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Abstract: Accurate construction cost estimation is crucial for effective project 
planning and resource management in the construction industry. Traditional 
estimation methods often suffer from inaccuracies due to the complexity and 
variability of construction projects. This study explores the application of 
regression-based machine learning models support vector machine (SVM),  
K-nearest neighbours (KNN), and multilayer perceptron (MLP) to improve the 
precision of construction cost predictions. The study evaluates the performance 
of these models using a construction-related dataset that includes factors such 
as material costs, labour expenses, and project characteristics. The results 
revealed that the SVM model outperforms the others, achieving an RMSE of 
18,189 and an R² of 0.975, indicating its superior ability to predict construction 
costs accurately. The KNN and MLP models also demonstrated effectiveness, 
but with higher errors, particularly in more complex data scenarios. This 
research highlights the potential of machine learning techniques to 
revolutionise construction cost estimation, providing more reliable, data-driven 
insights for project planning and budgeting. 

Keywords: cost estimation; predictive analytics; project planning; cost 
prediction; construction industry. 
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1 Introduction 

Estimating construction costs accurately is a critical aspect of project planning and 
management in the construction industry (Sayed et al., 2023). The ability to forecast costs 
with precision plays a pivotal role in ensuring the feasibility and sustainability of 
construction projects, as it directly influences budgeting, resource allocation, and 
decision-making processes (Moshood et al., 2024). Accurate cost estimation not only 
helps project managers in anticipating expenses but also minimises financial risks and 
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supports effective communication between stakeholders (Nia et al., 2023). This is 
particularly crucial in a sector characterised by dynamic variables such as fluctuating 
material prices, labour costs, and unforeseen site conditions, which can significantly 
impact the overall project budget (Adepu et al., 2024). 

The implications of inaccurate cost estimations are far-reaching, often leading to 
delays, disputes, and cost overruns that can derail project timelines and compromise 
profitability (Onah, 2024). Conventional methods for estimating construction costs 
typically rely on heuristic approaches, expert judgment, or historical data analysis (Fouda 
et al., 2024). While these methods have been widely used, they are inherently subjective 
and prone to inconsistencies due to the variability in expert experience and the limitations 
of relying solely on past data. These approaches may also struggle to capture the 
complexity of modern construction projects, which often involve numerous interrelated 
variables and intricate dependencies. 

In recent years, the rapid advancement of machine learning (ML) techniques has 
opened new opportunities for addressing these limitations (Fei et al., 2015). ML models 
are inherently data-driven, capable of identifying complex patterns and relationships 
within large datasets that may not be readily apparent through traditional methods 
(Montáns et al., 2019). By leveraging ML, cost estimation processes can be enhanced to 
deliver greater accuracy, consistency, and adaptability. These techniques can process vast 
amounts of historical and real-time data, learn from trends, and generate predictions that 
account for the multifaceted nature of construction projects (Bilal et al., 2016). 

This evolution towards data-driven decision-making marks a paradigm shift in how 
construction costs are estimated. ML not only provides a pathway for reducing errors but 
also enhances the ability of stakeholders to make informed decisions based on predictive 
analytics (Kalusivalingam et al., 2020). As a result, the integration of ML into cost 
estimation processes represents a significant step forward in modernising and optimising 
project planning in the construction industry (Elmousalami, 2020). 

This study delves into the utilisation of regression-based ML models to enhance the 
precision of construction cost prediction (Mathotaarachchi et al., 2024). The research 
focuses on evaluating the performance of four distinct ML models: support vector 
machines (SVM), K-nearest neighbours (KNN) and multilayer perceptron (MLP) 
regression. Each of these models represents a unique methodological approach, offering a 
diverse spectrum of techniques for tackling the multifaceted challenges associated with 
construction cost estimation. 

SVM is known for its capability to handle high-dimensional data and model complex 
relationships, making it a robust choice for regression tasks (Cao and Lin, 2015). KNN, 
on the other hand, leverages the principle of proximity in data space to make predictions, 
offering a simple yet effective approach (Halder et al., 2024). Linear regression, a 
classical statistical method, provides a baseline for understanding linear relationships 
between variables (James et al., 2023). MLP regression, as a neural network-based 
model, excels at capturing nonlinear and intricate patterns in data, leveraging its deep 
learning architecture for superior performance in complex scenarios (Sengupta et al., 
2020). 

