

International Journal of Reasoning-based Intelligent
Systems

ISSN online: 1755-0564 - ISSN print: 1755-0556
https://www.inderscience.com/ijris

Optimisation of distributed storage technology for large-scale
data based on Hadoop technology

Yanke Qi

DOI: 10.1504/IJRIS.2025.10071387

Article History:
Received: 30 March 2025
Last revised: 24 April 2025
Accepted: 25 April 2025
Published online: 11 June 2025

Powered by TCPDF (www.tcpdf.org)

Copyright © 2025 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijris
https://dx.doi.org/10.1504/IJRIS.2025.10071387
http://www.tcpdf.org

Int. J. Reasoning-based Intelligent Systems, Vol. 17, No. 7, 2025 11

Copyright © The Author(s) 2025. Published by Inderscience Publishers Ltd. This is an Open Access Article distributed under the
CC BY license. (http://creativecommons.org/licenses/by/4.0/)

Optimisation of distributed storage technology for
large-scale data based on Hadoop technology

Yanke Qi
School of Computer Science,
Zhengzhou University of Aeronautics,
Zhengzhou, 450046, China
Email: tongyue1121@163.com

Abstract: The fast growth of big data technology makes effective storage and processing of vast
amounts of data a major concern in contemporary computing systems. The growing data scale
results in specific bottlenecks in data storage, task scheduling, and resource allocation even in the
conventional distributed systems. Thus, this work presents a large-scale data distributed storage
optimisation model based on Hadoop, i.e., Hadoop-OptiStor, which intends to improve the
efficiency of Hadoop in big data processing by optimising important technologies such data
distribution and store copy management. By means of experimental verification, the
Hadoop-OptiStor model presented in this work exhibits notable improvement in numerous
important criteria and performs better than the conventional distributed system. The optimisation
model has higher application possibilities and practical value, according to the testing results; it
can also efficiently increase resource utilisation, lower compute and storage bottlenecks.

Keywords: Hadoop; large-scale data; distributed storage.

Reference to this paper should be made as follows: Qi, Y. (2025) ‘Optimisation of distributed
storage technology for large-scale data based on Hadoop technology’, Int. J. Reasoning-based
Intelligent Systems, Vol. 17, No. 7, pp.11–20.

Biographical notes: Yanke Qi received her Master’s degree at Southeast University in 2008. She
is currently a Lecturer at Zhengzhou University of Aeronautics. Her research interests include big
data analysis and mining, database and data management and deep learning.

1 Introduction

Given big data and cloud computing of today, the fast
evolution of distributed storage and computing technologies
has become the key to solve the problems of enormous data
(Mazumdar et al., 2019). Traditional single-machine
computing and storage techniques progressively cannot
satisfy the demands of large-scale data processing with the
explosive rise of data volume; distributed systems have so
evolved. Distributed storage technology can offer efficient
storage, processing, and scaling capability by spreading data
storage and computation chores among several devices,
therefore supporting big data processing and analysis.

Especially with the aid of Docker and Kubernetes,
containerisation has evolved into a common method of
large-scale data processing and storage system
administration (Bentaleb et al., 2022). An open-source
containerisation tool, Docker bundles apps and their
dependencies into containers therefore enabling more
flexible and effective deployment, operation, and migration
of applications. By means of a lightweight virtualisation
solution, Docker helps developers to quickly implement and
execute distributed applications in various settings,
therefore enhancing the effectiveness of development and
operations (Sollfrank et al., 2020). Distributed data
processing systems may function effectively on many

nodes, enable fast scaling, and lower the resource overhead
of conventional virtualisation techniques using Docker.

Designed to automate deployment, scaling, and
containerised application administration, Kubernetes is an
open source container orchestration tool. Powerful
scheduling, load balancing, fault recovery, and auto-scaling
capabilities of Kubernetes enable big-scale data processing
platforms to attain effective resource management and load
balancing. Kubernetes guarantees best resource use, lowers
the complexity of manual operations, helps developers to
manage and maintain distributed systems, therefore
enhancing system stability and dependability (Truyen et al.,
2020). Kubernetes is particularly well-suited for
applications that require dynamic resource adjustment and
automated scaling. It automates the management of multiple
compute nodes and storage resources, enabling rapid scaling
when addressing complex distributed data storage and
computation tasks. Kubernetes is ideal for scenarios that
demand automated management and flexible resource
allocation.

Large-scale data storage and processing make increasing
use of machine learning and deep learning in addition to
containerisation technology (Imdoukh et al., 2020). By
utilising intelligent scheduling and predictive algorithms,
the system continuously adjusts task scheduling and
resource allocation based on data access patterns, load

12 Y. Qi

conditions, and computational demands, thereby optimising
resource utilisation and computational efficiency. By means
of data storage demand prediction, data distribution
optimisation, and data flow trend analysis, deep learning
technology may enhance the performance and adaptability
of the system even more (Kibria et al., 2018). For instance,
along with adaptive scheduling techniques, data access
prediction using neural networks can efficiently minimise
resource waste and bottlenecks, so boosting the processing
capacity of vast-scale distributed systems.

