterogeneity, complex dimensions, and fuzzy dynamic associations, making it 
difficult for traditional single-modal analysis methods to comprehensively reveal the 
multidimensional association patterns of students’ health status and to achieve accurate 
early warning of personalised health risks (Wang et al., 2024). Recently, multimodal 
health data fusion and in-depth analysis methods have emerged, which are capable of 
integrating different types of health data and mining the hidden information behind the 
data so as to provide powerful support for campus health management decisions  
(Xie et al., 2024). Through this innovative approach, it is expected to achieve early 
warning of students’ health risks, personalised health interventions, and optimisation of 
the campus health environment, thus promoting the smart campus to play a greater role in 
safeguarding students’ physical and mental health (Anagnostopoulos et al., 2021). 

Roda-Sanchez et al. (2023) designed a set of integrated campus design solutions 
oriented to the innovative service ecosystem of smart campuses, which provides new 
ideas for the construction of smart cities driven by big data and digital twins. Li (2021) 
investigates the objectives, technical framework, applications, and application effects of a 
smart campus health and wellness management system. Huang et al. (2024) used 360° 
video technology to collect students’ multimodal health data, such as physiological data, 
behavioural data, psychological data, and environmental data, to support accurate campus 
management. John et al. (2021) used wearable and implantable devices to automatically 
capture, encode, and process multimodal student health data to characterise students’ 
moods and expressions and to predict certain instructional activities of teachers. 
Traditional campus management faces a number of challenges, including fragmented 
data, information silos, and insufficient basis for decision-making, which constrain the 
improvement of campus management. 

Machine learning can automatically extract features from data, reducing the reliance 
on domain knowledge and providing new ideas for smart campus management. Cai 
(2023) used BP neural networks to identify and extract behavioural characteristics of 
teachers and students in classroom teaching and learning based on smart classroom data, 
and adopted an artificial intelligence engine to automatically label classroom teaching 
behaviours. Haleem et al. (2023) used deep learning algorithms to analyse students’ 
behaviour, physiology, psychology and other health data to comprehensively reflect 
students’ learning and teachers’ teaching behaviours, and help teachers optimise the 
teaching process. Liang et al. (2021) combined students’ audio and text modal data, 
learned audio features by principal component analysis (PCA) and support vector 
machine (SVM), and extracted key words in the text for students’ health monitoring, and 
achieved good monitoring results. Jafari et al. (2018) used convolutional neural networks 
(CNNs) to process text and video modalities separately, and then combined the results of 
these analyses through a logistic regression model to improve the fusion efficiency. 
Wang (2024) integrated speech and video modalities and utilised a bidirectional long and 
short-term memory network (Bi-LSTM) and SVM to improve the prediction accuracy. 
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Song et al. (2023) used an attentional mechanism to splice different modal data two by 
two, and then passed this spliced information to Bi-LSTM to learn cross-modal 
contextual correlations. Chao et al. (2024) established a multimodal student health 
monitoring model with composite hierarchical fusion by combining temporal 
convolutional networks (TCNs) and soft attention mechanisms to improve prediction 
accuracy. Fang et al. (2023) used a dynamic augmentation approach to extend the 
difference between textual modalities and other modalities and reduce the redundancy of 
other modalities, capturing the context of multimodal data through a bidirectional 
attention mechanism, but failing to capture multilevel interactions between modalities. 

Through a comprehensive analysis of multimodal data fusion and classification 
monitoring methods in the smart campus system, it can be seen that the existing research 
exists the problems of insufficient inter-modal interaction and in the feature expression 
ability, in order to solve these problems, this paper proposes a highly efficient 
multimodal health data fusion and in-depth analysis method in the smart campus system. 
The innovativeness of this research is reflected in the following four aspects. 

1 Deep learning algorithms were introduced to pre-process multimodal health data. 
Skip-Gram word embedding method is utilised to obtain word vectors for text, the 
VGG16 model pre-trained by ImageNet is introduced to obtain image vectors, and 
Mel frequency cepstrum coefficients (MFCC) is utilised to obtain audio vectors. 

2 Multiscale convolutional neural network (MCNN) is designed to extract features 
from multimodal health data. By stacking multiple dense attention mechanism 
(DAM) layers to capture and fuse different modal health data, each layer not only 
refines the key information at its own level, but also provides the semantic 
information for the next layer, which significantly improves the model’s capability to 
perceive the nuances in the characteristics of the health data. 