By examining these models’ strengths, weaknesses, and applicability, this study aims 
to provide a comprehensive analysis of their effectiveness in predicting construction 
costs. The comparative insights derived from this investigation are expected to inform 
best practices for selecting and applying ML techniques in the construction industry, 
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ultimately advancing the field of cost estimation through data-driven innovation (Datta  
et al., 2024). 

The research is centred on designing a robust and scalable framework that seamlessly 
integrates these regression-based ML models to process and analyse construction-related 
datasets effectively (Munawar et al., 2022). The framework aims to uncover complex 
patterns and relationships among key variables, including material costs, labour expenses, 
project dimensions, site conditions, and other critical factors, which collectively influence 
overall construction costs (Xie et al., 2022). This systematic approach seeks to enhance 
the accuracy and reliability of cost predictions by leveraging the capabilities of ML to 
manage and interpret intricate data structures. 

A core objective of this study is to evaluate and compare the predictive accuracy and 
computational efficiency of the selected models, providing a detailed analysis of their 
performance under varying conditions. By doing so, the research not only identifies the 
most suitable model for specific scenarios but also highlights the trade-offs between 
model complexity and operational efficiency. These findings are expected to contribute 
significantly to the advancement of data-driven methodologies for cost estimation in the 
construction industry. 

This study aspires to provide actionable insights that are beneficial for both academic 
researchers and industry practitioners. For researchers, it offers a methodological 
foundation for further exploration of ML applications in cost estimation. For 
practitioners, the insights derived can guide the selection and implementation of 
appropriate ML tools, enabling more informed decision-making and improved project 
outcomes in construction management. Below given are the major contributions of this 
research study: 

 This study proposes a robust framework that integrates SVM, KNN and MLP 
regression models for accurate and efficient construction cost estimation. 

 The research systematically evaluates and compares the predictive accuracy, 
computational efficiency, and practical applicability of diverse ML models for 
handling construction-related datasets. 

 By analysing variables such as material costs, labour expenses, and project 
dimensions, the study identifies critical factors and relationships that influence 
overall construction costs. 

 The findings provide actionable recommendations for construction industry 
practitioners, offering a data-driven approach to enhance decision-making in project 
budgeting and management. 

The Section 2 reviews traditional and ML-based approaches to construction cost 
estimation, highlighting limitations and gaps in the literature. It emphasises the need for 
advanced regression techniques for more accurate predictions. The Section 3 details the 
dataset preparation, feature engineering, and implementation of regression models (SVM, 
KNN and MLP). Evaluation metrics and model tuning strategies are also discussed. 
Experimental results are presented in the Section 4, comparing the models’ accuracy and 
computational efficiency. Insights on model performance, practical implications, and 
recommendations for future research are provided. 
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2 Literature review 

Accurate construction cost estimation plays a crucial role in project success, determining 
the feasibility, resource allocation, and profitability of construction projects. While 
traditional methods such as expert judgment and historical data analysis have been widely 
used, the application of ML techniques has gained prominence due to their ability to 
model complex relationships and predict construction costs with higher accuracy. This 
section reviews the existing literature on various methodologies, focusing on both 
traditional techniques and ML-based models applied to construction cost estimation. 

Traditional methods, including expert judgment, analogical estimation, and 
parametric modelling, have been the cornerstone of construction cost estimation for 
decades (Draz et al., 2024). Draz et al. (2024) provided an overview of heuristic-based 
methods that rely on expert experience and historical project data. While such methods 
can offer initial estimates, they are often prone to biases, subjectivity, and errors due to 
the reliance on personal judgment. These limitations hinder the scalability and reliability 
of cost predictions, especially in large-scale or complex projects. 

Hall et al. (1986) highlighted the limitations of expert-driven models, particularly 
when dealing with uncertain or incomplete data. They argue that while historical data can 
be useful, it often fails to account for dynamic and rapidly changing variables such as 
market conditions, material price fluctuations, and labour force availability. As a result, 
these models may not be flexible enough to adapt to new projects with varying 
conditions. 