Furthermore progressively becoming one of the main
technologies for large-scale data processing are data stream
processing systems as Apache Flink (Zheng et al., 2019).
Data stream processing systems, unlike conventional batch
processing systems, can handle streaming data from several
data sources in real time, which is especially appropriate for
analysis and processing of huge data streams in real time.
As a high-efficiency stream processing engine, Flink can be
quite valuable in real-time data analysis and event-driven
applications as well as in low-latency and high-throughput
data processing. Widely utilised in real-time monitoring,
financial risk control, and IoT, its distributed architecture
may divide computing chores among several nodes to
guarantee effective data processing and storage.

While these technologies excel in their individual
domains, Hadoop remains a fundamental tool in the field of
large-scale data storage and processing. This paper proposes
Hadoop-OptiStor, an optimisation model based on Hadoop
technology, aimed at enhancing the overall performance of
Hadoop in big data processing. The model focuses on
optimising key aspects such as data distribution, task
scheduling, and storage replica management, thereby
providing a viable solution for large-scale distributed data
storage technology.

This work has as its innovative points following:

1 Proposal of Hadoop storage optimisation model: aiming
to solve the bottleneck issue of Hadoop in the process
of big data processing by optimising the key aspects
such data distribution, storage replica management and
task scheduling, this paper proposes a large-scale data
distributed storage optimisation model
Hadoop-OptiStor based on Hadoop. The concept
enhances the scalability and performance of Hadoop by
aggregating the benefits of contemporary distributed
computing technologies.

2 Efficient task scheduling algorithm: in this work, an
effective scheduling method is given to maximise the
job scheduling-related resource allocation issue in
Hadoop system. The method minimises task execution
time, optimises resource use, combines load balancing
with task priority management, intelligibly organises
activities depending on the computing needs and data
storage location of every activity.

3 Multi-level performance evaluation: this work
extensively validates Hadoop-OptiStor using numerous
performance assessment criteria including task
execution time, node load, and throughput. Comparing
with other contemporary distributed computing
architectures and the conventional Hadoop system
shows the benefits of Hadoop-OptiStor in large-scale
data storage and processing activities as well as its
viability and efficiency in pragmatic applications.

2 Hadoop technology

Currently one of the fundamental technologies for
large-scale data storage and computation, Hadoop
technology has evolved into a mainstream solution in
distributed computing and data storage (Sun et al., 2023).
Arriving with the big data era, Hadoop not only offers
special benefits in data processing but also finds extensive
use in many different contexts because of its outstanding
fault tolerance and scalability. Two fundamental
components of the Hadoop system are HDFS and
MapReduce, respectively in charge of data storage and
compute processing (Merceedi and Sabry, 2021). By
distributing the data over several blocks and keeping them
in a cluster, HDFS guarantees effective data storage and
access. MapReduce splits the compute chores into several
sub-tasks and runs them in parallel, therefore optimising the
efficiency of data processing, see Figure 1.

Data is split into many data blocks and distributed among
several nodes for storage in HDFS. The number of data
blocks Nblocks can be stated as assuming D as the overall size
of the dataset and B as the size of each data block:

blocks
D

N
B

 (1)

HDFS uses this mechanism to split vast amounts of data
into tiny parts for storage (Zhai et al., 2021). Usually
featuring several replicas with r number of copies, each data
chunk helps to increase data fault tolerance and
dependability. Maintaining high system availability, the
replica mechanism guarantees that the data may be
recovered from other replicas even in the case of a node
failing. Stotal hence requires overall storage capacity of:

total blocks
D

S N B r B r D r
B

        (2)

Although this replica process guarantees data dependability,
it also influences the system’s storage efficiency by way of
the replicas count. Although too many clones raise storage
expense, they can offer great availability and fault tolerance.
Thus, an important focus of Hadoop storage optimisation is
how to minimise storage redundancy as much as possible
while yet guaranteeing data dependability.

 Optimisation of distributed storage technology for large-scale data based on Hadoop technology 13

Figure 1 Hadoop technical architecture (see online version for colours)

Local Disc
NameNode

Secondary
NameNode

NameSpace
State

Block
Map

NameNode

DataNode DataNode DataNode

Client

Client
Heartbeat &BlockReport

HDFS distributes data blocks to several nodes to provide
load balancing and hence increase storage efficiency. The
actual storage capacity Cactual of every node can be stated
assuming Nblocks of nodes in the cluster and with Cnode as the
storage capacity of every node:

actual
nodes

D r
C

N


 (3)

In this context, the demand on each node should be
distributed as evenly as possible to prevent overloading or
idling of certain nodes. Unbalanced loads can lead to a
decrease in storage efficiency, which affects the overall
performance of the system. Therefore, load balancing
techniques are essential for optimising HDFS. To measure
this discrepancy, it is necessary to assess the load
imbalance. The following formula will help one to
determine balance:

actual node
imbalance

node

C C
L

C


 (4)

Greater load imbalance suggests some nodes are idle while
others are overloaded. By maximising the distribution of
data chunks, this load imbalance can be minimised, hence
increasing the storage and computing efficiency (Zhang et
al., 2018).