3 After feature fusion, students’ health status was classified and analysed in depth 
using multivariate Gaussian distribution. Finally, based on the results of the health 
status analysis, schools, teachers and parents can take appropriate interventions 
according to the results of the students’ health status analysis, so as to improve the 
efficiency of campus management. 

4 A large number of comparative experiments have been conducted on real datasets, 
and the outcome indicates that the proposed method has high data fusion efficiency 
and classification accuracy, provides theoretical support and technical 
implementation paths for the smart campus health management sub-system, and has 
practical value for promoting students’ physical and mental health management, 
disease prevention and control, and personalised intervention. 

2 Relevant technologies 

2.1 Multimodal data fusion methods 

Multimodal data fusion refers to the integration and analysis of data from various 
modalities to make full use of the complementary information of various modal data to 
improve the accuracy and comprehensiveness of understanding and cognition (Nemati  
et al., 2019). According to the fusion level, it can be categorised into data-level 
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integration, characteristic-level integration and decision-level integration. Data in 
intelligent campus systems has different spatio-temporal resolutions and semantic levels. 
The attention mechanism automatically focuses on the modality most relevant to the 
current task by dynamically calculating the weights of each modality feature, avoiding 
the static limitations of traditional weighted fusion. 

1 Data-level integration characterises the model with sufficient data information 
through correlation and processing of raw data. If the original data has a large error, 
it will lead to a large deviation in the decision-making result. 

2 Feature-level fusion is based on the potential features of the original data, compared 
with data-level fusion; both reduce the difficulty of data fusion, fusion model  
real-time effective enhancement. 

3 Decision-level fusion is oriented to the integration of decision-making results at the 
end of data processing, and compared with a single data source, the decision-level 
fusion results are more accurate, robust, and fault-tolerant. 

Data-level fusion requires strict spatiotemporal synchronisation, (e.g., video frame and 
audio sampling alignment), and the heterogeneous nature of devices in campus scenarios, 
(e.g., different sampling rates of cameras and IoT sensors) can easily lead to fusion 
failure. Feature-level fusion may ignore high-order correlations between modalities. 
Decision-level fusion processes each modality independently and supports asynchronous 
data, making it suitable for distributed systems in campuses. 

2.2 Convolutional neural network 

CNN is a neural network architecture based on the multilayer perceptron (MLP) design, 
which uses convolutional operations to extract and learn spatial features in a multilayer 
network. Unlike traditional neural networks, the neurons in each layer of a CNN are 
organised in a three-dimensional structure, which is more suitable for processing data 
such as images. CNN includes convolutional level, activation level, pooling level and 
fully connected level (Kuo, 2016) as shown in Figure 1. CNNs are classic deep learning 
models that demonstrate unique advantages when processing data with local correlations 
and spatial structures. Compared with other mainstream models (such as GANs and 
RNNs), CNNs automatically extract local features by sliding convolution kernels across 
local regions of the input data, significantly reducing the number of parameters. 

Taking 2D convolution as an example, assuming that the size of the input feature map 
is Win  Hin  Din and the size of the output feature map is Wout  Hout  Dout, the 
convolution is calculated as follows. 

 
 

2 +1

+ 2 +1

+out in

out in

out

W W p w s

H H p h s

D k

 
 







 (1) 

where w  h is the width and height of the convolution kernel, k is the total number of 
convolution kernels, s is the step size, and p is the padding, which is used to control the 
spatial dimension of the output feature map. 

The pooling layer effectively reduces the spatial dimensionality of the characteristic 
picture, while reducing the amount of parameters and computational burden that the 
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model needs to handle (Li et al., 2021), and the maximum pooling is calculated as 
follows, where f is the width and height of the nucleus. 

 
 

+1

+1
out in

out in

W W s

H s

f

fH

 
 




 (2) 

The fully connected level maps the captured high-level characteristics to the output, 
performing a linear transformation y = Wx + b, where y is the output and W and b are the 
weights and bias, respectively. 

