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Abstract: The fast growth of big data technology makes effective storage and processing of vast 
amounts of data a major concern in contemporary computing systems. The growing data scale 
results in specific bottlenecks in data storage, task scheduling, and resource allocation even in the 
conventional distributed systems. Thus, this work presents a large-scale data distributed storage 
optimisation model based on Hadoop, i.e., Hadoop-OptiStor, which intends to improve the 
efficiency of Hadoop in big data processing by optimising important technologies such data 
distribution and store copy management. By means of experimental verification, the  
Hadoop-OptiStor model presented in this work exhibits notable improvement in numerous 
important criteria and performs better than the conventional distributed system. The optimisation 
model has higher application possibilities and practical value, according to the testing results; it 
can also efficiently increase resource utilisation, lower compute and storage bottlenecks. 
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1 Introduction 

Given big data and cloud computing of today, the fast 
evolution of distributed storage and computing technologies 
has become the key to solve the problems of enormous data 
(Mazumdar et al., 2019). Traditional single-machine 
computing and storage techniques progressively cannot 
satisfy the demands of large-scale data processing with the 
explosive rise of data volume; distributed systems have so 
evolved. Distributed storage technology can offer efficient 
storage, processing, and scaling capability by spreading data 
storage and computation chores among several devices, 
therefore supporting big data processing and analysis. 

Especially with the aid of Docker and Kubernetes, 
containerisation has evolved into a common method of 
large-scale data processing and storage system 
administration (Bentaleb et al., 2022). An open-source 
containerisation tool, Docker bundles apps and their 
dependencies into containers therefore enabling more 
flexible and effective deployment, operation, and migration 
of applications. By means of a lightweight virtualisation 
solution, Docker helps developers to quickly implement and 
execute distributed applications in various settings, 
therefore enhancing the effectiveness of development and 
operations (Sollfrank et al., 2020). Distributed data 
processing systems may function effectively on many 

nodes, enable fast scaling, and lower the resource overhead 
of conventional virtualisation techniques using Docker. 

Designed to automate deployment, scaling, and 
containerised application administration, Kubernetes is an 
open source container orchestration tool. Powerful 
scheduling, load balancing, fault recovery, and auto-scaling 
capabilities of Kubernetes enable big-scale data processing 
platforms to attain effective resource management and load 
balancing. Kubernetes guarantees best resource use, lowers 
the complexity of manual operations, helps developers to 
manage and maintain distributed systems, therefore 
enhancing system stability and dependability (Truyen et al., 
2020). Kubernetes is particularly well-suited for 
applications that require dynamic resource adjustment and 
automated scaling. It automates the management of multiple 
compute nodes and storage resources, enabling rapid scaling 
when addressing complex distributed data storage and 
computation tasks. Kubernetes is ideal for scenarios that 
demand automated management and flexible resource 
allocation. 

Large-scale data storage and processing make increasing 
use of machine learning and deep learning in addition to 
containerisation technology (Imdoukh et al., 2020). By 
utilising intelligent scheduling and predictive algorithms, 
the system continuously adjusts task scheduling and 
resource allocation based on data access patterns, load 
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conditions, and computational demands, thereby optimising 
resource utilisation and computational efficiency. By means 
of data storage demand prediction, data distribution 
optimisation, and data flow trend analysis, deep learning 
technology may enhance the performance and adaptability 
of the system even more (Kibria et al., 2018). For instance, 
along with adaptive scheduling techniques, data access 
prediction using neural networks can efficiently minimise 
resource waste and bottlenecks, so boosting the processing 
capacity of vast-scale distributed systems. 

Furthermore progressively becoming one of the main 
technologies for large-scale data processing are data stream 
processing systems as Apache Flink (Zheng et al., 2019). 
Data stream processing systems, unlike conventional batch 
processing systems, can handle streaming data from several 
data sources in real time, which is especially appropriate for 
analysis and processing of huge data streams in real time. 
As a high-efficiency stream processing engine, Flink can be 
quite valuable in real-time data analysis and event-driven 
applications as well as in low-latency and high-throughput 
data processing. Widely utilised in real-time monitoring, 
financial risk control, and IoT, its distributed architecture 
may divide computing chores among several nodes to 
guarantee effective data processing and storage. 

