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Abstract: With the development of marine resources and offshore wind power, submarine piles 
and cables are facing safety challenges such as anchor damage and aging, this paper proposes an 
intelligent monitoring method based on multi-source sensor fusion and big data analysis. 
Through the integration of fibre optic sensing, MEMS array real-time collection of cable  
strain-temperature and pile displacement data, combined with the automatic identification system 
(AIS) and video surveillance to build a multi-dimensional sensing network, the use of distributed 
fusion algorithm to establish the strain-temperature correlation threshold and the introduction of 
deep learning optimisation of positioning. Verification in Hainan networking project and other 
scenarios show that: the efficiency of cable detection is improved by 40%, the accuracy of pile 
crack identification reaches 98%, and the three-dimensional positioning error is less than 0.5 
metres, which effectively enhances the real-time monitoring of submarine facilities and active 
early warning capabilities. 
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1 Introduction 

The safety and reliability of submarine pile foundations and 
cables as the core infrastructure of marine engineering are 
of utmost importance to the booming development of global 
marine resources and offshore wind power industry. 
According to statistics, the global annual energy loss due to 
cable failure is more than 1.2 billion dollars, and more than 
70% of the accidents are caused by anchor damage, 
mechanical fatigue and environmental corrosion. In 
shipping-intensive areas, ship anchoring causes frequent 
damage to cables, and the cumulative effect of  
micro-deformation of pile foundation structure may cause 
catastrophic rupture (Chen et al., 2021). Furthermore, in the 
submarine monitoring environment, sensors may be 
impacted by biofouling, corrosion and strong water currents. 
Biofouling can degrade sensor performance by altering their 
physical and chemical properties, while corrosion can affect 
metal components, leading to structural weakening and 
potential sensor failure. Strong water currents may cause 
physical damage to sensors or disrupt their stability, 
affecting measurement accuracy and reliability. Traditional 
monitoring methods, such as regular diving inspection and 
single-point sensor monitoring, have the defects of lagging 
response, single data and high false alarm rate, which are 
difficult to meet the real-time monitoring needs in the 
complex marine environment. Traditional cable monitoring 
methods include hydrophone detection technology, 
submarine cable underwater robot detection technology and 
submarine cable unmanned boat detection technology 
(Munk, 2015). These methods to a certain extent instead of 
manual work, providing intelligent solutions, but there are 
obvious shortcomings, such as detection of time-consuming, 
high cost, and can not be real-time monitoring of the 
operating status of the cable (Toky et al., 2020). In recent 
years, fibre optic hydrophone has become a research hotspot 
for the next generation of hydrophone due to the advantages 
of anti-electromagnetic interference, small size, light 
weight, non-electrical, good waterproof performance and 
corrosion resistance. However, hydrophones need to work 
in the form of arrays, resulting in complex system structure 
and expensive cost (Plotnikov et al., 2019). Distributed 
Acoustic Sensing (DAS) system based on phase-sensitive 
optical time-domain reflection technology, with a long 
sensing range, high spatial resolution and high 
characteristics, can monitor vibration, and is widely used in 
the field of intrusion detection, pipeline safety and so on 
(Chen et al., 2017). The monitoring method based on sensor 
fusion and big data analysis offers several advantages over 
traditional techniques. It significantly enhances real-time 
monitoring capabilities and improves the precision of fault 
identification in submarine pile foundations and cables. 

Due to its unique advantages, DAS shows the potential 
to realise large array sises in ocean acoustic monitoring with 
better flexibility and easy-to-implement applications. Jiajing 
et al. (2019) used an algorithm of array signal processing to 
process the sensing arrays collected by DAS, which in turn 
realises the two and three dimensionals localisation of the 
vibration source’s point in the air. The algorithm utilises a 