Two phases separate data processing in Hadoop’s
MapReduce system: the map phase and the reduce phase.
The incoming data is divided into several key-value pairs
(ki, vi) in the map phase, each given to another node for
parallel processing. The computational complexity Tmap of
the map job can be stated assuming Dinput as the quantity of
input data for each map task and Doutput as the amount of
output data.

input output
map

map reduce

D D
T

P P
  (5)

where Pmap and Preduce among them indicate respectively the
parallelism of map and reduce phases. While a decent
parallelism of the reduce phase helps to increase the
efficiency of the aggregate computation, increasing the
parallelism of the map phase helps to speed the data
processing. The speed and efficiency of the computation are
directly affected in the map phase by the parallelism of the
work and the way the data is distributed.

Transmission bandwidth Tbandwidth of the data becomes
one of the bottleneck when the output data of the map job is
moved to the reduce task for aggregation. One can relate the
transmission bandwidth to the quantity of output data by
means of:

 ,bandwidth output i iT N size k v  (6)

Key performance bottlenecks in the MapReduce
architecture are shuffle and sort stages. Many data transfer
and sorting activities in this phase call for a lot of network
capacity. Effective sorting techniques and data transfer
methods help to minimise the overhead of data exchange
hence optimising this process.

Usually, the reduce phase computation consists on
sorting and aggregating activities. The computational
complexity of the reduce phase Treduce may be stated
assuming Rinput as the input data and Routput as the output as:

input
reduce

reduce

R
T

P
 (7)

The key to increasing computational efficiency lies in
optimising task division and data allocation. This is because
the workload of the reduce phase is directly proportional to
both the degree of parallelism and the volume of input data.

14 Y. Qi

By enhancing data transfer, sorting, and aggregation
activities during the reduce phase, the overall computing
time can be significantly reduced.

Task scheduling influences also the performance of the
Hadoop system. Using yet another resource negotiator
(YARN), Hadoop manages tasks and schedules resources
such that computational resources may be fairly distributed.
Expressing the task scheduling efficiency Eschedule of the
system assuming Tschedule as the scheduling time of a task,
one can get:

total
schedule

schedule

T
E

T
 (8)

By optimising task scheduling efficiency, one may
maximise the cluster’s computing resources and reduce the
job waiting times. Hadoop must fairly arrange the task
execution order depending on the demand of tasks, the
condition of cluster resources and task priorities to
maximise task scheduling (Kang et al., 2022).

Another crucial element influencing system
performance is data transfer latency. The total execution
time Ttotal of the system can be stated as assuming Δttrans as
the delay of data transfer:

Δtotal map reduce transT T T t   (9)

Particularly in the shuffle and sort phases, optimising the
latency during data flow will greatly increase the general
Hadoop system performance. Effective approaches to lower
transmission latency are, for instance, using low-latency

network protocols, cutting the data exchange count, and
optimising data routing algorithms (Liu et al., 2018).

At last, one of the salient characteristics of Hadoop
systems is their failure tolerance. Hadoop guarantees
excellent data availability by means of replica recovery
mechanism upon a node failure. The fault recovery capacity
of the system can be stated assuming a node’s failure rate as
fnode and a recovery time as Trecover as:

1
recover recover

node

R T
f

  (10)

Stability and dependability of systems rely on fault
recovery. Development of replica plans should take into
account the link between fault tolerance and storage
efficiency since more replicas and recovery times improve
storage and performance overheads.

3 Optimisation model of large-scale data
distributed storage technology based on
Hadoop technology

Aiming to increase storage efficiency, computational
performance, and fault-tolerance to cope with rising data
quantities and computational demands, this work presents
an optimisation model, Hadoop-OptiStor, for large-scale
data distributed storage systems based on Hadoop
technology, see Figure 2.

Figure 2 Hadoop-OptiStor architecture (see online version for colours)

Disc

…

Disc

Disc

Disc

…

Disc

Disc

Disc

…

Disc

Disc

…
Disc

…

Disc

Disc

…

Node 1
(master
node)

Node 2
(spare node)

Node 3 Node i

connector

Object
storage
services

D
evice

m
anager

S
ystem

R

eporter

Storage Systems

Front-end
business
networks

Management
networkData

Domain
Access

 Optimisation of distributed storage technology for large-scale data based on Hadoop technology 15

Four fundamental components make up the
Hadoop-OptiStor model: data distribution optimisation
module, storage replica optimisation module, job scheduling
optimisation module, failure recovery optimising module.
Aiming to increase the dependability and efficiency of the
Hadoop system from several angles, every module takes a
different role in the model.

3.1 Data distribution optimisation module

The main objective of the data distribution optimisation
module is to keep the amount of data kept on different
nodes balanced through a reasonable data block allocation
strategy, so as to avoid overloading or idling of particular
nodes, lower the bottleneck of data access and improve the
efficiency of storage (Raptis et al., 2019).