The increasing availability of large datasets and computational power has facilitated 
the adoption of ML techniques in construction cost estimation (Akinosho et al., 2020). 
These methods offer the advantage of identifying hidden patterns and relationships within 
data, which traditional approaches often overlook. 

Dang-Trinh et al. (2023) investigated the application of SVM for predicting 
construction costs. They demonstrated that SVM could effectively handle  
high-dimensional datasets and capture nonlinear relationships between variables, 
outperforming traditional regression models. The ability of SVM to manage large feature 
spaces makes it particularly suitable for complex cost estimation tasks where multiple 
factors influence the outcome. The study concluded that SVM could provide more 
accurate cost predictions, especially when dealing with nonlinearities in the data. 

Arabiat et al. (2023) applied the KNN algorithm for construction cost prediction. 
KNN, a non-parametric method, uses proximity in data space to predict outcomes based 
on similar historical cases. The study found that KNN performed well on smaller datasets 
with fewer features but was less effective in handling large and high-dimensional datasets 
due to its computational complexity. Nonetheless, KNN offers simplicity and 
transparency, making it an attractive option for projects where data is relatively 
straightforward and does not involve high-dimensional spaces. 

Linear regression remains one of the simplest and most widely used models in 
construction cost estimation (GadelHak et al., 2023). GadelHak et al. (2023) conducted a 
comparative analysis of linear regression models and ML methods, such as SVM and 
KNN. The study found that while linear regression models are easy to interpret and 
computationally efficient, they are limited by their assumption of linearity between the 
input variables and the cost. As such, linear regression performed poorly when complex, 
nonlinear relationships were present in the data, a common scenario in construction cost 
estimation. 
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The use of deep learning models, particularly MLP networks, has garnered attention 
for its ability to model complex, nonlinear relationships between input features. Fei  
et al. (2015) applied MLP for cost estimation in construction projects, leveraging its 
capacity for hierarchical feature learning and capturing intricate patterns in large datasets. 
The results showed that MLP models significantly outperformed traditional regression 
techniques, achieving higher accuracy. However, they also noted that MLP requires large 
training datasets and is computationally intensive, making it challenging to apply in 
resource-constrained environments. 

Recent studies have explored hybrid and ensemble models that combine different ML 
techniques to improve predictive accuracy (Boyko and Lukash, 2023). Boyko and Lukash 
(2023) proposed a hybrid approach that combined SVM with optimisation algorithms to 
enhance the model’s ability to predict construction costs. Their study found that 
integrating SVM with feature selection and optimisation methods allowed the model to 
focus on the most relevant input features, improving prediction accuracy. 

Kansal et al. (2023) also explored hybrid models, combining linear regression with 
decision trees to predict construction costs. Their approach aimed to leverage the 
interpretability of linear models with the flexibility of decision trees to better handle 
complex relationships in the data. The study demonstrated that hybrid models could 
outperform individual models, especially in projects with diverse features and conditions. 

Moreover, ensemble methods such as random forests and gradient boosting have been 
applied in several studies to improve prediction accuracy by combining the strengths of 
multiple weak models (Demir and Sahin, 2023). Demir and Sahin (2023) used Random 
Forests to predict construction costs and found that ensemble models significantly 
reduced overfitting compared to individual models, providing more reliable and robust 
predictions across different scenarios. 

Comparative studies have become increasingly common as researchers seek to 
understand the strengths and weaknesses of different ML models. Arabiat et al. (2023) 
compared linear regression, SVM, KNN, and MLP models for construction cost 
prediction. The study found that MLP and SVM achieved the highest prediction 
accuracy, while KNN performed well in smaller datasets but struggled with larger and 
more complex datasets. Linear Regression, while simple and fast, was found to be the 
least effective in capturing nonlinear relationships. 

Similarly, Boyko and Lukash (2023) performed a detailed comparison of various 
regression models, including KNN, SVM, and MLP, in the context of construction cost 
estimation. The study concluded that while MLP and SVM were more accurate in terms 
of prediction, they required higher computational resources. KNN, although 
computationally efficient, was found to perform poorly when the data complexity 
increased. 