multi-signal classification algorithm in array signal 
processing to process far-field signals for vibration source 
localisation, and has been validated to some extent in 
experiments. In practical tests, it is shown that the algorithm 
is feasible for multi-target two-dimensional localisation  
of single-frequency narrow-band signals, and three-
dimensional localisation of moving single-frequency 
signals. Zhou et al. (2015) use DAS to acquire vibration 
signals received by surface optical fibres, thus realising two-
dimensional localisation of vibration sources on the surface. 
The algorithm processes the received signals to obtain the 
arrival time difference of different sensing points on the 
fibre array, and then utilises the time difference of arrival 
(TDOA) method to locate the source. Liu et al. (2021) 
proposed an underwater localisation system based on an 
improved DAS. To precisely identify the underwater 
vibration source, a single-mode optical fibre was employed 
to construct an L-shaped planar sensing array. This array 
effectively captures single-frequency acoustic signals with 
high fidelity. The system then uses the arrival time 
difference algorithm to analyse the time delays of signals 
detected by multiple sensing elements. By doing so, it 
accurately locates the underwater vibration source. Lu et al. 
(2021) designed a high-sensitivity sensitised fibre optic 
cable and established an array signal processing model for a 
distributed fibre optic hydrophone. In the field test, they 
realised the spatial spectrum estimation and beam formation 
of underwater vibration signals. With the development of 
machine learning and deep learning, some models based on 
signal feature extraction and machine learning have been 
proposed. Wu et al. (2020) discovered a connection between 
the spatial energy distribution characteristics of a vibration 
source and its attenuation pattern across different vertical 
offset distances. They introduced a DAS-based cooperative 
energy-focused vibration source localisation method. It can 
determine a specific vibration source’s vertical offset 
distance and its threat to buried optical fibres. The algorithm 
constructs a two-stage superposition machine learning 
approach to automatically identify differences in the 
extracted vibration synergetic energy distribution features at 
varying distances. Then, it uses integrated learning for 
droop estimation. Field experiments in underground buried 
environments have verified its effectiveness for vibration 
source localisation. Li et al. (2020) present a high-spatial-
resolution fibre-optic distributed acoustic sensor system 
based on Φ-OFDR technology, which improves crosstalk 
suppression and achieves high-precision acoustic signal 
detection. In addition, devices based on various fibre optic 
sensing technologies generate a large amount of sensing 
data during real-time operation. These massive data impose 
high requirements on the efficiency and scalability of data 
processing in various application scenarios. Given that fibre 
optic sensing data is characterised by large volume and 
rapid generation, the processing of these data can be 
regarded as a typical big data problem. There are some more 
effective solutions for the distributed computing challenges 
of sensing big data. In 2017, Mollaei and Mousavi proposed 
an offline processing method for power fibre optic cable 
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disturbance signals based on Hadoop distributed computing. 
Compared with power quality analysers, this system can 
achieve real-time monitoring of power fibre optic cable 
disturbance signals to track power quality disturbances at a 
lower cost in a wide range of applications. Guo et al. (2018) 
used the Hadoop cloud platform to monitor, store, and 
analyse massive power quality data. By designing and 
analysing the Hadoop power quality data cloud platform, 
they proposed the architecture and design process of the 
power quality monitoring system. 

Therefore, based on the above research, this paper 
proposes an innovative method for monitoring submarine 
pile foundations and marine cables. By combining sensor 
fusion technology and big data analysis methods, the 
mechanism is able to realise real-time monitoring of the 
health status of marine infrastructure and provide accurate 
early warning and fault location functions. 

The innovations of this paper are as follows: 

1 Innovative design and implementation of the integrated 
monitoring system for submarine cables, using the laid 
submarine fibre optic cables combined with DAS and 
BOTDA sensing equipment widely used in the field of 
fibre optic sensing, and combined with automatic 
identification system (AIS) on the surface of the ship to 
achieve three-dimensional integrated monitoring of the 
environment of submarine cables, which improves the 
monitoring system’s comprehensiveness and accuracy 
of the monitoring system is improved. 

2 By linking the alarm information of DAS, BOTDA and 
AIS, and combining video surveillance as well as SMS 
cat and other devices, and utilising big data analysis 
technology to integrate and process these multi-source 
data, effective multi-source early warning on the safety 
of submarine cables has been realised. 

3 Aiming at the problem that the alarm information of the 
sensing devices in the submarine cable monitoring 
system only contains the one-dimensional location of 
the alarm event, this paper utilises the DAS equipment 
of the submarine cable monitoring system, combines 
the TDOA method for DAS-based vibration source 
localisation, and establishes a localisation model of 
DAS in array signal processing. 

2 Relevant technologies 

2.1 Principles of monitoring system equipment 

As a high-sensitivity, large dynamic range, fully – 
distributed, and easy to configure fibre optic dynamic 
perturbation sensor, Phase sensitive optical time domain 
reflectometer (Φ-OTDR) detects phase changes from local 
perturbations by observing coherent Rayleigh backscattered 
signals of light pulses sent into an optical fibre (Marie et al., 
2021). Figure 1(a) shows a typical Φ-OTDR system. A 
narrow linewidth laser generates continuous, highly 
coherent light, which is converted to an optical pulse signal 
by an optical modulator driven by a waveform generator. To 

prevent fibre loss, an erbium doped fibre amplifier can 
boost the optical power, with amplified spontaneous 
emission noise filtered out and sent through a circulator to 
the fibre under test. The PD detects the Rayleigh 
backscattered light for subsequent processing. Figure 1(b) 
illustrates the Rayleigh backscattering phenomenon. Due to 
manufacturing imperfections and inhomogeneities in the 
fibre’s refractive index serving as scattering centres, the PD 
detects the Rayleigh backscattered signal, with the signal 
from the PD displaying a scattering-like waveform. The 
computational cost of the Φ-OTDR system has been 
optimised through efficient algorithms, reducing processing 
time by 30% while maintaining data accuracy. Scalability 
benchmarks demonstrate that the system can handle up to 
50% more sensor nodes without significant performance 
degradation, and fault tolerance tests show that it can 
maintain functionality with up to 20% sensor failures, 
ensuring reliable operation under high sensor loads. Under 
the ideal operating conditions of the Φ-OTDR system, the 
speckle trace will remain stable until the intrusion of the 
system causes a significant change, and therefore, the 
intrusion location can be determined using the intensity 
difference method. Assuming that the length of the sensing 
fibre is l0, the phase induced by the transmission of light 
through this section of the fibre is: 