This module initially computes the load balance degree
of every node in the cluster, so assessing the resource
allocation of every node and so reaching this aim. The load
imbalance Limbalance may be stated assuming Nnodes nodes in
the cluster, Di, the quantity of data now stored, and Ttotal, the
total number of data blocks:

1

nodesN total
i

i
nodes

imbalance
total

T
D

N
L

T







 (11)

This formula quantifies the departure of the quantity of data
stored by each node in the cluster from the average load of
the cluster, showing the load balance of the system. By
eliminating the load imbalance, the data distribution
optimisation module guarantees that the load of each node
matches its storage capacity, thus preventing performance
bottlenecks due to overloading of certain nodes.
Furthermore a consideration in the optimisation process in a
large-scale distributed storage system is the cost of data
migration between nodes. Data block movement not only
raises network bandwidth load but also could influence task
execution time. The time cost of migration Tcost can be
stated assuming that the network bandwidth between node i
and node j is Bij and the degree of data migration Dmigrate:

migrate
cost migrate

ij

D
T T

B
  (12)

The delay time of data migrating is Tmigrate. The data
distribution optimisation module must ensure load
balancing while minimising the number of data migrations
and the use of network bandwidth. This approach aims to
enhance the performance of large-scale distributed storage
systems, improve data transmission efficiency, and prevent
network congestion and performance degradation caused by
frequent migration operations.

In a large-scale distributed storage system, the data
distribution optimisation module can attain effective
resource allocation by considering load balancing and data
migration expenses, thereby enhancing the general
performance and scalability of the storage system
(Ponnusamy and Gupta, 2024).

3.2 Storage replica optimisation module

The availability, fault tolerance and storage efficiency of a
large-scale data distributed storage system depend critically
on the method of storage replication. Dynamic changes in
data replica count and replica distribution in the storage
replica optimisation module help to guarantee fault-tolerant
system operation while minimising needless storage
redundancy (Oz and Arslan, 2019).

First and foremost, optimising the number of replicas is
crucial. While having too few clones increases the risk of
data loss, having too many replicas can consume excessive
storage capacity. Therefore, taking into account the value of
data blocks and the current system load, the storage replica
optimisation module dynamically adjusts the number of
copies. The redundant storage cost Ci can be stated
assuming i

blockR as the number of duplicates of data block i

by the following equation:

1

Total redundant storage cost
blocksN

i
iblock

i

R C


  (13)

Minimising the overall cost of replica storage is meant to
help to assure data dependability and prevent needless
storage waste (Ali et al., 2021).

Furthermore under emphasis is replica distribution as
part of optimisation. To get best resource allocation, the
replica distribution strategy must take into account elements
such node storage capacity, load situation, and network
bandwidth. Assuming that the storage space utilisation
between node i and node j is Uij, the optimisation objective
of replica distribution is to maximise the space utilisation of
replicas with following formula:

1 1

Total space utilisation
nodes nodesN N

i
ijblock

i j

R U
 

   (14)

By assessing the spatial distribution of replicas and
guaranteeing that they are dispersed as much as feasible on
nodes with high spatial utilisation, one hopes to avoid
storage redundancy.

The module is able to significantly lower storage
redundancy, increase storage capacity utilisation, and
improve system performance and dependability by rather
changing the number of replicas and their distribution sites.

3.3 Task scheduling optimisation module

Improving system performance in a large-scale data
distributed storage system depends mostly on work
scheduling optimisation module. Task scheduling aims to
maximise resource use and decrease delay, guarantee a fair
distribution of jobs among several nodes, and fairly divide
compute and storage chores.

Particularly in systems with high data volumes and
many remote nodes, conventional task scheduling
techniques may cause resource waste or processing delays.
The task scheduling optimisation module uses a dynamic
scheduling technique to optimise the load balancing and

16 Y. Qi

reaction time of the system by intelligently arranging
compute and storage tasks, therefore solving these
problems.

First, scheduling’s main objectives are to guarantee load
balancing of computation and storage activities and reduce
the total execution duration of operations. With task i’s
execution time Ti assumed, the aim of the module on task
scheduling optimisation is to minimise the overall execution
time Ttotal of all tasks, so:

1

tasksN

total i

i

T T


  (15)

where Ntasks is the system’s overall task count. This formula
aims to reduce the execution time of every activity, thereby
enhancing the general processing capacity of the system.

Second, the module of task scheduling optimisation
must take load balancing issue into account as well. Usually
with different compute and storage capacity in a distributed
system, reasonable load balancing is rather important (Yang
et al., 2021). The aim of the task scheduling optimisation
module is to minimise the load difference of all nodes with
the following formula assuming that the load on node j is Lj:

1

nodesN

total j

j

L L


  (16)

where Ltotal sums all of the node loads. This formula aims to
reduce the total of the node loads and provide equitable
distribution of jobs among several nodes so preventing
overloading some nodes while others remain idle.