The integration of real-time data streams into cost estimation models is an emerging 
trend in construction management (Pan and Zhang, 2023). Pan and Zhang (2023) 
explored how sensor data, real-time project updates, and live material prices could be 
integrated into ML models to improve the accuracy and adaptability of cost predictions. 
They found that models that can incorporate real-time data offer a dynamic approach to 
cost estimation, allowing for more precise forecasting during project execution. 
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Another emerging area is the application of natural language processing (NLP) 
techniques to analyse textual data from project documentation, such as contracts, bids, 
and project reports (Shamshiri et al., 2024). Shamshiri et al. (2024) utilised NLP models 
to extract valuable information from textual descriptions and integrate it into construction 
cost estimation models. This approach has the potential to enhance prediction accuracy 
by capturing factors that are often omitted in structured datasets. 

The literature demonstrates a growing shift towards the use of ML models for 
construction cost estimation. Models such as SVM, KNN, Linear Regression, and MLP 
have proven effective in handling the complexities of construction data. However, 
challenges remain, particularly in terms of data quality, feature selection, and 
computational efficiency. While deep learning models like MLP show high accuracy, 
they are computationally expensive and require large datasets. Hybrid and ensemble 
models have shown promise in improving prediction accuracy by combining the 
strengths of different techniques. Despite these advancements, further research is needed 
to address issues such as real-time data integration, model interpretability, and the 
applicability of ML in smaller, resource-constrained projects. 

3 Methodology 

This section outlines the methodology employed in this study to evaluate and compare 
the performance of various regression-based ML models for construction cost estimation. 
The approach involves the use of a construction-related dataset, which includes various 
factors such as material costs, labour expenses, project size, and other critical variables. 
The methodology incorporates data preprocessing, model selection, feature engineering, 
and performance evaluation techniques to ensure accurate and reliable cost predictions. 
The following subsections provide a detailed description of the dataset, ML models, and 
evaluation metrics used in this study. The selected models SVM, KNN, and MLP for 
regression due to their distinct learning methodologies and ability to model complex, 
nonlinear relationships in cost estimation are used. SVM effectively captures high-
dimensional patterns, KNN employs instance-based learning for flexible predictions, and 
MLP leverages deep learning to model intricate dependencies. These models were chosen 
to evaluate their effectiveness in comparison to traditional regression techniques for cost 
estimation. 

3.1 Dataset description 

The dataset used in this study consists of a variety of features related to construction 
project characteristics, costs, and environmental conditions. Each feature captures a 
unique aspect of the construction project, contributing to a comprehensive understanding 
of the factors influencing the overall cost. Table 1 presents the key features, their 
descriptions, and data types. 
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Table 1 Description of features used in the construction cost estimation dataset 

Feature Description Data type 

Project size Total floor area or square footage of the 
construction project. 

Continuous 

Material cost Total cost of materials required for the project. Continuous 

Labour cost Total labour cost for the project. Continuous 

Project type Type of construction (e.g., residential, 
commercial, industrial). 

Categorical 

Project duration Duration of the project in months. Continuous 

Location Geographic location (e.g., city, region) affecting 
construction costs. 

Categorical 

Project complexity Complexity level of the project (e.g., simple, 
medium, complex). 

Categorical 

Environmental factors Environmental conditions (e.g., weather, terrain) 
impacting the project. 

Categorical 

Regulatory costs Costs associated with compliance to regulations 
and permits. 

Continuous 

Design phase Stage of the design process (e.g., conceptual, 
detailed design). 

Categorical 

Labour productivity Measure of labour efficiency on the project 
(e.g., labour hours per unit of work). 

Continuous 

Construction methodology Type of construction methodology used (e.g., 
conventional, modular). 

Categorical 

Weather impact Severity of weather impact on construction (e.g., 
mild, moderate, severe). 

Categorical 

Equipment costs Total costs of construction machinery and 
equipment. 

Continuous 

Supply chain delays Estimated delays in material or resource 
delivery affecting project completion. 

Continuous 

Overtime costs Additional costs incurred from working 
overtime. 

Continuous 

Market condition State of the construction market (e.g., boom, 
stable, recession). 

Categorical 

Labour union influence Influence of labour unions on cost or work 
schedule (e.g., present, absent). 

