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Abstract: The dynamic assessment of the psychological state of college 
students is an important research direction in mental health management. In 
response to the problem of insufficient capture of psychological state changes 
by existing methods, this paper proposes a dynamic assessment method that 
combines multimodal physiological signal fusion and deep generation models. 
Firstly, collect multimodal physiological data and eliminate noise through 
timing synchronisation and data pre-processing techniques. Secondly, utilising 
a multimodal feature extraction network based on transformer structure to 
achieve feature fusion of physiological signals. Subsequently, an improved 
variational autoencoder (VAE) was designed, combined with an LSTM model, 
to predict the trend of psychological state changes. Technical support for  
real-time monitoring and tailored intervention of college students’ mental 
health status is provided by the experimental results showing that the suggested 
method outperforms current methods in terms of accuracy in psychological 
state classification and dynamic prediction performance. 

Keywords: multimodal physiological signals; dynamic assessment of 
psychological state; deep generative model; feature fusion; variational 
autoencoder; VAE. 
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1 Introduction 

The mental health issues of college students are increasingly becoming a focus of social 
attention (Rodríguez-Romo et al., 2022). With the acceleration of modern life pace and 
the increase of academic pressure, many college students have experienced psychological 
problems such as anxiety and depression (Sheldon et al., 2021). The sustained 
development of this state may have profound impacts on their academic, social, and 
future lives. Therefore, how to efficiently and accurately evaluate the psychological state 
of college students, especially dynamically monitor their mental health changes, has 
become an important research topic in the fields of psychology, education, and computer 
science (Kang et al., 2021). However, due to the subjectivity of psychological states and 
the complexity of their dynamic changes, traditional methods such as questionnaire based 
psychological assessment often have limitations such as poor real-time performance, low 
accuracy, and subjective results (Auerbach et al., 2016). In recent years, with the rapid 
development of multimodal physiological signals and deep learning technology, the 
dynamic assessment of psychological states is gradually achieving a leap from qualitative 
to quantitative, especially demonstrating significant advantages in real-time and 
personalised intervention capabilities (Cosoli et al., 2021). 

With great real-time performance and great resilience to subjective interference, 
multimodal physiological signals, such as heart rate variability (HRV), electrodermal 
activity (EDA), electroencephalography (EEG), etc. are important objective indicators of 
psychological status and are therefore widely used in mental health research. HRV is a 
key indicator of autonomic nervous system activity revealed by analysing time series 
signals of heart rate changes. Research has shown that HRV can reflect an individual’s 
emotional fluctuations and stress levels. For example, Shaffer and Ginsberg (2017) 
briefly reviewed current views on the mechanisms of 24-hour, short-term (five-minute), 
and ultra short term (< five-minute) HRV generation, the importance of HRV, and its 
impact on health and performance. Posada-Quintero and Chon (2020) pointed out that 
EDA not only contains information in the slow changes (pitch components) represented 
by the mean, but also in the fast or phase changes of the signal. In emotion classification 
research, Liu et al. (2011) focused on identifying ‘intrinsic’ emotions from 
electroencephalogram (EEG) signals. A real-time fractal dimension based algorithm was 
proposed to quantify basic emotions using the arousal valence emotion model. Two 
emotion induction experiments were proposed and implemented, using music stimulation 
and sound stimulation from the International Emotionally Digital Sound (IADS) 
database, respectively. Finally, a real-time algorithm was proposed, implemented, and 
tested to identify six emotions: fear, frustration, sadness, happiness, joy, and satisfaction. 
In addition, Baltrušaitis et al. (2018) investigated the latest developments in multimodal 
machine learning itself and introduced them in a general classification system. 

Deep learning technology’s strong feature extracting and nonlinear modelling powers 
have made it extensively used in the field of psychological state evaluation (Liu and Liu, 
2021). Aldayel et al. (2020) employed a deep learning approach that utilises EEG signals 
from the DEAP dataset to detect preferences by considering power spectral density and 
price features. The results show that although the proposed deep learning algorithm 
exhibits higher accuracy, recall, and precision compared to k-nearest neighbours and 
support vector machine algorithms, the random forest achieves similar results to deep 
learning on the same dataset. Recurrent neural networks (RNNs) and their variants, long 
short-term memory networks (LSTMs), focus on processing time series data and can 
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capture long-range dependencies of physiological signals. The spatiotemporal hybrid 
network combined with CNN further improves the classification accuracy of multimodal 
psychological states (Chen et al., 2023). Generative adversarial networks (GANs) and 
variational autoencoders (VAEs) have emerged as deep generative models in 
psychological state assessment in recent years (Goodfellow et al., 2020). 