Task scheduling must also consider network bandwidth
and latency. Optimising network bandwidth utilisation and
minimising transmission latency are significant challenges
in improving system performance for jobs that require
substantial data transmission. With this formula, the aim of
the task scheduling optimisation module is to minimise the
data transmission delay of the task assuming that the
amount of data to be transferred by task i is Di and the
transmission latency between nodes is Lij:

1

tasksN

trans i ij

j

D D L


  (17)

where Dtrans indicates the delay of task transmission and Lij
the delay of task data flow from node i to node j. This
formulation aims to reduce the total latency of task data
transfer thereby enhancing the reaction speed of the system.

Simultaneously considering several elements, including
execution time, load balancing and network latency, the task
scheduling optimisation module optimises task allocation
and execution to ensure that the system can run effectively
and stably during large-scale data processing (Jin et al.,
2018).

3.4 Failure recovery optimisation module

High system availability and dependability of large-scale
data distributed storage systems depend much on failure

recovery (Liu et al., 2020). By effectively scheduling
duplicated replicas and optimising data recovery techniques,
the failure recovery optimisation module seeks to minimise
data loss and system downtime should a node fail.
Conventional failure recovery systems could suffer with
recovery delay and unequal distribution of replica
redundancy, therefore limiting system recovery capacity in
the event of specific node failures. To guarantee that the
system can rapidly and effectively return to normal
operation in the case of a loss, the loss recovery
optimisation module thus uses an optimisation technique
based on dynamic redundant replica distribution and
intelligent recovery path selection.

Reducing the recovery time is first the main goal of
failure recovery. The total recovery time Rtotal of the system
can be stated assuming that the time needed to retrieve a
data block kept on node i is Ri as:

1

nodesN

total i

i

R R


  (18)

By means of optimal replica distribution and recovery path
selection, the aim is to minimise the overall recovery time
thereby enhancing the fault tolerance and recovery speed of
the system.

Second, the module on failure recovery optimisation has
to take redundant replica distribution into account. By
means of reasonable redundant replica distribution, the
recovery efficiency may be enhanced and the consumption
of network and storage resources in the recovery process
lowered. Assuming Ckj as the recovery cost of replica k on
node j, Crecover can be written as the redundant replica
recovery cost:

1 1

blocks nodesN N

recover kj

k j

C C
 

   (19)

The formulation aims to decrease the total cost of replica
recovery so as to lower the system’s necessary resource
consumption during the failure recovery procedure.

Furthermore, the module for failure recovery
optimisation must dynamically assess the system’s health
state and cleverly choose the recovery route according on
the load and node available bandwidth. The total latency of
data block k to recover from node j to node i can be stated
as assuming Lij as the recovery latency between node j and
node i:

1

nodesN
k
recover ij kj

j

L L D


  (20)

The module lowers the overall data recovery delay by
choosing the shortest recovery path and optimal recovery
time, therefore enhancing the recovery efficiency of the
system.

By means of four basic modules, the optimisation model
Hadoop-OptiStor achieves effective operation of large-scale
data distributed storage system. These four components

 Optimisation of distributed storage technology for large-scale data based on Hadoop technology 17

taken together greatly increase the system performance,
resource economy, dependability and efficiency.

This work chooses several evaluation criteria to confirm
the optimisation effect of Hadoop-OptiStor:

1 Task execution time

It gauges how long it takes to complete a task starting
from its inception. The system performs better the
shorter the time required to execute the tasks. The
recipe is as follows:

exec end startT T T  (21)

where Tend is the work end time; Tstart is the work start
time.

2 Throughput

It gauges in MB/s the volume of data handled per unit
of time. Greater throughput indicates that data
processing efficiency of the system increases (Sun
et al., 2024). The formula calls for this:

Total data processed (MB)
Throughput

Total time (seconds)
 (22)

where total data processed is the total (in MB) quantity
of data handled; total time is the total (in seconds) spent
on the task execution.

3 System load

Usually measuring CPU and memory consumption, it
speaks about the computational resources the system
uses during task execution. Usually reflecting
ineffective use of resources, a high system load might
cause a performance bottleneck. The formula is as
follows:

CPU usage Memory usage
System load

2


 (23)

With a value range from 0 to 100%, CPU use is the
proportion of CPU used during task execution; memory
use is the percentage of memory used during job
execution.

In order to evaluate the performance improvement of the
Hadoop-OptiStor model more comprehensively, we have
analysed the contributions of the data distribution
optimisation module, the storage copy optimisation module,
the task scheduling optimisation module, and the failure
recovery optimisation module respectively. The specific
results are as follows: the data distribution optimisation
module significantly improves the storage efficiency and
reduces the load imbalance among nodes through a
reasonable data block allocation strategy, thus improving
the overall performance of the system. The storage replica
optimisation module reduces storage redundancy by
dynamically adjusting the number and distribution of
replicas, while ensuring high data availability. Task
scheduling optimisation module significantly reduces task
execution time and improves system response speed through

intelligent task allocation and load balancing. The failure
recovery optimisation module significantly reduces failure
recovery time and improves system reliability by optimising
replica distribution and recovery path selection.

The synergy of these modules enables Hadoop-OptiStor
to excel in large-scale data processing, especially in
resource utilisation and performance enhancement.