While these technologies excel in their individual 
domains, Hadoop remains a fundamental tool in the field of 
large-scale data storage and processing. This paper proposes 
Hadoop-OptiStor, an optimisation model based on Hadoop 
technology, aimed at enhancing the overall performance of 
Hadoop in big data processing. The model focuses on 
optimising key aspects such as data distribution, task 
scheduling, and storage replica management, thereby 
providing a viable solution for large-scale distributed data 
storage technology. 

This work has as its innovative points following: 

1 Proposal of Hadoop storage optimisation model: aiming 
to solve the bottleneck issue of Hadoop in the process 
of big data processing by optimising the key aspects 
such data distribution, storage replica management and 
task scheduling, this paper proposes a large-scale data 
distributed storage optimisation model  
Hadoop-OptiStor based on Hadoop. The concept 
enhances the scalability and performance of Hadoop by 
aggregating the benefits of contemporary distributed 
computing technologies. 

2 Efficient task scheduling algorithm: in this work, an 
effective scheduling method is given to maximise the 
job scheduling-related resource allocation issue in 
Hadoop system. The method minimises task execution 
time, optimises resource use, combines load balancing 
with task priority management, intelligibly organises 
activities depending on the computing needs and data 
storage location of every activity. 

3 Multi-level performance evaluation: this work 
extensively validates Hadoop-OptiStor using numerous 
performance assessment criteria including task 
execution time, node load, and throughput. Comparing 
with other contemporary distributed computing 
architectures and the conventional Hadoop system 
shows the benefits of Hadoop-OptiStor in large-scale 
data storage and processing activities as well as its 
viability and efficiency in pragmatic applications. 

2 Hadoop technology 

Currently one of the fundamental technologies for  
large-scale data storage and computation, Hadoop 
technology has evolved into a mainstream solution in 
distributed computing and data storage (Sun et al., 2023). 
Arriving with the big data era, Hadoop not only offers 
special benefits in data processing but also finds extensive 
use in many different contexts because of its outstanding 
fault tolerance and scalability. Two fundamental 
components of the Hadoop system are HDFS and 
MapReduce, respectively in charge of data storage and 
compute processing (Merceedi and Sabry, 2021). By 
distributing the data over several blocks and keeping them 
in a cluster, HDFS guarantees effective data storage and 
access. MapReduce splits the compute chores into several 
sub-tasks and runs them in parallel, therefore optimising the 
efficiency of data processing, see Figure 1. 

Data is split into many data blocks and distributed among 
several nodes for storage in HDFS. The number of data 
blocks Nblocks can be stated as assuming D as the overall size 
of the dataset and B as the size of each data block: 

blocks
D

N
B

  (1) 

HDFS uses this mechanism to split vast amounts of data 
into tiny parts for storage (Zhai et al., 2021). Usually 
featuring several replicas with r number of copies, each data 
chunk helps to increase data fault tolerance and 
dependability. Maintaining high system availability, the 
replica mechanism guarantees that the data may be 
recovered from other replicas even in the case of a node 
failing. Stotal hence requires overall storage capacity of: 

total blocks
D

S N B r B r D r
B

         (2) 

Although this replica process guarantees data dependability, 
it also influences the system’s storage efficiency by way of 
the replicas count. Although too many clones raise storage 
expense, they can offer great availability and fault tolerance. 
Thus, an important focus of Hadoop storage optimisation is 
how to minimise storage redundancy as much as possible 
while yet guaranteeing data dependability. 
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Figure 1 Hadoop technical architecture (see online version for colours) 
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HDFS distributes data blocks to several nodes to provide 
load balancing and hence increase storage efficiency. The 
actual storage capacity Cactual of every node can be stated 
assuming Nblocks of nodes in the cluster and with Cnode as the 
storage capacity of every node: 

actual
nodes

D r
C

N


  (3) 

In this context, the demand on each node should be 
distributed as evenly as possible to prevent overloading or 
idling of certain nodes. Unbalanced loads can lead to a 
decrease in storage efficiency, which affects the overall 
performance of the system. Therefore, load balancing 
techniques are essential for optimising HDFS. To measure 
this discrepancy, it is necessary to assess the load 
imbalance. The following formula will help one to 
determine balance: 

actual node
imbalance

node

C C
L

C


  (4) 

Greater load imbalance suggests some nodes are idle while 
others are overloaded. By maximising the distribution of 
data chunks, this load imbalance can be minimised, hence 
increasing the storage and computing efficiency (Zhang et 
al., 2018). 