2π
φ nl

λ
  (1) 

where λ is the central wavelength and n is the refractive 
index of the fibre. When this section of the fibre is affected 
by vibration, the amount of phase change corresponding to 
it is: 

 0 0
2

Δ Δ Δ
π

φ l n n l
λ

   (2) 

where λn and λl0 are the variations of the refractive index 
and length of the fibre, respectively, and λl0 = εl0, where ε is 
the longitudinal strain tensor of the fibre. By interference of 
the scattered light, the phase change causes a change in the 
backscattered optical power: 
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where E0 is the incident light field amplitude, n is the spatial 
resolution, p and γ are the polarisation and reflection 
coefficients, respectively, and φkl is the phase difference of 
the scattered light field at the kth and lth scattering points. 

As a fibre optic strain and temperature sensor with high 
signal-to-noise ratio, long measurement distance and high 
accuracy, the long-range Brillouin optical time domain 
analyser (BOTDA) has been generally valued and 
intensively studied by researchers from various countries 
(Liu et al., 2022). In the strain monitoring of submarine 
cables, the single data sending format of BOTDA sensing 
device is based on message header + JSON content format, 
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and we denote the strain signal monitored in the tth BOTDA 
sampling cycle as Xt: 

   1 2( 1, 2, , ) , , ,t m t t tNX x n N x x x     (4) 

where n is the spatial data point location of the strain data 
item, N is the number of data points in the strain data item, a 
sampling cycle triggered then a spatial signal trajectory is 
captured, and as the time period advances to the Mth cycle, 
the consecutively accumulated M BOTDA a spatial  
N-dimensional, temporal M-dimensional spatial-temporal 
response matrix of the strain signal: 

 , , 1, 2, , , 1,2, ,M N tnX x t M n N     (5) 

where t is the time dimension, n is the spatial dimension, 
and M, N denote the length of the sequence of long-time 
accumulated time and space acquisition. The process of 
spatial sampling accumulation in time is shown in Figure 2, 
where the vertical coordinate of the left figure is the time 
axis and the horizontal coordinate is the spatial axis, and the 
original spatial signal trajectory is intercepted by temporal 
periodic sampling and combined to become a complete 
BOTDA spatio-temporal matrix according to the time 
growth. For the monitoring of the sea cable, the strain data 
generated by the BOTDA device is a large amount of data 
with periodic bursts, but do not need to carry out overly 
complex arithmetic, and the average flow rate is low, the 
traditional stand-alone means of processing can be 
processed, but a long period of time data records need to be 
stored using a distributed database. 

2.2 Principles of AIS for ships 

The AIS for ships is a high-tech navigational aid and safety 
information system integrating modern communication, 
information technology and network technology. It adopts 

SOTDMA communication technology, works in VHF 
frequency band, and consists of equipment on board and 
base station. The shipboard equipment can automatically 
broadcast the static and dynamic information of the ship to 
other ships in the SOTDMA network and the base station, 
and at the same time, it can also automatically receive 
relevant information from other ships in the network. The 
base station, in turn, uses this reported information to keep 
abreast of maritime traffic dynamics and improve the 
efficiency of sea area monitoring (Goudossis and Katsikas, 
2019). AIS establishes an information platform between 
ship and shore and between ships, promotes the 
informatisation management of maritime traffic, and 
becomes an important tool for promoting navigation safety 
and improving shipping traffic efficiency, and its overall 
structure is shown in Figure 3. However, in the process of 
AIS information collection, it may be affected by external 
factors such as network delay, signal congestion, hardware 
equipment failure and so on, resulting in noise in the parsed 
AIS data. In order to avoid the interference of noisy data on 
the subsequent work, it is very necessary to preprocess the 
AIS data, and the preprocessing of AIS data mainly includes 
data cleaning and resampling, trajectory data segmentation, 
etc. Through data cleaning and resampling, the trajectory 
dataset which is more regular and less noisy can be 
obtained, and then the trajectory data segmentation is 
carried out in order to compress the trajectory data, and at 
the same time, ensure that the features of the trajectory data 
(Yang et al., 2019). Then the trajectory data segmentation is 
performed to compress the trajectory data and ensure the 
completeness of the trajectory data features, so as to 
improve the quality of the trajectory data and provide 
reliable and high-quality data support for subsequent 
applications. 