4 Experimental results and analyses

4.1 Experimental data

The usefulness of Hadoop-OptiStor is validated in this
experiment using the Wikipedia dataset. Suitable for
evaluating and optimising widely distributed storage
systems, this dataset includes the complete text and
information of every Wikipedia entry. Usually, each item
comprises of title, material, links, historical version
information with great complexity and variation. Many big
data studies make advantage of the Wikipedia dataset,
particularly in the domains of distributed computing and
storage optimisation in the sphere of technology. Table 1
provides the dataset’s details.

Table 1 Wikipedia dataset information

Data type Raw text data

Data size ~10 GB (can be adjusted to larger sizes, up to
TB scale)

Data format XML format, containing text, page history, and
metadata

Update
frequency

Regular updates, new dumps released monthly

Applicable
fields

Large-scale data storage, distributed processing,
natural language processing, data optimisation
experiments

Access
method

Download from Wikipedia dumps page or
access via AWS public datasets

To ensure the reproducibility of the experiments, we
provide access methods and preprocessing steps for the
Wikipedia dataset. The Wikipedia dataset can be
downloaded from the Wikipedia dumps page or accessed
through AWS public datasets. The dataset contains the
complete text and information of Wikipedia entries, and
each entry includes title, content, links, historical version
information, and so on.

In the preprocessing phase, we processed the data as
follows:

 data cleaning: remove invalid or duplicate entries

 data segmentation: split the data into training set and
test set with the ratio of 80% training set and 20% test
set

 feature extraction: extract the textual content and
metadata of each entry for subsequent experiments.

18 Y. Qi

These preprocessing steps ensure the quality and
consistency of the data and provide a reliable data base for
the experiments.

4.2 Experimental procedures

This work evaluates its large-scale data processing
performance by means of the Hadoop-OptiStor model, the
HDFS-based optimisation model, and Spark in comparison
to the conventional Hadoop MapReduce system.

Large-scale data analysis is conducted using traditional
distributed data processing systems such Hadoop
MapReduce. Big data processing is optimised by breaking
out jobs into map and reduce sections for parallel
processing. Particularly in storage efficiency and resource
consumption, Hadoop MapReduce’s task scheduling and
data storage restrictions present performance challenges in
large-scale data processing. To boost data storage,
processing, and job execution in the conventional Hadoop
system, the HDFS-based optimisation strategy maximises
data distribution and replica management. But this approach
has certain scheduling and resource allocation restrictions,
particularly for high-load, bottleneck-prone jobs. But
Spark’s memory-based data processing architecture lets big
data computing via improved memory management. For
iterative computing and machine learning it maximises job
scheduling and data storage. Spark devours a lot of
resources for distributed job scheduling and large-scale data
storage and lacks copy-optimised methods.

Figure 3 contains the experimental findings.

Figure 3 Results of performance comparison experiments
(see online version for colours)

Hadoop
MapReduce

HDFS
Optimization

Spark Hadoop-OptiStor
0

200

400

600

800

1000

1200

1400

T
as

k
E

xe
cu

ti
on

 T
im

e

−100

−80

−60

−40

−20

0

20

40

60

80

 Throughput System Load

Experiments show Hadoop-OptiStor excels in task
execution time, throughput, and system load. Its task
execution time is 700 seconds, far less than the 800 seconds
of the HDFS optimised model, Hadoop MapReduce, and
Spark respectively. Comparatively to Hadoop MapReduce,
Hadoop-OptiStor has 45 MB/s throughput; HDFS optimised
has 31 MB/s; Spark has 39 MB/s. With a 60% system load
for Hadoop-OptiStor far lower than 75% for Hadoop
MapReduce and 80% for Spark, the model is clearly more

resource-efficient and utilises less compute and memory
capacity.

This work intends experiments to assess the
optimisation effect of Hadoop-OptiStor on large-scale data
processing, namely with regard to data distribution and load
balancing. The project aims to maximise data distribution
and load balancing using Hadoop-OptiStor thereby
enhancing cluster resource use and job execution
bottlenecks.

Apart from throughput, we assess node load balancing
by means of mean node load (%), thereby reflecting system
resource use. Figure 4 contain the experimental outcomes.

Figure 4 Results of data distribution and load balancing
optimisation experiments (see online version
for colours)

Spark Hadoop-OptiStor Flink Hadoop
MapReduce

HDFS
Optimized

Model

25

30

35

40

45

50

55

60

 Throughput (MB/s)
 Average Node Load (%)

Hadoop-OptiStor Flink

33

40
41
42
43
44
45
46
47

According to experimental results, Hadoop-OptiStor has a
throughput of 45 MB/s and an average node load of 40%,
demonstrating the model’s data distribution and load
balancing optimisation. Spark, with 40 MB/s throughput,
follows closely, but its average node load is greater at 50%,
indicating a resource imbalance in this model. Spark follows
with 40 MB/s, but its average node load is 50%, indicating a
resource imbalance.

Flink has 38 MB/s throughput, somewhat lower than
Spark, but its average node load is 45%, demonstrating
better load balancing. HDFS optimisation model has
30 MB/s throughput, which is lower than the other models,
but its average node load is 55%, which is less
resource-efficient.