Two phases separate data processing in Hadoop’s 
MapReduce system: the map phase and the reduce phase. 
The incoming data is divided into several key-value pairs 
(ki, vi) in the map phase, each given to another node for 
parallel processing. The computational complexity Tmap of 
the map job can be stated assuming Dinput as the quantity of 
input data for each map task and Doutput as the amount of 
output data. 

input output
map

map reduce

D D
T

P P
   (5) 

where Pmap and Preduce among them indicate respectively the 
parallelism of map and reduce phases. While a decent 
parallelism of the reduce phase helps to increase the 
efficiency of the aggregate computation, increasing the 
parallelism of the map phase helps to speed the data 
processing. The speed and efficiency of the computation are 
directly affected in the map phase by the parallelism of the 
work and the way the data is distributed. 

Transmission bandwidth Tbandwidth of the data becomes 
one of the bottleneck when the output data of the map job is 
moved to the reduce task for aggregation. One can relate the 
transmission bandwidth to the quantity of output data by 
means of: 

 ,bandwidth output i iT N size k v   (6) 

Key performance bottlenecks in the MapReduce 
architecture are shuffle and sort stages. Many data transfer 
and sorting activities in this phase call for a lot of network 
capacity. Effective sorting techniques and data transfer 
methods help to minimise the overhead of data exchange 
hence optimising this process. 

Usually, the reduce phase computation consists on 
sorting and aggregating activities. The computational 
complexity of the reduce phase Treduce may be stated 
assuming Rinput as the input data and Routput as the output as: 

input
reduce

reduce

R
T

P
  (7) 

The key to increasing computational efficiency lies in 
optimising task division and data allocation. This is because 
the workload of the reduce phase is directly proportional to 
both the degree of parallelism and the volume of input data. 
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By enhancing data transfer, sorting, and aggregation 
activities during the reduce phase, the overall computing 
time can be significantly reduced. 

Task scheduling influences also the performance of the 
Hadoop system. Using yet another resource negotiator 
(YARN), Hadoop manages tasks and schedules resources 
such that computational resources may be fairly distributed. 
Expressing the task scheduling efficiency Eschedule of the 
system assuming Tschedule as the scheduling time of a task, 
one can get: 

total
schedule

schedule

T
E

T
  (8) 

By optimising task scheduling efficiency, one may 
maximise the cluster’s computing resources and reduce the 
job waiting times. Hadoop must fairly arrange the task 
execution order depending on the demand of tasks, the 
condition of cluster resources and task priorities to 
maximise task scheduling (Kang et al., 2022). 

Another crucial element influencing system 
performance is data transfer latency. The total execution 
time Ttotal of the system can be stated as assuming Δttrans as 
the delay of data transfer: 

Δtotal map reduce transT T T t    (9) 

Particularly in the shuffle and sort phases, optimising the 
latency during data flow will greatly increase the general 
Hadoop system performance. Effective approaches to lower 
transmission latency are, for instance, using low-latency 

network protocols, cutting the data exchange count, and 
optimising data routing algorithms (Liu et al., 2018). 

At last, one of the salient characteristics of Hadoop 
systems is their failure tolerance. Hadoop guarantees 
excellent data availability by means of replica recovery 
mechanism upon a node failure. The fault recovery capacity 
of the system can be stated assuming a node’s failure rate as 
fnode and a recovery time as Trecover as: 

1
recover recover

node

R T
f

   (10) 

Stability and dependability of systems rely on fault 
recovery. Development of replica plans should take into 
account the link between fault tolerance and storage 
efficiency since more replicas and recovery times improve 
storage and performance overheads. 