Figure 1 The model structure of CNN (see online version for colours) 

 

Input Conv1 Pool1 Conv2

Pool2FC1FC2Softmax
 

2.3 Attention mechanism 

The attention mechanism is a technique used to enhance the attention of a neural network 
model to the input data by assigning a weight to each input location, focusing the model’s 
attention on the part that is relevant to the task at hand. In this way, the model can better 
utilise the data in the input sequence and adaptively adjust the allocation of attention in 
different contexts. 

In the attention mechanism, Q, K, and V (query-key-value) are used to compute the 
attention weights (Lu et al., 2023) for mapping the query vector (query), key vector (key), 
and value vector (value) to the attention scores, which are computed as follows. 

( , , )
T

k

Q K
Attention Q K V softmax V

d

 
  

 
 (3) 

where dk is the dimension of the key vector. This procedure computes the attention 
weights between multiple query vectors and key vectors at the same time and generates 
the corresponding context vectors or weighted sum representations. 

3 General framework of health data analysis methods based on 
multimodal data 

The smart campus system collects and analyses student health data through a variety of 
sensors, wearable devices, and information systems in order to provide personalised 
health management and intervention. These data are often characterised by rapid growth 
and multiple modalities, and it is difficult to ensure the accuracy of all modalities using 
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statistical data analysis algorithms. Therefore, it is necessary to design different data 
characterisation models for different modalities of health data while ensuring the 
accuracy. The framework of the proposed health data analysis algorithm is shown in 
Figure 2. 

Figure 2 The framework of the proposed health data analysis algorithm (see online version  
for colours) 
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Due to the increase in the number of testing programs and the sophistication of 
instruments, student health data has expanded from a single digital and text type to a 
multimodal form with images, audio and text. However, the feature extraction methods 
for different modalities are very different, so it is necessary to classify the data into three 
modalities: text, image, and audio, and construct the feature characterisation model for 
each modality. Deep learning technology can be used to analyse the logical patterns 
embedded in data by simulating the way the human brain thinks, and unsupervised 
methods can avoid the subjective bias of manual annotation. In the paper, the data feature 
representation model of MCNN is constructed for three modal health data. The AM is 
also designed to interact and fuse the multimodal health data, and finally the health status 
of each type of student is analysed in depth using multivariate Gaussian distribution. 
Schools, teachers and parents can take appropriate interventions according to the results 
of students’ health status analysis, which provides a reference for the development of 
personalised health management programs. 

4 Multimodal health data fusion based on convolutional neural network 
and improved attention mechanism 

4.1 Multimodal health data pre-processing 

Intending to the issue that existing multimodal data fusion methods have insufficient 
intermodal interaction, which leads to inefficient fusion, a multimodal health data 
integration approach relied on MCNN and improved attention mechanism is suggested. 
Firstly, multimodal data such as audio, image and text are vectorised, MCNN is designed 
to extract the features of multimodal data, and finally, DAM is designed to establish 
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dense, multilevel interactions between modalities, which improves the intermodal 
complementarity and fusion efficiency, and realises the integration of deeper information. 

The purpose of pre-processing multimodal health data is to vectorise the multimodal 
data. For textual health data, the jieba tool is used for word segmentation, and the  
Skip-Gram word embedding method is used for unsupervised learning of textual data and 
word headings to obtain the word vectors and their headings in the text. The model 
represents each word as a vector of words in the centre and background to calculate the 
conditional probability between the centre and background words. 

   
 

1

exp

exp

T
o c

o c N
T

cii

v v
p w w

v v





 (4) 

where wc is the centre word, wo is the background word, vc is the word vector of the 
centre word, vo is the word vector of the background word, vi is the word vector of the ith 
background word in the dictionary, and N is the dictionary size. 

Figure 3 Multimodal health data fusion process based on MCNN and DAM (see online version 
for colours) 
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[SEP]
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For image-type health data, the ImageNet pre-trained VGG16 model (Ye et al., 2021) is 
introduced, and the last pooling layer (pool5) of this model is utilised for vectorisation of 
image data. The fixed-dimensional output of VGG16 eliminates differences in the size 
and resolution of the original images. The image vector output by pool5 in VGG16 is  
7  7  512, where 7  7 is the number of vectors and 512 is the vector dimension. Let 
img = {img1, img2, …, imgn} denote n images corresponding to the text, the image vector 
obtained by pool5 extraction is vi. Input vi into the fully connected level and nonlinear 
activation, the final image vector is obtained as follows. 
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 tanh +T
img iv W v b  (5) 

where tanh is the hyperbolic tangent activation function, W is the weight matrix, b is the 
bias vector, and d is the vector dimension. 