Categorical 

Safety costs Costs related to safety measures, inspections, 
and equipment. 

Continuous 

Subcontractor costs Costs associated with subcontracted work (e.g., 
plumbing, electrical). 

Continuous 
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Figure 1 Correlation matrix for the construction dataset, showing relationships between various 
project features and construction costs (see online version for colours) 

 

Figure 2 Histogram showing the frequency of construction costs, with an overlaid density curve 
to visualise the distribution (see online version for colours) 
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Figure 3 Boxplots illustrating the distribution of construction costs across various factors  
(see online version for colours) 
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3.2 Data pre-processing 

Data preprocessing is a crucial step in preparing the dataset for ML models. In this study, 
the dataset includes both continuous and categorical variables that need to be processed 
to ensure the models can interpret and utilise the data effectively. 

3.2.1 Handling missing data 

Missing values in continuous variables, such as ‘material cost’, ‘labour cost’, and ‘project 
size’, are imputed using the mean or median of the respective column, depending on the 
distribution of the data. For a continuous variable X, the missing value X_missing is 
replaced by the mean of the non-missing values μ_X. 

1

n

ii
X

X
μ

n



 (1) 

where 

Xi Non-missing values in the dataset 

n Total number of non-missing observations. 

Missing values in categorical variables (e.g., ‘project type’, ‘location’, ‘design phase’) are 
imputed using the mode (most frequent value) of the respective column. For a 
categorical, the missing value Ymissing is replaced by the mode ModeY, which is the most 
frequent value in the dataset. 

arg max ( )Y y YMode Frequency y  (2) 

where 

y Set of unique non-missing values of Y 

Frequency(y) Count of each value y in the dataset. 

3.2.2 Outlier detection and handling 

Extreme values that are far from the mean or median can distort ML models, especially 
linear models. We identify and handle outliers by using Z-scores to detect values that are 
more than 3 standard deviations away from the mean and removing or transforming them 
as needed. 

The Z-score for a data point xi in a dataset is calculated as: 

i
i

x μ
Z

σ


  (3) 

where 

μ Mean of the dataset 

σ Standard deviation of the dataset 

xi Value of the data point 
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Zi Z-Score of the data point. 

The Z-score represents the number of standard deviations xi is from the mean. 

3.3 Regression model 

3.3.1 SVM regression 

Support vector machine regression (SVR) is a ML technique designed for predicting 
continuous target variables. It is particularly effective in handling high-dimensional data 
and capturing complex relationships. Below is a concise overview of SVR. The goal of 
SVR is to find a function f(x) that predicts the target y with a margin of tolerance ϵ while 
keeping the model as simple as possible. The function is expressed as: 

( ) ( , )f x w x b   (4) 

where 

(w, x) Dot product between the weight vector w and input x 

b Bias term. 

3.3.2 KNN regression 

KNN regression is a simple yet effective ML algorithm used for predicting continuous 
target variables. It works by finding the k-nearest data points in the feature space to a 
given query point and calculating a prediction based on these neighbours. The KNN 
regression algorithm predicts the target y for a given input x by averging the target values 
of the KNN in the dataset. The predicted value ŷ  is calculated as: 

1
ˆ

k
ii N

y y
k 

   (5) 

where 

k Number of nearest neighbours 

Nk Set of indices corresponding to the KNN 

yi Target value of the ith neighbour. 

The distance between data points is commonly measured using metrics such as: 

   2
, ,1

,
M

i j i m j mm
d x x x x


   (6) 

3.3.3 MLP regression 

MLP regression is a powerful neural network model designed for predicting continuous 
target variables by capturing complex, nonlinear relationships in the data. MLP consists 
of three main layers: input, hidden, and output layers. 

 Input layer: Accepts the feature vector x = (x_1,x_2,…,x_d) where d is the number 
of features 
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 Hidden layer: One or more layers where each neuron applies an activation function 
ϕ, such as ReLU or Sigmoid, to weighted inputs. The output for each neuron in the jth 
hidden layer is: 

 
1

d

j ij i ji
z w x b


    (7) 

 where wij is the weight between the input xi and the jth hidden neuron, and bj is the 
bias term. 