Figure 1 Principle of disturbance sensing based on Φ-OTDR (see online version for colours) 
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Figure 2 BOTDA strain signal matrix acquisition process (see online version for colours) 
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Figure 3 Schematic diagram of ship borne AIS equipment  

(see online version for colours) 
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After completing the cleaning and resampling of AIS data, a 
less noisy and more regular trajectory data set is obtained. 
Then the trajectory data segmentation is carried out, the 
main purpose of which is to carry out trajectory data 
compression, to reduce the amount of data on the basis of 
fully ensuring the integrity of the trajectory data features, so 
as to obtain trajectory data of higher quality. Assuming that 
a series of moving vessel target set O = {o1, o2,…,oL} is 
given, then for each target O, its AIS history information 
sequence can be noted as So = {x1, x2,…,xM}, and the 
attribute of each x in S can be expressed as: 

   , , , 1,i x x xx t l a i M   (6) 

where tx is the timestamp, lx represents latitude and 
longitude, and ax represents other attributes such as speed, 
steering rate. For a given So and a time interval threshold ∆t, 
if the vessel has been kept travelling at a certain fixed state 
within a given range of ∆t, a series of track segments into 
which So is divided within that range of ∆t can be 
represented as: 

 1 2, , ,o nTR TR TR TR   (7) 

Assuming that given a sequence S, take Q, i.e., the 
trajectory consisting of all point trails within a time range of 
1 hour is regarded as a trajectory segment, and at this time 
the set of trajectory segments T. Based on the above 
trajectory segmentation theory, due to the fact that the speed 

of the ship will change during the actual voyage of the ship, 
which will lead to the change of the ship’s latitude and 
longitude, the choice is made to segment the ship 
trajectories mainly in accordance with the ship’s travelling 
speed, and to define the travelling speed of less than or 
equal to 1 km/h is defined as the mooring stage; 1 km/h to 
11 km/h is the low-speed driving stage; 11 km/h to 14 km/h 
is the medium-speed driving stage, and greater than or equal 
to 14 km/h is the high-speed driving stage. Using the 
latitude and longitude of the re-sampled ship and the time 
interval of re-sampling to calculate the speed value between 
two points, representing the average speed of the ship 
travelling between neighbouring point traces during this 
period of time, and using this as the basis for the 
segmentation of the trajectory. The calculation equation is: 

 

 

2
1

2
2

22

2
Δspeed

a
sin cos Lat

arcsin c
b

cos Lat sin
avg

t




 
  (8) 

where Lat1 and Lat2 represent the latitude and longitude of 
the two points respectively, a represents the latitude 
difference between the two points, b represents the 
longitude difference between the two points, c is the length 
of the earth’s radius, t represents the time difference 
between the two points, and avgspeed represents the average 
speed value between the two points. Through the above 
method, the AIS data can be effectively preprocessed and 
trajectory segmented to provide strong support for the 
subsequent maritime traffic management and navigation 
safety analysis, which in turn enhances the effectiveness of 
the whole sensor fusion and big data analysis and 
monitoring model. 

2.3 Big data and distributed computing 

Big data refers to massive amounts of data that cannot be 
processed, managed, stored and analysed using traditional 
data processing tools and techniques. These data usually 
come from multiple sources and in various forms, including 
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structured data, semi-structured data, and unstructured data, 
such as text, audio, and video. The development of big data 
stems from the explosive growth of the internet and the 
widespread use of various sensor technologies, resulting in a 
growth rate and complexity of data that greatly exceeds the 
capabilities of traditional data processing methods. 
Distributed computing is a model of computing by breaking 
down a computational task into multiple small tasks and 
executing them in parallel on multiple computers. It can 
significantly improve computational efficiency and 
processing power, and is particularly suitable for processing 
big data (Xu et al., 2020). Real-time data processing and 
analysis in the proposed system are achieved through 
distributed computing frameworks such as Hadoop and 
Spark. These frameworks facilitate efficient processing of 
large-scale sensor data, enabling timely analysis and 
interpretation of the monitored information. Hadoop 
algorithm divides large datasets into smaller chunks and 
processes them in parallel across multiple nodes. Spark’s  
in-memory computing is employed for fast iterative data 
analysis, enabling efficient data shuffling and real-time 
processing. These frameworks enhance the scalability and 
speed of data analysis in the monitoring system. Distributed 
computing frameworks can realise the unlimited expansion 
of computing power by adding computing nodes, which has 
the characteristics of high concurrency, high throughput, 
high scalability, and high fault-tolerance, and is one of the 
core technologies for processing big data. In the field of 
submarine pile foundation and sea cable monitoring based 
on sensor fusion and big data analysis, the application of big 
data technology is of great significance. Through sensor 
fusion technology, data from different types of sensors  
can be integrated to achieve multi-dimensional and  
omni-directional monitoring of submarine pile foundations 
and submarine cables. The massive data generated by these 
sensors need to be processed and analysed with the help of 
big data analytics in order to discover potential safety 
hazards and failures in a timely manner. Big data analytics 
can help us mine the useful information in the sensor data, 
establish more accurate monitoring models, and improve the 
accuracy and reliability of monitoring (Tsai et al., 2016). At 
the same time, the application of distributed computing 
framework makes real-time processing of massive data 
possible, ensuring the efficient operation of the monitoring 
system. 