For the audio type of health data, the discriminatory components of the audio data are 
extracted using MFCC. The audio is first converted to Mel frequency as follows. 

( ) 2 595lg(1+ / 700 )mel f f  (6) 

where f is the audio data. The audio vector is then obtained by performing Fourier 
transform, logarithmic operation and Fourier inverse transform on the audio data. 

4.2 Multi-modal health data feature extraction based on multi-scale CNNs 

After obtaining the multimodal health data vectors, this paper designs MCNN for 
multimodal data feature extraction. Let S be the text word vector, n be the text length, and 
k be the size of convolution kernel. For a certain convolution kernel w, the convolution 
operation is performed sequentially in the word vector matrix with k convolution kernels 
to obtain the text feature vectors one by one. 

 : + 1Relu +T
j j j kc w S b  (7) 

where Relu is the activation function, * is the convolution operation, j is the number of 
features, and its value range is [1, n – h + 1]. In view of the above analysis, we can get 
the text feature vector is Vt = {c1, c2, …, cn–k+1}. 

Similarly, for audio data and image data, the mean, maximum and standard deviation 
are also commonly used statistical features, while three types of pooling operations are 
used to portray the statistical features of multimodal data to obtain the statistical pooling 

vector , },{ ,μ μ μSP
e stV V V V  where μ is the pooling operation, which includes maximum 

pooling max, mean pooling avg and standard deviation pooling std; Vt, Ve and Vs are the 
text, image and audio feature vectors output from the feature extraction layer, 
respectively. 

4.3 Multimodal health data fusion based on improved attention mechanism 

Multimodal fusion is a key issue in student health data analysis, and this paper designs a 
DAM to create intensive, bi-directional interactions between modalities, as indicated in 
Figure 4. DAM captures and synthesises health data from different modalities by stacking 
multiple dense synergetic attention layers. Taking text and image as an example, this 
paper adopts the method in the literature (Al-Tameemi et al., 2023) to project Vt and Ve to 
multiple low-dimensional spaces respectively, and interact bimodally on multiple  
low-dimensional spaces to generate multiple attention graphs. In this way, interactions 
captured in different lower dimensions reinforce the correlation between signals, and the 
resulting multiple attention maps are averaged and fused, a process that allows the model 
to capture and exploit complex interactions between modes while maintaining 
dimensional control. The number of low-dimensional spaces is represented by h, and dh is 
the number of dimensions of the low-dimensional space. The shared similarity matrix in 
the ith low-dimensional space is shown as follows. 
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   ( ) ( ) ( )

t e

i i i
l V eV tA W V W V  

   (8) 

where ( ) ( )and
t e

i i
V V

W W   are the linear weights of the text modality and image modality 

projected to the ith low-dimensional space, respectively, and ( )i
lA  stores the interaction 

information of the two modalities. 

Normalise the rows of the shared similarity matrix, to obtain the attention graph ( )

t

i
V

A   

used to map the text on the image modal time nodes as shown in equation (9). The 
normalised columns then yield the text-to-image attention map as shown in equation (10). 
Next, by averaging multiple obtained attention maps, as shown in equation (11) and 
equation (12), a combined attention map is finally formed. 

( )
( )

t

i
i t

V
h

A
A softmax

d

 
   

 
  (9) 

( )
( )

e

i T
i l

V
h

A
A softmax

d

 
   

 
  (10) 

( )

1

1
t t

h
i

V V
i

A A
h 

    (11) 

( )

1

1
e le

h
i

V V
i

A A
h 

    (12) 

Then the text and image modal fusion representations ˆanˆ d
t e

T
V e Vt t

T
eV V V V AA    are 

computed respectively, and finally, ˆandt̂ eV V  are spliced with Vt and Ve of the previous 

layer, and the spliced features are projected into the d-dimensional space through a linear 
network with ReLU activation and residual concatenation. The final modal update 
process is shown in equation (13) and equation (14). 