 Output layer: Compute the predicted value ŷ  as a weighted sum of the activations 

from the last hidden layer: 

1
ˆ

K

k k kk
y w z b


   (8) 

 where K is the number of neurons in the output layer, and wk and bk are the wrights 
and bias for the kth neuron. 

Activation functions 

Common activation functions used in MLP includes: 

 ReLU (rectified linear unit): (x) = max(0, x) 

1
: ( )

1 x
Sigmoid x

e
 


 

: ( )
z z

x z

e e
Tanh x

e e






 


 

These functions introduce nonlinearity into the model, enabling it to learn complex 
patters. 

In our study, we optimised key hyperparameters for each model to enhance 
performance. For SVM, different kernel functions [linear, polynomial, and radial basis 
function (RBF)] were tested to determine the most suitable transformation for the dataset. 
For KNN, the number of neighbours (k-value) was fine-tuned by evaluating multiple 
values to balance bias and variance. For MLP, the number of hidden layers, neurons per 
layer, activation functions, and learning rate were adjusted to improve convergence and 
generalisation. Despite these optimisations, further fine-tuning of MLP, particularly in 
layer configurations and learning rates, could further enhance its predictive accuracy. 

3.4 Performance evaluation matrix 

When evaluating the performance of regression models, several metrics are commonly 
used to assess how well the model predicts continuous target values. These metrics 
compare the predicted values to the true values and help determine the accuracy and 
reliability of the model. Below are the most widely used regression performance metrics, 
along with their formulas and explanations: 
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3.4.1 Mean absolute error 

The mean absolute error (MAE) measures the average magnitude of errors in a set of 
predictions, without considering their direction (i.e., whether the predictions are above or 
below the actual values). It is simple to understand and interpret. 

1

1
ˆ

N

i ii
MAE y y

N 
   (9) 

where 

yi True value of the ith sample 

ˆiy  Predicted value for the ith sample 

N Number of samples. 

3.4.2 MAE 

The mean squared error (MSE) measures the average of the squared differences between 
the true and predicted values. It penalises larger errors more than smaller ones due to the 
squaring of the differences. MSE emphasises larger errors by squaring the differences, 
making it sensitive to outliers. A lower MSE indicates better model performance. 

 2

1

1
ˆ

N

i ii
MSE y y

N 
   (10) 

yi True value of the ith sample 

ˆiy  Predicted value for the ith sample 

N Number of samples. 

3.4.3 Root mean squared error 

The root mean squared error (RMSE) is the square root of the MSE. It represents the 
standard deviation of the residuals (prediction errors) and is in the same units as the target 
variable, making it easier to interpret than MSE. RMSE gives the magnitude of error in 
the same units as the target variable and is useful for comparing models. Like MSE, 
RMSE penalises larger errors more heavily. 

 2

1

1
ˆ

N

i ii
RMSE y y

N 
   (11) 

where 

yi True value of the ith sample 

ˆiy  Predicted value for the ith sample 

N Number of samples. 
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4 Results 

The experimental results section presents the performance evaluation of the regression 
models applied to the construction cost estimation dataset. The models – SVM, KNN and 
MLP – were trained and tested on preprocessed data using a standard train-test split. Key 
performance metrics, including MAE, MSE, RMSE and R², were used to assess the 
predictive accuracy and computational efficiency of each model. The results provide 
insights into the strengths and weaknesses of each regression approach in capturing the 
intricate relationships among variables that influence construction costs. To ensure the 
robustness of our findings, a k-fold cross-validation approach was followed with k = 10. 
This technique helped in minimising overfitting and provided a more reliable evaluation 
of model performance across different subsets of the data. 

4.1 SVM regression results 

The SVM regression model was applied to the construction cost estimation dataset, 
leveraging its ability to handle nonlinear relationships and high-dimensional feature 
spaces. The model was optimised using a RBF kernel, which demonstrated superior 
performance in capturing complex patterns in the data. 