In summary, big data technology plays a key role in the 
monitoring of submarine pile foundations and sea cables, 
which provides strong support for ensuring the safe and 
stable operation of marine engineering structures. 

3 DAS-based vibration source localisation model 
for TDOA 

Since the integrated system of the submarine cable can only 
provide one-dimensional information of the vibration 
source, in order to improve the intelligent level of the 
system for the safety monitoring of the submarine cable, so 
that the system can obtain the detailed location information 

of the safety events, it is necessary to study the localisation 
method of the DAS equipment in the system (Muñoz and 
Soto, 2022). The two-dimensional localisation model of 
TDOA based on DAS has a total of N array elements, then 
the coordinate position of the i-th array element is (xi, yi),  
i = 1, 2,..., N, and the coordinates of the vibration source S 
are (x,y). If the first array element x1 is selected as the 
reference array element, the time delays relative to the 
reference array element obtained by the LMS algorithm 
estimation for the remaining array elements are ti,1,  
i = 2,3,...,N. Assuming that the distance from the vibration 
source S to the ith array element is di, the difference between 
the distances from the vibration source S to the ith array 
element and to the reference array element is di,1 = di – d1 = 
cti,1, where c is the propagation speed of sound in the 
medium. According then the TDOA equation can be 
constructed as: 

   

   

2 2
,1

2 2
1 1 , 2,3,

i i id x x y y

x x y y i N

   

     
 (9) 

Assuming that 2 2
,1 ,1 1, ,,i i i i i i ik x y x x x y y y       then 

equation (9) can be organised as: 

2
,1 ,1 1 ,1 ,1 12 2 2 , 2,3,i i i i id d d k x x y y k i N        (10) 

for equation (10) can be transformed into: 
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x y d d k k

   
                         

 
 (11) 

As mentioned above, the vibration source localisation 
problem for TDOA can be changed into a problem of 
solving a system of equations constructed from the positions 
of each array element and the time delay difference with the 
reference array element. For two-dimensional localisation, 
only two valid equations, i.e., the time-delay difference 
obtained from the three array elements, are needed to obtain 
the vibration source position by solving the system of 
equations to obtain the vibration source position. Compared 
with the traditional array, the acoustic sensing array 
obtained by the DAS system is characterised by a large 
number of array elements and flexible array element 
selection (Ding et al., 2021). Therefore, when using the 
TDOA algorithm for DAS-based vibration source 
localisation, in order to be able to utilise the effective 
information of each array element, the two-step weighted 
least squares method is usually used to solve the vibration 
source position information, for equation (11), the error 
vector can be obtained: 

φ h Gz   (12) 
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The solution to the weighted least squares estimation of 
equation (12) is: 

 
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
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  


 (14) 

where Ψ = E(φφT) = c2 BQB represents the covariance 
matrix of the error, B the diagonal matrix, and Q the 
covariance matrix of the TDOA. Since B is the true distance 
from the vibration source to each array element, Ψ is 
unknown. When the vibration source is far away from the 
array, equation (14) can be approximated as: 

  11 1T Tz G Q G G Q h
   (15) 

when the vibration source is close to the array, the initial 
solution can be obtained using equation (15) for the 
calculation of B, and then equation (14) is used to obtain the 
estimation result of the first WLS. The estimation result of 
the second WLS is then derived based on the relationship 
between the covariance matrix and the error of the estimated 
value z as the estimation result of the vibration source 
location. 

In real monitoring environments, some channel 
measurement signals are distorted due to the unfavourable 
effects of uneven sensitivity of the DAS acoustic channels 
and inhomogeneity of the medium. Low-quality 
measurement signals may occur randomly along the sensing 
fibre, and only the results obtained from TDOA localisation 
using the time delay difference estimates obtained from 
high-quality channels are considered reliable. Assuming a 
total number of channels N, the degree of similarity kij 
between channel i and channel j can be expressed as: 

 ,

, , , 1, 2,3,
( )

i j

i j

max PCCF
k i j N

RMS W
    (16) 

where PCCFij is the phase correlation function of channel i 

and channel j, 2

2
( ,

1
) ijL

RMS W PCCF   2L is the 

window size of the phase correlation function of the two 
selected channels. In the process of screening the channels, 
the reliability i of the channel is obtained by calculating the 
values of kij for all channels with respect to other channels, 
and then by the root mean square operation: 

2
,1

1
 , , 1, 2,3,

N

i i jj
k i j N

N 
    (17) 

after obtaining the confidence parameter i for all channels, 
i = 1,2,3,.... ,N, the larger the value of the parameter, the 
higher the quality of the signal obtained from the channel, 
and vice versa, the lower the quality of the channel. 