Hadoop MapReduce has the lowest throughput of all
models at 25 MB/s and the highest average node load at
60%, showing resource utilisation and job scheduling
problems in large-scale data processing, resulting in poor
performance.

We also compare the Hadoop-OptiStor model with other
newer distributed storage frameworks such as Apache
Cassandra and Ceph. The experimental results show that
Hadoop-OptiStor has significant advantages in terms of
resource utilisation and performance improvement.
Specifically, Hadoop-OptiStor is 20% faster than Apache
Cassandra and 30% faster than Ceph in terms of task
execution time. In terms of throughput, Hadoop-OptiStor

 Optimisation of distributed storage technology for large-scale data based on Hadoop technology 19

reaches 45 MB/s, compared to 35 MB/s for Apache
Cassandra and 30 MB/s for Ceph. These results show that
Hadoop-OptiStor has higher efficiency and better resource
utilisation when processing large-scale data.

In conclusion, Hadoop-OptiStor has the best throughput
and node load performance and can provide higher
throughput and better load balancing during large-scale data
processing than the other models.

Performance comparison experiments and data
distribution and load balancing optimisation experiments
show that Hadoop-OptiStor has the best throughput and
node load performance, optimises data distribution,
balances load, and improves system performance. In
contrast, Hadoop MapReduce and HDFS optimisation
models have performance and resource constraints,
especially under pressure. The experiments reveal that
Hadoop-OptiStor is better at large-scale data processing and
storage and computation optimisation.

To verify the significance of the results, we conducted a
t-test to compare the performance difference between the
Hadoop-OptiStor model and other models such as HDFS
optimisation model, Hadoop MapReduce and Spark. t-test
results show that Hadoop-OptiStor significantly
outperforms the other models (p < 0.05). In addition, we
calculated 95% confidence intervals to further confirm the
reliability of these results.

5 Conclusions

Hadoop-OptiStor, an optimisation model based on Hadoop
for large-scale distributed data storage technology, is
presented in this study, along with an evaluation of its data
storage capabilities, load balancing, and performance
optimisation. Trials demonstrate that, in terms of
performance, node load balancing, and data distribution
optimisation, Hadoop-OptiStor outperforms standard
Hadoop MapReduce and other distributed architectures. By
optimising storage replication and job scheduling,
Hadoop-OptiStor enhances system performance and
alleviates significant data processing bottlenecks.

In order to further validate the practical application
value of the Hadoop-OptiStor model, we carried out a
real-world deployment in a large internet company. The
company handles a large amount of user data every day and
needs an efficient distributed storage and computing
solution. By deploying the Hadoop-OptiStor model, the
company achieved significant improvements in data storage
efficiency and task processing speed. Specifically, task
execution time was reduced by 30%, system load was
reduced by 20%, and data throughput was increased by
40%. These results show that the Hadoop-OptiStor model
has high utility and value in practical applications.

Still, the study in this paper has limits. Though data and
application possibilities are limited, Hadoop-OptiStor
performs well in experiments. Not system security and
privacy, this paper is on data storage and load balancing
optimisation.

Future research can concentrate on:

1 Optimising data distribution and replica management
strategies: future studies can improve the data
distribution methods and replica management
techniques in Hadoop-OptiStor to increase its
adaptability under dynamic loads and different jobs. In
large-scale data processing, this will enable improved
handling of resource competitiveness and performance
bottlenecks.

2 Enhancing data security and privacy protection:
large-scale data processing’s popularity is driving
growing relevance of privacy protection and data
security challenges. Future studies can improve access
control, privacy protection methods for data in
distributed systems to guarantee data security and
compliance during storage and processing (Gupta et al.,
2022).

3 Combining artificial intelligence technologies: artificial
intelligence technologies can be merged with
Hadoop-OptiStor for intelligent data distribution, load
scheduling and resource management. Adaptive
algorithms let system strategies be dynamically
changed to raise general performance.

These research directions will enable the continual
optimisation and invention of large-scale data distributed
storage technology as well as provide further support
for the continued development and pragmatic use of
Hadoop-OptiStor.

Declarations

This work is supported by the Zhengzhou University of
Aeronautics (No. 1021/22029020).

All authors declare that they have no conflicts of interest.

References

Ali, F.M., Latip, R., Alrshah, M.A., Abdullah, A. and Ibrahim, H.
(2021) ‘Vigorous replication strategy with balanced quorum
for minimizing the storage consumption and response time in
cloud environments’, IEEE Access, Vol. 9,
pp.121771–121785.

Bentaleb, O., Belloum, A.S., Sebaa, A. and El-Maouhab, A. (2022)
‘Containerization technologies: taxonomies, applications and
challenges’, The Journal of Supercomputing, Vol. 78, No. 1,
pp.1144–1181.

Gupta, I., Singh, A.K., Lee, C-N. and Buyya, R. (2022) ‘Secure
data storage and sharing techniques for data protection in
cloud environments: a systematic review, analysis, and future
directions’, IEEE Access, Vol. 10, pp.71247–71277.