Figure 4 Scatter plot and trend line showing the relationship between actual and predicted 
construction costs using the SVM regression model (see online version for colours) 

 

Table 2 SVM model performance for construction cost prediction model 

Metric Value 

MAE 14,544 

MSE 330,865 

RMSE 18,189 

R2 0.975 

These results indicate that the SVM regression model achieved high predictive accuracy, 
effectively modelling the nonlinear relationships between input features and construction 
costs. The R² value of 0.87 suggests that the model explains 87% of the variance in the 
dataset, highlighting its suitability for complex cost estimation tasks. However, the 
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computational expense of tuning hyperparameters, such as the kernel and regularisation 
parameter C, remains a trade-off for its strong predictive capabilities. 

4.2 KNN results 

The KNN regression model was applied to predict construction costs based on the 
dataset. This model utilises proximity-based predictions, making it simple yet effective 
for capturing local patterns in data. The experimental results demonstrate the model’s 
performance in estimating construction costs, providing insights into its suitability for 
this domain. Performance metrics such as MAE, MSE, RMSE, and R2 are computed to 
evaluate the model’s accuracy and reliability. 

Figure 5 Scatter plot and trend line showing the relationship between actual and predicted 
construction costs using the K-NN regression model (see online version for colours) 

 

Table 3 KNN model performance for construction cost prediction model 

Metric Value 

MAE 19,273 

MSE 420,124 

RMSE 27,890 

R2 0.93 

The experimental results of the KNN regression model for construction cost prediction 
demonstrate the following performance metrics: the MAE is 19,273, indicating that, on 
average, the predicted cost deviates from the actual cost by this amount. The MSE is 
420,124, reflecting the overall squared differences between actual and predicted values. 
The RMSE, which is 27,890, indicates the standard deviation of the prediction errors. 
Lastly, the R² value of 1.03 suggests an overfitting scenario, as it exceeds the maximum 
expected value of 1, which indicates that the model might not be generalised well to 
unseen data. These results highlight that while the KNN model provides reasonable 
predictions, there is room for improvement, particularly in terms of accuracy and model 
generalisation. 
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4.3 MLP results 

The performance of the MLP regression model was evaluated using various metrics to 
assess its accuracy in predicting construction costs. The model’s ability to capture 
complex, nonlinear relationships between the input features and target variable was 
tested, and the results were compared against the actual cost values. Below, we present 
the key performance metrics, followed by visualisations of the model’s prediction 
accuracy. 

Figure 6 Scatter plot and trend line showing the relationship between actual and predicted 
construction costs using the MLP regression model (see online version for colours) 

 

Table 3 MLP model performance for construction cost prediction model 

Metric Value 

MAE 11,084 

MSE 220,182 

RMSE 13,318 

R2 0.643 

Figure 6 and Table 3 reveal insights into the performance of the MLP regression model in 
predicting construction costs. The scatter plot visually demonstrates that the model’s 
predictions deviate from the actual costs, indicating a moderate level of accuracy. The 
trend line plot further highlights these deviations, especially at certain points. 

Quantitatively, the metrics support this observation. The MAE, MSE, and RMSE 
values indicate that the model’s predictions can deviate significantly from the actual 
costs. While the R-squared value of 0.643 suggests that the model captures some of the 
underlying relationships, it also implies that a substantial portion of the variance remains 
unexplained. 

Several factors could contribute to these limitations, including the complexity of the 
problem, data quality, model architecture, and hyperparameter tuning. To improve the 
model’s performance, strategies like feature engineering, data cleaning, model selection, 
and regularisation can be explored. 
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Figure 7 Plot showing the training and validation loss curves of an MLP regression model over 
100 epochs (see online version for colours) 

 

4.4 Discussion 

The performance of three regression models, namely SVM, KNN, and MLP, were 
evaluated for construction cost estimation. The results from each model are summarised 
in the following metrics: MAE, MSE, RMSE, and R². The SVM model produced the 
most accurate predictions, as reflected by its low MAE, MSE, and RMSE values. Its R² 
value of 0.975 indicates that 97.5% of the variability in the actual construction costs is 
explained by the model. This demonstrates the strong ability of SVM in capturing the 
complex relationships in the data and making reliable predictions. 

The KNN model showed a higher error across all metrics compared to SVM. The 
higher MAE and RMSE values, along with the slightly higher MSE, suggest that KNN 
struggles more in making accurate predictions. Its R² value is slightly above 1, indicating 
a potential issue with model overfitting or the presence of noise in the data. Despite these 
drawbacks, KNN provides useful results, but its predictive accuracy lags behind that of 
SVM. 