Therefore, when using the TDOA algorithm to process 
the signals collected by the DAS system in the actual 
monitoring environment for vibration source localisation, 
we first need to calculate the credibility of each channel 
signal, then select the channel with the highest credibility 
for time delay estimation, and finally estimate the vibration 
source position according to the delay difference obtained 
from the time delay estimation, which can reduce the impact 
of inaccurate localisation due to the vibration signal 
excitation, poor coupling between the optical fibre and the 
experimental environment and other problems. This can 
reduce the impact of inaccurate localisation due to vibration 
signal agitation, poor coupling between the fibre and the 
experimental environment. 

4 Submarine pile foundation and cable 
monitoring model based on sensor fusion and 
big data analysis 

The monitoring model proposed in this study takes  
multi-source sensor cooperative sensing and big data 
intelligent analysis as the core, and realises the whole life 
cycle health management of submarine infrastructure 
through the three-level architecture of “sensing layer-fusion 
layer-decision-making layer”, and Figure 4 shows the 
framework of the monitoring model of submarine pile 
foundation and submarine cable based on sensor fusion and 
big data analysis. The sensing layer consists of fibre optic 
sensors, MEMS sensors, and AIS devices that collect  
real-time data on strain, temperature, displacement, and 
vessel positioning. The fusion layer integrates and processes 
this data using advanced algorithms, while the decision 
layer applies machine learning techniques to provide 
predictive maintenance and operational insights. 

In the sensing layer, heterogeneous sensor network 
integration technology is adopted: BOTDA is utilised to set 
up monitoring points along the submarine cable every 200 
metres to collect strain and temperature data in real time. 
The monitoring system employs fibre optic sensors to 
collect strain and temperature data, MEMS sensors to 
monitor displacement and vibration, and AIS for  
vessel positioning. These sensors collectively enable 
comprehensive and real-time monitoring of submarine pile 
foundations and cables. Biofouling-resistant MEMS 
acceleration sensor arrays are deployed and embedded 
inside the pile foundation structure in the form of a 3D grid 
to monitor the displacement, tilt angle and vibration 
spectrum, and combined with the multibeam sonar and the 
AIS ship positioning system to build an external 
environment sensing network. The sensor nodes adopt 
adaptive networking protocols to support dynamic topology 
reconfiguration and redundant channel switching to ensure 
data integrity and transmission reliability. The 
heterogeneous data from multiple sources enter the fusion 
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layer after preprocessing, and the spatio-temporal-physical 
dual-drive fusion strategy is adopted to align the  
spatio-temporal benchmarks of the fibre optic strain data 
and the ship’s AIS trajectory using the improved particle 
filtering algorithm, and to achieve the unification of the 
spatial coordinates by combining with the GIS mapping. 
The strain signal feature focuses on the change information 
of the strain signal of the sea cable over a long period of 
time, and the extracted feature vector is used to characterise 
the maximum strain change of the sea cable in the historical 
preset length of time, as well as the number of times that the 
strain change of the sea cable exceeds the threshold in the 
historical preset length of time, and the specific extraction 
method is shown in equation (18): 

1 1
( ) ( ( ))

p p

i ji j
s n a s n i b n j

 
       (18) 

where s(n) denotes the disturbance signal, ϵ(n) denotes the 
residual signal of the ARMA model, ai denotes the ith 
autoregressive process coefficient, bj denotes the jth sliding 
average coefficient, and q denotes the order of the sliding 
average. 

In the decision layer, the feature vectors extracted from 
the perturbation and strain signals are associated and fused, 
and are processed and downscaled by linear discriminant 
analysis (LDA).The LDA algorithm is a supervised learning 
downscaling technique, i.e., it is necessary to know the 
category labels of the sample data set, and the main idea is 
that the high-dimensional set is downscaled to the  
low-dimensional space as far as possible after the data 
centres of the sample points of different categories are 
located as far away from each other as possible, and the data 
centres of the same sample points are concentrated as much 
as possible. The main idea is that the data centre of different 
categories of sample points should be as far away as 
possible, and the data centre of the same category of sample 
points should be as centralised as possible. LDA was chosen 
for its effectiveness in maximising inter-class separability 
and minimising intra-class variability, making it suitable for 
high-dimensional data classification tasks where clear 
separation between classes is essential. According to each 
event type of multiple samples splicing feature vector, get 
each event type corresponding to the sample mean vector: 

Figure 4 Framework of submarine cable monitoring model (see online version for colours) 
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    (19) 

where k denotes an event type, and Dc denotes a plurality of 
sample splicing feature vectors for event type c. nc denotes 
the number of sample splicing feature vectors for event type 
c. μc denotes the sample mean value vector corresponding to 
event type c. The classifier training is realised by optimising 
the LDA model using these sample mean vectors and 
corresponding scatter matrices, which involves maximising 
the distance between different class centres and minimising 
the scatter within the same class to enhance classification 
accuracy. Meanwhile, an inter-class scatter matrix and an 
intra-class scatter matrix are obtained based on the sample 
mean value vector corresponding to each event type, and the 
splicing feature vector. The inter-class scatter matrix is 
defined as Sb and the intra-class scatter matrix as Sw, as 
shown in equations (20) and (21): 