Imdoukh, M., Ahmad, I. and Alfailakawi, M.G. (2020) ‘Machine
learning-based auto-scaling for containerized applications’,
Neural Computing and Applications, Vol. 32, No. 13,
pp.9745–9760.

Jin, P., Hao, X., Wang, X. and Yue, L. (2018) ‘Energy-efficient
task scheduling for CPU-intensive streaming jobs on
Hadoop’, IEEE Transactions on Parallel and Distributed
Systems, Vol. 30, No. 6, pp.1298–1311.

20 Y. Qi

Kang, Y., Pan, L. and Liu, S. (2022) ‘Job scheduling for big data
analytical applications in clouds: a taxonomy study’, Future
Generation Computer Systems, Vol. 135, pp.129–145.

Kibria, M.G., Nguyen, K., Villardi, G.P., Zhao, O., Ishizu, K. and
Kojima, F. (2018) ‘Big data analytics, machine learning, and
artificial intelligence in next-generation wireless networks’,
IEEE Access, Vol. 6, pp.32328–32338.

Liu, J., Shen, H., Chi, H., Narman, H.S., Yang, Y., Cheng, L. and
Chung, W. (2020) ‘A low-cost multi-failure resilient
replication scheme for high-data availability in cloud storage’,
IEEE/ACM Transactions on Networking, Vol. 29, No. 4,
pp.1436–1451.

Liu, S., Xu, H., Liu, L., Bai, W., Chen, K. and Cai, Z. (2018)
‘RepNet: cutting latency with flow replication in data center
networks’, IEEE Transactions on Services Computing,
Vol. 14, No. 1, pp.248–261.

Mazumdar, S., Seybold, D., Kritikos, K. and Verginadis, Y. (2019)
‘A survey on data storage and placement methodologies for
cloud-big data ecosystem’, Journal of Big Data, Vol. 6,
No. 1, pp.1–37.

Merceedi, K.J. and Sabry, N.A. (2021) ‘A comprehensive survey
for hadoop distributed file system’, Asian Journal of
Research in Computer Science, Vol. 11, No. 2, pp.46–57.

Oz, I. and Arslan, S. (2019) ‘A survey on multithreading
alternatives for soft error fault tolerance’, ACM Computing
Surveys (CSUR), Vol. 52, No. 2, pp.1–38.

Ponnusamy, S. and Gupta, P. (2024) ‘Scalable data partitioning
techniques for distributed data processing in cloud
environments: a review’, IEEE Access, Vol. 12,
pp.26735–26746.

Raptis, T.P., Passarella, A. and Conti, M. (2019) ‘Data
management in Industry 4.0: state of the art and open
challenges’, IEEE Access, Vol. 7, pp.97052–97093.

Sollfrank, M., Loch, F., Denteneer, S. and Vogel-Heuser, B.
(2020) ‘Evaluating docker for lightweight virtualization of
distributed and time-sensitive applications in industrial
automation’, IEEE Transactions on Industrial Informatics,
Vol. 17, No. 5, pp.3566–3576.

Sun, H., Lou, B., Zhao, C., Kong, D., Zhang, C., Huang, J., Yue,
Y. and Qin, X. (2024) ‘Asynchronous compaction
acceleration scheme for near-data processing-enabled
LSM-tree-based KV stores’, ACM Transactions on Embedded
Computing Systems, Vol. 23, No. 6, pp.1–33.

Sun, X., He, Y., Wu, D. and Huang, J.Z. (2023) ‘Survey of
distributed computing frameworks for supporting big data
analysis’, Big Data Mining and Analytics, Vol. 6, No. 2,
pp.154–169.

Truyen, E., Kratzke, N., van Landuyt, D., Lagaisse, B. and
Joosen, W. (2020) ‘Managing feature compatibility in
Kubernetes: vendor comparison and analysis’, IEEE Access,
Vol. 8, pp.228420–228439.

Yang, J., Yue, Y. and Rashmi, K. (2021) ‘A large-scale analysis of
hundreds of in-memory key-value cache clusters at Twitter’,
ACM Transactions on Storage (TOS), Vol. 17, No. 3,
pp.1–35.

Zhai, Y., Tchaye-Kondi, J., Lin, K-J., Zhu, L., Tao, W., Du, X. and
Guizani, M. (2021) ‘Hadoop perfect file: a fast and
memory-efficient metadata access archive file to face small
files problem in HDFS’, Journal of Parallel and Distributed
Computing, Vol. 156, pp.119–130.

Zhang, J., Yu, F.R., Wang, S., Huang, T., Liu, Z. and Liu, Y.
(2018) ‘Load balancing in data center networks: A survey’,
IEEE Communications Surveys & Tutorials, Vol. 20, No. 3,
pp.2324–2352.

Zheng, T., Chen, G., Wang, X., Chen, C., Wang, X. and Luo, S.
(2019) ‘Real-time intelligent big data processing: technology,
platform, and applications’, Science China Information
Sciences, Vol. 62, pp.1–12.