+1 + +
ˆt t
tl

V tt
t

V
V ReLU W b

V
V

 
 


 
  

   (13) 

+1 +
ˆ

+e

e
e e

e

l
e V

V
V ReLU W b V

V

 
 


 
  

   (14) 

where andt eV VW W  are weight coefficients and bt and be are biases, respectively. 

Through residual connection, information is allowed to be transmitted more directly 
in the network, which helps to reduce the problem of disappearing gradients, improve the 
effect of gradient propagation, and contribute to the stability of model training. Input the 
output T and V of the DAM layer into the MLP to gain the final fusion result, as shown in 
equation (15). 
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e

V
y σ MLP

T

   
        

 (15) 

where yte is the interaction result of the text-image modality and σ is the activation 
function. Similarly, the results of the modal interactions of text-to-speech and image will 
be obtained as yts, yes. yte, yts and yes are weighted to obtain the fusion feature ym, as shown 
in equation (16), where k1, k2 and k3 are the weights of different modalities. 

1 2 3+ +m ts ete sy k y k y k y  (16) 

Figure 4 The structure of DAM (see online version for colours) 
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5 Student health data analysis based on multivariate Gaussian distribution 
and deep learning 

After obtaining the multimodal health data fusion feature results of students, this paper 
constructs a health data analysis model based on multivariate Gaussian distribution 
theory. The multivariate Gaussian distribution has become an important tool in 
multidimensional data analysis due to its excellent mathematical properties, concise 
parameters, efficient computation, and wide applicability. Firstly, the fused feature 
sequences of text, image and audio modalities are averaged for p. 

1

1 m

i

i

p y
m 

   (17) 
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The covariance matrix A of the features can be obtained from the mean value p as 
follows. 

  
1

1 m
T

i i

i

A y p y p
m 

    (18) 

The final probability value p(x) of the multivariate Gaussian distribution can be obtained 
as follows. 

 
 

1

2 2

1
( ) exp ( ) / ( )

2

T
n

p x x p A x p
π A

    (19) 

Based on the above formula, a suitable Gaussian probability distribution function is 
selected based on the probability of occurrence of various diseases; then the fusion 
eigenvalues calculated above are used and inputted into the MLP to obtain a series of 
relevant parameters of the Gaussian probability distribution function, and the thresholds 
for the division of each student’s health status are then obtained, and the final test 
samples are used for testing in order to verify whether the model has an effect of health 
data monitoring. 

Based on the results of health data monitoring and analysis, schools can send relevant 
alert messages to school administrators, teachers and parents to remind them to pay 
attention to students’ health conditions according to the Smart Campus Health 
Management Alert Module. Teachers can adjust their teaching plans and methods 
according to the health conditions of individual students, so as to reduce students’ 
learning pressure. Parents can cooperate with the school to pay attention to the living 
habits and psychological state of the students and give them more care and attention. 

6 Experimental results and analyses 

This experiment was conducted on an NVIDIA Tesla P100 PCle 16 GB graphics card 
using the Pytorch framework, Pycharm environment, programming language Python 3.7 
and CUDA version 11.0. The student health data in the smart campus system collected in 
the literature (Liang and Chen, 2018) is selected as the experimental dataset, which 
contains 21,678 multimodal health data of 4,289 students, such as physiological data, 
behavioural data, psychological data, and environmental data stored in the form of text, 
image, or audio. 60% of this dataset is used as the training set, 20% as the validation set, 
and 20% as the test set. The experiments are optimised using the Adam optimiser, and the 
batch size of the training and testing phases is 64, with a total of 300 rounds of training, 
and the original studying rate is set to 0.001. 

As can be seen from Figure 5, the correlation coefficient among the predicted and 
actual values of the proposed OURS method on the training sample for the 100-th 
training is 0.99801, the correlation coefficient between the predicted and actual values on 
the training set is 0.981, and the correlation coefficient between the predicted and actual 
values on the whole training sample is 0.99801, and the correlation coefficient between 
the predicted and actual values on the testing set is 0.981. 