  
1

k T
b c c cc

S n μ μ μ μ


    (20) 
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k T
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 

     (21) 

where μ denotes the vector of sample means corresponding 
to all event types. The mapping matrix is determined based 
on the preset objective function, and the inter-class scatter 
matrix and intra-class scatter matrix. Define the mapping 
matrix W = (w1, w2,…,w′d) from the high-dimensional space 
to the low-dimensional space, and the dimension of W is 
d×d′. The mapping matrix W is used to map the spliced 
feature vectors to the new feature subspace, and the feature 
fusion vectors of the downgraded submarine cable are 
obtained. 

Finally, the trained monitoring model is applied to the 
actual submarine pile foundation and submarine cable 
monitoring to realise the real-time monitoring and early 
warning functions to ensure the safe operation of submarine 
infrastructure. The whole model framework includes sensor 
layer, data acquisition layer, data processing layer, data 
analysis layer, model training layer and application layer, 
and all layers work together to realise efficient and accurate 
monitoring. However, in the submarine monitoring 
environment, sensors may be impacted by biofouling, 

corrosion and strong water currents. Biofouling can degrade 
sensor performance by altering their physical and chemical 
properties, while corrosion can affect metal components, 
leading to structural weakening and potential sensor failure. 
Strong water currents may cause physical damage to sensors 
or disrupt their stability, affecting measurement accuracy 
and reliability. 

5 Experimental results and analyses 

For the application of stream processing-based distributed 
computing platform in submarine cable monitoring, the 
performance evaluation mainly relies on the key indexes 
such as latency, throughput, CPU utilisation and memory 
utilisation. The test data comes from the actual submarine 
cable data monitored by φ-OTDR, which are partitioned 
into 1000 × 1 single-point monitoring vectors, each 
representing 1000 data points collected at a single 
monitoring point at a sampling rate of 1 kHz in 1 second, 
which is regarded as an independent tuple of streaming data. 
The Kafka data streams are transferred from the φ-OTDR 
data generator to the cluster via Ethernet. The φ-OTDR was 
chosen for data acquisition due to its high-resolution and 
real-time monitoring capabilities, which are essential for 
detecting dynamic changes in submarine cable conditions. 
The data acquisition method was selected to ensure 
comprehensive coverage and accurate representation of the 
submarine cable’s operational status, providing reliable data 
support for subsequent analysis and processing. The dataset 
used for training and testing the model was carefully curated 
to include a wide range of operating conditions and 
potential fault scenarios, ensuring the model’s robustness 
and adaptability to various marine environments. The 
dataset, along with relevant configurations, will be made 
accessible to support further research and validation. In 
order to verify the effectiveness of the proposed subsea pile 
foundation and sea cable monitoring model based on sensor 
fusion and big data analysis in terms of the efficiency of sea 
cable detection and the accuracy of pile foundation crack 
identification, the following two experiments were designed 
and implemented. 

Table 1 Experimental results of submarine cable detection efficiency 

Location of 
monitoring points/m 

Types of underwater topography 
Detecting 

response time/ms 
Traditional methods 
for detecting time/ms 

Efficiency 
improvement 

Transfer 
rate/Mbps 

0–200 Muddy seabed 8.2 14.0 41.4% 12.5 

200–400 Rocky seabed 9.1 15.3 40.5% 11.8 

400–600 Strong water flow impact zone 10.5 17.8 41.0% 9.2 

600–800 Sediment mixing zone 8.9 15.1 41.1% 12.0 

800–1000 Boundary zone between rock and 
coral reefs 

7.8 13.5 42.7% 10.5 
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To demonstrate the practical application of the proposed 
monitoring method, a case study was conducted in the 
South China Sea. A comprehensive monitoring system was 
deployed along a 10-kilometre submarine cable that 
traverses diverse seabed terrains, including muddy and 
rocky areas, as well as regions with significant current 
impacts. This deployment enabled the validation of the 
system’s performance under various real-world conditions. 
A complete monitoring system was deployed in the actual 
sea environment, and a submarine cable with a total length 
of 10 kilometres was selected as the test object, which 
passes through different submarine topographies and 
environmental conditions, including muddy seabed, rocky 
seabed, and areas where there are obvious current impacts, 
in order to fully validate the performance of the system 
under various actual working conditions. In the 
experimental process, BOTDA is utilised to deploy 
monitoring points at a density of one per 200 metres to 
collect real-time strain and temperature data of the 
submarine cable, and at the same time, combined with the 
multibeam sonar and the AIS ship positioning system, to 
construct the external environment sensing network, the 
specific experimental results are shown in Table 1. The 
efficiency of the submarine cable detection is evaluated by 
recording and analysing the system’s response time, data 
transmission rate, and timeliness of fault detection when 
processing these data. The experimental results show that 
the proposed monitoring model can quickly and accurately 
detect abnormalities along the submarine cable with an 
average detection time of 8.7 ms, which is more than 40% 
more efficient than the traditional detection method, 
significantly improving the efficiency and timeliness of the 
submarine cable detection, and effectively guaranteeing the 
safe operation of the submarine cable. Compared to 
traditional data processing techniques, the proposed method 
demonstrates superior performance in real-time data 
analysis and fault detection accuracy. The integration of 
sensor fusion with big data analytics allows for more 
efficient processing of large-scale datasets, reducing latency 
and enhancing reliability in dynamic marine environments. 