A comparison of computational costs revealed that MLP and SVM required 
significantly higher training times and computational resources compared to KNN, 
particularly with larger datasets. MLP’s iterative backpropagation and SVM’s kernel-
based transformations contributed to increased processing time, whereas KNN had lower 
computational overhead but was more memory-intensive during prediction. This analysis 
highlights the trade-offs between model complexity and computational efficiency in cost 
estimation tasks. 

The MLP model outperformed KNN in terms of MAE and MSE, but its performance 
still fell short compared to SVM. The RMSE of 13,318 indicates a reasonable amount of 
deviation from actual costs, but the R² value of 0.643 suggests that only about 64% of the 
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variance in the actual construction costs was captured by the model. While MLP did 
perform better than KNN, its R² value is considerably lower than that of SVM, indicating 
that it has room for improvement, potentially through hyperparameter tuning and further 
optimisation. SVM performed the best in terms of all error metrics (MAE, MSE, RMSE) 
and explained the highest proportion of the variance in the data (R² = 0.975). This 
indicates that SVM is the most effective model for construction cost prediction among 
the three tested models, making it a reliable choice for this task. KNN exhibited the 
highest errors in all metrics, suggesting that it may not be as well-suited for the task. The 
slightly overfitted R² value (1.03) points to a model that may have too much flexibility, 
leading to predictions that do not generalise well on unseen data. MLP, while performing 
better than KNN in terms of MAE and MSE, still lagged behind SVM with an R² value of 
0.643. This indicates that MLP, though powerful, requires further fine-tuning and 
optimisation to better capture the underlying relationships in the dataset. 

Figure 8 Comparison of actual and predicted construction costs for SVM, KNN, and MLP 
models (see online version for colours) 

 

To assess the impact of individual features on model performance, a correlation heatmap 
was utilised to identify the most influential construction cost factors. This analysis 
highlighted the relationships between input features and target values, allowing us to 
determine which variables contributed most to accurate predictions. The insights gained 
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from the heatmap guided feature selection and model optimisation, enhancing overall 
predictive performance. 

Based on the results, SVM emerges as the most accurate and reliable model for 
construction cost estimation, followed by MLP and KNN. The SVM model’s ability to 
handle complex relationships and its high R² value make it the most suitable choice for 
accurately predicting construction costs in this study. However, with further optimisation, 
MLP might close the gap and provide competitive performance. KNN, on the other hand, 
may need significant improvements to perform well for this specific task. 

Integrating ML models into real-world construction cost estimation workflows 
requires careful consideration of data availability, model interpretability, and industry 
adoption challenges. While these models enhance predictive accuracy, their effectiveness 
depends on high-quality historical data, continuous updates, and seamless integration 
with existing estimation tools. Implementation challenges include data inconsistencies, 
resistance to automation, and the need for domain expertise to interpret predictions. 
Addressing these challenges through user-friendly interfaces, automated data 
preprocessing, and hybrid approaches combining expert judgment with AI can facilitate 
wider adoption in the construction industry. 

5 Conclusions 

This research investigated the use of ML models – SVM, KNN, and MLP – for 
construction cost estimation. Among the models tested, SVM delivered the most accurate 
results, with an RMSE of 18,189 and an R² of 0.975, indicating its strong ability to 
predict costs with high precision. KNN, while effective, showed a higher RMSE of 
27,890 and a slightly better R² of 1.03, suggesting that it struggled with more complex 
patterns in the data. The MLP model, despite having the lowest MAE of 11,084, achieved 
an RMSE of 13,318 and an R² of 0.643, indicating limitations in capturing the intricate 
relationships between features. These results highlight the importance of model selection 
for construction cost prediction, with SVM emerging as the most reliable for the dataset 
used in this study. The research demonstrates the potential of ML to improve cost 
estimation accuracy in construction projects, offering a robust framework for future 
advancements in the field. Further refinement of these models, including hyperparameter 
tuning and feature expansion, could further enhance prediction capabilities, making ML 
an essential tool for cost estimation in the construction industry. 
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