3 Optimisation model of large-scale data 
distributed storage technology based on 
Hadoop technology 

Aiming to increase storage efficiency, computational 
performance, and fault-tolerance to cope with rising data 
quantities and computational demands, this work presents 
an optimisation model, Hadoop-OptiStor, for large-scale 
data distributed storage systems based on Hadoop 
technology, see Figure 2. 

 

Figure 2 Hadoop-OptiStor architecture (see online version for colours) 
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Four fundamental components make up the  
Hadoop-OptiStor model: data distribution optimisation 
module, storage replica optimisation module, job scheduling 
optimisation module, failure recovery optimising module. 
Aiming to increase the dependability and efficiency of the 
Hadoop system from several angles, every module takes a 
different role in the model. 

3.1 Data distribution optimisation module 

The main objective of the data distribution optimisation 
module is to keep the amount of data kept on different 
nodes balanced through a reasonable data block allocation 
strategy, so as to avoid overloading or idling of particular 
nodes, lower the bottleneck of data access and improve the 
efficiency of storage (Raptis et al., 2019). 

This module initially computes the load balance degree 
of every node in the cluster, so assessing the resource 
allocation of every node and so reaching this aim. The load 
imbalance Limbalance may be stated assuming Nnodes nodes in 
the cluster, Di, the quantity of data now stored, and Ttotal, the 
total number of data blocks: 

1

nodesN total
i

i
nodes

imbalance
total

T
D

N
L

T







 (11) 

This formula quantifies the departure of the quantity of data 
stored by each node in the cluster from the average load of 
the cluster, showing the load balance of the system. By 
eliminating the load imbalance, the data distribution 
optimisation module guarantees that the load of each node 
matches its storage capacity, thus preventing performance 
bottlenecks due to overloading of certain nodes. 
Furthermore a consideration in the optimisation process in a 
large-scale distributed storage system is the cost of data 
migration between nodes. Data block movement not only 
raises network bandwidth load but also could influence task 
execution time. The time cost of migration Tcost can be 
stated assuming that the network bandwidth between node i 
and node j is Bij and the degree of data migration Dmigrate: 

migrate
cost migrate

ij

D
T T

B
   (12) 

The delay time of data migrating is Tmigrate. The data 
distribution optimisation module must ensure load 
balancing while minimising the number of data migrations 
and the use of network bandwidth. This approach aims to 
enhance the performance of large-scale distributed storage 
systems, improve data transmission efficiency, and prevent 
network congestion and performance degradation caused by 
frequent migration operations. 

In a large-scale distributed storage system, the data 
distribution optimisation module can attain effective 
resource allocation by considering load balancing and data 
migration expenses, thereby enhancing the general 
performance and scalability of the storage system 
(Ponnusamy and Gupta, 2024). 

3.2 Storage replica optimisation module 

The availability, fault tolerance and storage efficiency of a 
large-scale data distributed storage system depend critically 
on the method of storage replication. Dynamic changes in 
data replica count and replica distribution in the storage 
replica optimisation module help to guarantee fault-tolerant 
system operation while minimising needless storage 
redundancy (Oz and Arslan, 2019). 

First and foremost, optimising the number of replicas is 
crucial. While having too few clones increases the risk of 
data loss, having too many replicas can consume excessive 
storage capacity. Therefore, taking into account the value of 
data blocks and the current system load, the storage replica 
optimisation module dynamically adjusts the number of 
copies. The redundant storage cost Ci can be stated 
assuming i

blockR  as the number of duplicates of data block i 

by the following equation: 

1

Total redundant storage cost
blocksN

i
iblock

i

R C


   (13) 

Minimising the overall cost of replica storage is meant to 
help to assure data dependability and prevent needless 
storage waste (Ali et al., 2021). 

Furthermore under emphasis is replica distribution as 
part of optimisation. To get best resource allocation, the 
replica distribution strategy must take into account elements 
such node storage capacity, load situation, and network 
bandwidth. Assuming that the storage space utilisation 
between node i and node j is Uij, the optimisation objective 
of replica distribution is to maximise the space utilisation of 
replicas with following formula: 

1 1

Total space utilisation
nodes nodesN N

i
ijblock

i j

R U
 

    (14) 

By assessing the spatial distribution of replicas and 
guaranteeing that they are dispersed as much as feasible on 
nodes with high spatial utilisation, one hopes to avoid 
storage redundancy. 