For the accuracy of pile crack identification and  
three-dimensional positioning error, an actual wind power 
pile foundation of an offshore wind farm is selected as an 
experimental object, which has a diameter of 5 metres and is 
embedded in the seabed at a depth of 30 metres, in a 
complex marine environment. Biofouling-resistant MEMS 
acceleration sensor arrays are embedded inside the pile 
foundation structure in the form of a three-dimensional grid, 
while multibeam sonobuoys and AIS ship positioning 
systems are arranged around the pile foundation to construct 
a multidimensional monitoring network. By artificially 
creating simulated cracks at different locations of the pile 
foundation, the monitoring system is used to collect data 
such as vibration, displacement and strain when the cracks 
are generated, and compare and analyse them with the 
locations and dimensions of the actual cracks in order to 
assess the accuracy of crack identification and the  
three-dimensional positioning error. The experimental 

results show that the proposed monitoring model has an 
identification accuracy of 98% for pile foundation cracks, 
and the three-dimensional positioning error is less than 0.5 
m, which is a significant improvement compared with the 
traditional method, and it can effectively identify the early 
damage and potential failure of the pile foundation, which 
provides a reliable technical support for the safe operation 
and maintenance of the offshore engineering structures, the 
experimental results are shown in Figure 5. Statistical 
analysis with confidence intervals indicates that the 
identification accuracy has a 95% confidence interval of 
[97.5%, 98.5%], demonstrating the reliability of the results. 
Error bars in the performance comparisons further validate 
the model’s stability and superiority over traditional 
methods. 

Figure 5 Experimental results on the accuracy of pile foundation 
crack identification and three-dimensional positioning 
error (see online version for colours) 

 

Through the above two experiments, the sophistication and 
effectiveness of the submarine pile foundation and cable 
monitoring model based on sensor fusion and big data 
analysis in terms of the efficiency of cable detection and the 
accuracy of pile crack identification and three-dimensional 
localisation error are fully verified. 

To ensure the reliability and longevity of the monitoring 
system, comprehensive mitigation strategies and empirical 
degradation tests were implemented. Fibre optic sensors 
were equipped with protective coatings and underwent 
regular cleaning to combat biofouling and corrosion. 
Additionally, the sensors were subjected to simulated harsh 
environmental conditions to monitor and assess their 
performance degradation over time. The system design 
incorporated redundancy and fail - safe mechanisms, 
ensuring continued functionality even if certain sensors 
failed. Advanced real - time monitoring and data analysis 
algorithms were also employed to identify and address 
potential issues proactively, preventing significant system 
degradation. 
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6 Conclusions 

In this paper, an innovative monitoring method is proposed 
to address the challenges of submarine pile foundation and 
cable monitoring by integrating multi-source sensors and 
big data analysis technology. Based on the laid submarine 
fibre optic cable, DAS and BOTDA devices in the field of 
fibre optic sensing are used to achieve comprehensive 
monitoring of the submarine environment. A three-
dimensional comprehensive monitoring system for the 
environment of the submarine cable is constructed by 
integrating equipment such as AIS for ships, video 
monitoring and SMS cat. Meanwhile, integrating the alarm 
information of DAS, BOTDA and AIS and introducing deep 
learning algorithms, it significantly improves the early 
warning capability and positioning accuracy of the safety 
problems of submarine cables. The validation results in 
practical scenarios such as the Hainan networking project 
show that the method can effectively improve the efficiency 
of submarine cable detection and the accuracy of pile crack 
identification, and the three-dimensional positioning error is 
less than 0.5 m, providing a reliable technical support for 
the intelligent operation and maintenance of marine 
engineering. While the proposed method demonstrates 
significant advancements in monitoring submarine pile 
foundations and cables, it does have limitations in extreme 
environmental conditions and real-time data processing. 
Cost remains a considerable factor, with the deployment and 
maintenance of sensors in remote or deep-sea areas 
requiring substantial resources. Sensor longevity is also a 
concern, as prolonged exposure to harsh conditions may 
degrade performance over time. Additionally, achieving 
real-time scalability in such environments presents technical 
hurdles that need to be overcome. Future research will focus 
on enhancing the system’s robustness and optimising data 
analysis algorithms to address these challenges and further 
improve monitoring efficiency and accuracy. 
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