In addition to analysing the monitoring results of the OURS method, this paper also 
compares and analyses the fusion efficiency of the OURS method with MIFM (Song  
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et al., 2023), TCN-SAM (Chao et al., 2024), and DEBAM (Fang et al., 2023), and the 
results are shown in Table 1. When the training time is 10 s, the fusion efficiency of 
OURS is 33%, 15%, and 4% higher than that of the MIFM, TCN-SAM, and DEBAM 
methods, respectively, and when the training time is 50 s, the fusion efficiency of OURS 
is 91%, which is 48%, 19%, and 5% higher than that of the MIFM, TCN-SAM, and 
DEBAM methods, respectively. MIFM uses a traditional attention mechanism for simple 
splicing fusion of multimodal data features, which assigns weights to all input features, 
including noisy or irrelevant features, resulting in inefficient fusion. Although TCN-SAM 
fuses multimodal features through a soft-attention mechanism, the soft-attention 
mechanism usually assigns non-zero weights to all input features and lacks sparsity, 
which may lead to difficulties in focusing the model on key features and reduce the 
effectiveness of feature fusion. DEBAM fuses multimodal features through a two-way 
interactive attention mechanism, but it needs to store the attention weight matrix between 
two feature sets, and the memory occupation is high. To summarise, the fusion efficiency 
is low using the benchmark method, while the fusion efficiency is high using the OURS 
method. 

Moreover, accuracy, Macro-F1, mean absolute error (MAE), mean squared error 
(MSE), and AUC values were used in this paper to compare the monitoring performance 
of different methods, and the results are shown in Figure 6. The Accuracy and Macro-F1 
of OURS are 0.9507 and 0.9379, respectively, which are 23% and 19.58% improved 
compared to MIFM, 14.17% and 10.72% improved compared to TCN-SAM, and 3.63% 
and 3.54% improved compared to DEBAM. Comparing the prediction error metrics 
again, the MAE and MSE of OURS are at least 28.07% and 29.49% lower compared to 
the other three methods, respectively. AUC is the area of the offline surface of the ROC, 
which takes values ranging from 0 to 1. It also takes into account the recall rate (TPR) 
and false positive rate (FPR) of the model, and is able to fully assess the monitoring 
performance of the model. The AUC values of OURS, MIFM, TCN-SAM, and DEBAM 
were 0.9811, 0.8736, 0.9258, and 0.9525, respectively, and OURS was more effective in 
monitoring health data. OURS not only considers three modalities of health data and 
designs MCNN for multi-scale feature extraction of multimodal health data, but also 
innovatively proposes DAM to realise the deep interaction and fusion of multimodal data, 
which significantly improves the monitoring effect of multimodal health data. 

Table 1 Fusion efficiency of different methods 

Fusion time/s MIFM TCN-SAM DEBAM OURS 

10 56% 74% 85% 89% 

20 62% 76% 84% 92% 

30 59% 71% 81% 93% 

40 41% 78% 82% 87% 

50 43% 72% 86% 91% 

60 52% 75% 80% 95% 

70 51% 77% 83% 89% 

80 50% 70% 81% 90% 
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Figure 5 Effectiveness of the fit between predicted and actual values (see online version  
for colours) 
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Figure 6 Performance indicators for monitoring and analysis of different methods (see online 
version for colours) 
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7 Conclusions 

Intending to the current problem of insufficient interaction of multimodal data and weak 
feature expression ability in the smart campus system, which leads to the inefficiency of 
multimodal data fusion, this paper firstly obtains the word vectors of the text by using the 
Skip-Gram word embedding method, introduces the ImageNet pre-trained VGG16 model 
to obtain the image vectors, and obtains the audio vectors by utilising the Mayer 
frequency cepstrum coefficients (MFCC), and then CNN models with different 
convolutional kernels are designed for text, image and audio multimodal health data for 
feature extraction. The introduction of DAM establishes a dense, bi-directional 
interaction between modalities, and significantly improves the model’s ability to perceive 
subtle differences in the characteristics of health data by stacking multiple dense 
synergetic attention layers to capture and fuse health data from different modalities. After 
feature fusion, students’ health status was divided and analysed in depth using 
multivariate Gaussian distribution. Finally, based on the results of the analysis of health 
status, schools, teachers and parents can take appropriate interventions according to the 
results of the analysis of students’ health status, so as to improve the efficiency of campus 
health management. The experimental results show that the accuracy and AUC values of 
the proposed method are 0.9507 and 0.9525, respectively, which can better enhance the 
health management capability of the smart campus system. 
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