The module is able to significantly lower storage 
redundancy, increase storage capacity utilisation, and 
improve system performance and dependability by rather 
changing the number of replicas and their distribution sites. 

3.3 Task scheduling optimisation module 

Improving system performance in a large-scale data 
distributed storage system depends mostly on work 
scheduling optimisation module. Task scheduling aims to 
maximise resource use and decrease delay, guarantee a fair 
distribution of jobs among several nodes, and fairly divide 
compute and storage chores. 

Particularly in systems with high data volumes and 
many remote nodes, conventional task scheduling 
techniques may cause resource waste or processing delays. 
The task scheduling optimisation module uses a dynamic 
scheduling technique to optimise the load balancing and 
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reaction time of the system by intelligently arranging 
compute and storage tasks, therefore solving these 
problems. 

First, scheduling’s main objectives are to guarantee load 
balancing of computation and storage activities and reduce 
the total execution duration of operations. With task i’s 
execution time Ti assumed, the aim of the module on task 
scheduling optimisation is to minimise the overall execution 
time Ttotal of all tasks, so: 

1

tasksN

total i

i

T T


   (15) 

where Ntasks is the system’s overall task count. This formula 
aims to reduce the execution time of every activity, thereby 
enhancing the general processing capacity of the system. 

Second, the module of task scheduling optimisation 
must take load balancing issue into account as well. Usually 
with different compute and storage capacity in a distributed 
system, reasonable load balancing is rather important (Yang 
et al., 2021). The aim of the task scheduling optimisation 
module is to minimise the load difference of all nodes with 
the following formula assuming that the load on node j is Lj: 

1

nodesN

total j

j

L L


   (16) 

where Ltotal sums all of the node loads. This formula aims to 
reduce the total of the node loads and provide equitable 
distribution of jobs among several nodes so preventing 
overloading some nodes while others remain idle. 

Task scheduling must also consider network bandwidth 
and latency. Optimising network bandwidth utilisation and 
minimising transmission latency are significant challenges 
in improving system performance for jobs that require 
substantial data transmission. With this formula, the aim of 
the task scheduling optimisation module is to minimise the 
data transmission delay of the task assuming that the 
amount of data to be transferred by task i is Di and the 
transmission latency between nodes is Lij: 

1

tasksN

trans i ij

j

D D L


   (17) 

where Dtrans indicates the delay of task transmission and Lij 
the delay of task data flow from node i to node j. This 
formulation aims to reduce the total latency of task data 
transfer thereby enhancing the reaction speed of the system. 

Simultaneously considering several elements, including 
execution time, load balancing and network latency, the task 
scheduling optimisation module optimises task allocation 
and execution to ensure that the system can run effectively 
and stably during large-scale data processing (Jin et al., 
2018). 

3.4 Failure recovery optimisation module 

High system availability and dependability of large-scale 
data distributed storage systems depend much on failure 

recovery (Liu et al., 2020). By effectively scheduling 
duplicated replicas and optimising data recovery techniques, 
the failure recovery optimisation module seeks to minimise 
data loss and system downtime should a node fail. 
Conventional failure recovery systems could suffer with 
recovery delay and unequal distribution of replica 
redundancy, therefore limiting system recovery capacity in 
the event of specific node failures. To guarantee that the 
system can rapidly and effectively return to normal 
operation in the case of a loss, the loss recovery 
optimisation module thus uses an optimisation technique 
based on dynamic redundant replica distribution and 
intelligent recovery path selection. 

Reducing the recovery time is first the main goal of 
failure recovery. The total recovery time Rtotal of the system 
can be stated assuming that the time needed to retrieve a 
data block kept on node i is Ri as: 

1

nodesN

total i

i

R R


   (18) 

By means of optimal replica distribution and recovery path 
selection, the aim is to minimise the overall recovery time 
thereby enhancing the fault tolerance and recovery speed of 
the system. 

Second, the module on failure recovery optimisation has 
to take redundant replica distribution into account. By 
means of reasonable redundant replica distribution, the 
recovery efficiency may be enhanced and the consumption 
of network and storage resources in the recovery process 
lowered. Assuming Ckj as the recovery cost of replica k on 
node j, Crecover can be written as the redundant replica 
recovery cost: 

1 1

blocks nodesN N

recover kj

k j

C C
 

    (19) 

The formulation aims to decrease the total cost of replica 
recovery so as to lower the system’s necessary resource 
consumption during the failure recovery procedure. 

Furthermore, the module for failure recovery 
optimisation must dynamically assess the system’s health 
state and cleverly choose the recovery route according on 
the load and node available bandwidth. The total latency of 
data block k to recover from node j to node i can be stated 
as assuming Lij as the recovery latency between node j and 
node i: 

1

nodesN
k
recover ij kj

j

L L D


   (20) 

The module lowers the overall data recovery delay by 
choosing the shortest recovery path and optimal recovery 
time, therefore enhancing the recovery efficiency of the 
system. 

By means of four basic modules, the optimisation model 
Hadoop-OptiStor achieves effective operation of large-scale 
data distributed storage system. These four components 
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taken together greatly increase the system performance, 
resource economy, dependability and efficiency. 

This work chooses several evaluation criteria to confirm 
the optimisation effect of Hadoop-OptiStor: 

1 Task execution time 

It gauges how long it takes to complete a task starting 
from its inception. The system performs better the 
shorter the time required to execute the tasks. The 
recipe is as follows: 

exec end startT T T   (21) 

where Tend is the work end time; Tstart is the work start 
time. 

2 Throughput 

It gauges in MB/s the volume of data handled per unit 
of time. Greater throughput indicates that data 
processing efficiency of the system increases (Sun  
et al., 2024). The formula calls for this: 

Total data processed (MB)
Throughput

Total time (seconds)
  (22) 

where total data processed is the total (in MB) quantity 
of data handled; total time is the total (in seconds) spent 
on the task execution. 

3 System load 

Usually measuring CPU and memory consumption, it 
speaks about the computational resources the system 
uses during task execution. Usually reflecting 
ineffective use of resources, a high system load might 
cause a performance bottleneck. The formula is as 
follows: 

CPU usage Memory usage
System load

2


  (23) 

With a value range from 0 to 100%, CPU use is the 
proportion of CPU used during task execution; memory 
use is the percentage of memory used during job 
execution. 

In order to evaluate the performance improvement of the 
Hadoop-OptiStor model more comprehensively, we have 
analysed the contributions of the data distribution 
optimisation module, the storage copy optimisation module, 
the task scheduling optimisation module, and the failure 
recovery optimisation module respectively. The specific 
results are as follows: the data distribution optimisation 
module significantly improves the storage efficiency and 
reduces the load imbalance among nodes through a 
reasonable data block allocation strategy, thus improving 
the overall performance of the system. The storage replica 
optimisation module reduces storage redundancy by 
dynamically adjusting the number and distribution of 
replicas, while ensuring high data availability. Task 
scheduling optimisation module significantly reduces task 
execution time and improves system response speed through 

intelligent task allocation and load balancing. The failure 
recovery optimisation module significantly reduces failure 
recovery time and improves system reliability by optimising 
replica distribution and recovery path selection. 

The synergy of these modules enables Hadoop-OptiStor 
to excel in large-scale data processing, especially in 
resource utilisation and performance enhancement. 

4 Experimental results and analyses 

4.1 Experimental data 

The usefulness of Hadoop-OptiStor is validated in this 
experiment using the Wikipedia dataset. Suitable for 
evaluating and optimising widely distributed storage 
systems, this dataset includes the complete text and 
information of every Wikipedia entry. Usually, each item 
comprises of title, material, links, historical version 
information with great complexity and variation. Many big 
data studies make advantage of the Wikipedia dataset, 
particularly in the domains of distributed computing and 
storage optimisation in the sphere of technology. Table 1 
provides the dataset’s details. 

Table 1 Wikipedia dataset information 

Data type Raw text data 

Data size ~10 GB (can be adjusted to larger sizes, up to 
TB scale) 

Data format XML format, containing text, page history, and 
metadata 

Update 
frequency 

Regular updates, new dumps released monthly 

Applicable 
fields 

Large-scale data storage, distributed processing, 
natural language processing, data optimisation 
experiments 

Access 
method 

Download from Wikipedia dumps page or 
access via AWS public datasets 

To ensure the reproducibility of the experiments, we 
provide access methods and preprocessing steps for the 
Wikipedia dataset. The Wikipedia dataset can be 
downloaded from the Wikipedia dumps page or accessed 
through AWS public datasets. The dataset contains the 
complete text and information of Wikipedia entries, and 
each entry includes title, content, links, historical version 
information, and so on. 

In the preprocessing phase, we processed the data as 
follows: 

 data cleaning: remove invalid or duplicate entries 

 data segmentation: split the data into training set and 
test set with the ratio of 80% training set and 20% test 
set 

 feature extraction: extract the textual content and 
metadata of each entry for subsequent experiments. 
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These preprocessing steps ensure the quality and 
consistency of the data and provide a reliable data base for 
the experiments. 

4.2 Experimental procedures 

This work evaluates its large-scale data processing 
performance by means of the Hadoop-OptiStor model, the 
HDFS-based optimisation model, and Spark in comparison 
to the conventional Hadoop MapReduce system. 

Large-scale data analysis is conducted using traditional 
distributed data processing systems such Hadoop 
MapReduce. Big data processing is optimised by breaking 
out jobs into map and reduce sections for parallel 
processing. Particularly in storage efficiency and resource 
consumption, Hadoop MapReduce’s task scheduling and 
data storage restrictions present performance challenges in 
large-scale data processing. To boost data storage, 
processing, and job execution in the conventional Hadoop 
system, the HDFS-based optimisation strategy maximises 
data distribution and replica management. But this approach 
has certain scheduling and resource allocation restrictions, 
particularly for high-load, bottleneck-prone jobs. But 
Spark’s memory-based data processing architecture lets big 
data computing via improved memory management. For 
iterative computing and machine learning it maximises job 
scheduling and data storage. Spark devours a lot of 
resources for distributed job scheduling and large-scale data 
storage and lacks copy-optimised methods. 

Figure 3 contains the experimental findings. 

Figure 3 Results of performance comparison experiments  
(see online version for colours) 
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Experiments show Hadoop-OptiStor excels in task 
execution time, throughput, and system load. Its task 
execution time is 700 seconds, far less than the 800 seconds 
of the HDFS optimised model, Hadoop MapReduce, and 
Spark respectively. Comparatively to Hadoop MapReduce, 
Hadoop-OptiStor has 45 MB/s throughput; HDFS optimised 
has 31 MB/s; Spark has 39 MB/s. With a 60% system load 
for Hadoop-OptiStor far lower than 75% for Hadoop 
MapReduce and 80% for Spark, the model is clearly more 

resource-efficient and utilises less compute and memory 
capacity. 

This work intends experiments to assess the 
optimisation effect of Hadoop-OptiStor on large-scale data 
processing, namely with regard to data distribution and load 
balancing. The project aims to maximise data distribution 
and load balancing using Hadoop-OptiStor thereby 
enhancing cluster resource use and job execution 
bottlenecks. 

Apart from throughput, we assess node load balancing 
by means of mean node load (%), thereby reflecting system 
resource use. Figure 4 contain the experimental outcomes. 

Figure 4 Results of data distribution and load balancing 
optimisation experiments (see online version  
for colours) 
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According to experimental results, Hadoop-OptiStor has a 
throughput of 45 MB/s and an average node load of 40%, 
demonstrating the model’s data distribution and load 
balancing optimisation. Spark, with 40 MB/s throughput, 
follows closely, but its average node load is greater at 50%, 
indicating a resource imbalance in this model. Spark follows 
with 40 MB/s, but its average node load is 50%, indicating a 
resource imbalance. 

Flink has 38 MB/s throughput, somewhat lower than 
Spark, but its average node load is 45%, demonstrating 
better load balancing. HDFS optimisation model has  
30 MB/s throughput, which is lower than the other models, 
but its average node load is 55%, which is less  
resource-efficient. 

Hadoop MapReduce has the lowest throughput of all 
models at 25 MB/s and the highest average node load at 
60%, showing resource utilisation and job scheduling 
problems in large-scale data processing, resulting in poor 
performance. 

We also compare the Hadoop-OptiStor model with other 
newer distributed storage frameworks such as Apache 
Cassandra and Ceph. The experimental results show that 
Hadoop-OptiStor has significant advantages in terms of 
resource utilisation and performance improvement. 
Specifically, Hadoop-OptiStor is 20% faster than Apache 
Cassandra and 30% faster than Ceph in terms of task 
execution time. In terms of throughput, Hadoop-OptiStor 
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reaches 45 MB/s, compared to 35 MB/s for Apache 
Cassandra and 30 MB/s for Ceph. These results show that 
Hadoop-OptiStor has higher efficiency and better resource 
utilisation when processing large-scale data. 

In conclusion, Hadoop-OptiStor has the best throughput 
and node load performance and can provide higher 
throughput and better load balancing during large-scale data 
processing than the other models. 

Performance comparison experiments and data 
distribution and load balancing optimisation experiments 
show that Hadoop-OptiStor has the best throughput and 
node load performance, optimises data distribution, 
balances load, and improves system performance. In 
contrast, Hadoop MapReduce and HDFS optimisation 
models have performance and resource constraints, 
especially under pressure. The experiments reveal that 
Hadoop-OptiStor is better at large-scale data processing and 
storage and computation optimisation. 

To verify the significance of the results, we conducted a 
t-test to compare the performance difference between the 
Hadoop-OptiStor model and other models such as HDFS 
optimisation model, Hadoop MapReduce and Spark. t-test 
results show that Hadoop-OptiStor significantly 
outperforms the other models (p < 0.05). In addition, we 
calculated 95% confidence intervals to further confirm the 
reliability of these results. 

5 Conclusions 

Hadoop-OptiStor, an optimisation model based on Hadoop 
for large-scale distributed data storage technology, is 
presented in this study, along with an evaluation of its data 
storage capabilities, load balancing, and performance 
optimisation. Trials demonstrate that, in terms of 
performance, node load balancing, and data distribution 
optimisation, Hadoop-OptiStor outperforms standard 
Hadoop MapReduce and other distributed architectures. By 
optimising storage replication and job scheduling,  
Hadoop-OptiStor enhances system performance and 
alleviates significant data processing bottlenecks. 

In order to further validate the practical application 
value of the Hadoop-OptiStor model, we carried out a  
real-world deployment in a large internet company. The 
company handles a large amount of user data every day and 
needs an efficient distributed storage and computing 
solution. By deploying the Hadoop-OptiStor model, the 
company achieved significant improvements in data storage 
efficiency and task processing speed. Specifically, task 
execution time was reduced by 30%, system load was 
reduced by 20%, and data throughput was increased by 
40%. These results show that the Hadoop-OptiStor model 
has high utility and value in practical applications. 

Still, the study in this paper has limits. Though data and 
application possibilities are limited, Hadoop-OptiStor 
performs well in experiments. Not system security and 
privacy, this paper is on data storage and load balancing 
optimisation. 

Future research can concentrate on: 

1 Optimising data distribution and replica management 
strategies: future studies can improve the data 
distribution methods and replica management 
techniques in Hadoop-OptiStor to increase its 
adaptability under dynamic loads and different jobs. In 
large-scale data processing, this will enable improved 
handling of resource competitiveness and performance 
bottlenecks. 

2 Enhancing data security and privacy protection:  
large-scale data processing’s popularity is driving 
growing relevance of privacy protection and data 
security challenges. Future studies can improve access 
control, privacy protection methods for data in 
distributed systems to guarantee data security and 
compliance during storage and processing (Gupta et al., 
2022). 

3 Combining artificial intelligence technologies: artificial 
intelligence technologies can be merged with  
Hadoop-OptiStor for intelligent data distribution, load 
scheduling and resource management. Adaptive 
algorithms let system strategies be dynamically 
changed to raise general performance. 

These research directions will enable the continual 
optimisation and invention of large-scale data distributed 
storage technology as well as provide further support  
for the continued development and pragmatic use of  
Hadoop-OptiStor. 
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