While the above described research shows great development, the technology of 
dynamic assessment of psychological states still faces the following difficulties: 
inadequate depth and efficiency of multimodal feature fusion; present research generally 
uses simple feature concatenation or decision fusion, which makes it difficult to totally 
examine the complementarity and temporal correlation between signals. Most studies 
concentrate on stationary psychological state classification, thereby lacking the capacity 
to detect and forecast dynamic changes in psychological states. Generative models have 
limited application depth; their promise in psychological state modelling has not been 
fully realised, particularly in dynamic generation and time series prediction; so, there is 
still much need for development of current techniques. 

In response to the foregoing problems, this paper suggests a dynamic assessment 
technique for the psychological status of college students combining deep generation 
models with multimodal physiological signal fusion. The major gifts are: 

1 Propose a multimodal feature extraction network based on Transformer architecture, 
which efficiently captures the complementarity and temporal correlation between 
signals. 

2 An improved VAE was designed, combined with LSTM to generate dynamic 
changes in psychological states, which improved the accuracy and robustness of 
dynamic evaluation. 

3 Using a dataset of college students’ mental health, experimental validation was 
carried out on which our approach beats current methods in both classification 
accuracy and dynamic prediction performance, so offering technical support for  
real-time monitoring and tailored intervention of psychological states. 

2 Relevant technologies 

2.1 Transformer model 

Characterised by a totally self attention based and parallelised architecture design, which 
abandons the constraints of conventional RNNs or convolutional neural networks in 
processing sequential data, the transformer model is a revolutionary architecture in the 
field of deep learning (Frigant and Jullien, 2014). A transformer consists fundamentally 
in encoder and decoder (Khan et al., 2022). Encoders help to encode input sequences into 
context sensitive feature representations. The decoder generates the last result depending 
on the target sequence and encoder output. Every module consists of numerous layered 
sub layers: multi head self attention technique, feedforward neural network, residual 
connections, and layer normalisation (Olivares-Galván et al., 2009). Figure 1 shows the 
model diagram. 
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Figure 1 Schematic diagram of transformer model (see online version for colours) 
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The self-attention mechanism seeks to give weights to every sequence position, therefore 
capturing global dependencies. It computes a weight matrix, then applies weighted 
summation using each pair of words in the input sequence. 

Given input matrix X  Rnd (where n is the sequence length and d is the embedding 
dimension), first project it into a query vector (Q), a key vector (K), and a value vector 
(V), using the following equation: 

QQ XW  (1) 

KK XW  (2) 

VV XW  (3) 

where , , Kn d
Q K VW W W R   is the learnable weight matrix, and dk is the hidden space 

dimension of the attention mechanism. Next, calculate the attention score (attention 
weight): 

( , , )
T

k

QK
Attention Q K V softmax V

d

 
  

 
 (4) 

where QKT  Rnm is the attention score matrix, which represents the importance of each 

position in the sequence to other positions. kd  is the scaling factor to avoid gradient 

instability caused by excessive inner product values. The softmax function normalises 
scores into probability distributions. 
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Multihead attention is proposed since single head attention may not be able to capture 
intricate characteristics. Multiple attention heads of parallel computing improve the 
expressive capability of the model: 

 1( , , ) , ..., h oMultiHead Q K V Concat head head W  (5) 

The calculation of each attention head is: 

 , ,i i i
i K VQhead Attention QW KW VW  (6) 

where h is the number of attention heads. , ,i i i
K VQW W W  is the projection matrix of the ith 

attention head. Wo is the output projection matrix. 
Transformers lack a cyclic structure; hence, it is necessary to especially supply 

positional information to preserve the sequential traits of the input sequence. Position 
encoding uses a fixed sine function: 

2
( , 2 ) sin

1,000
i

d

pos
PE pos i

   
 
 

 (7) 

2
( , 2 +1) cos

1,000
i

d

pos
PE pos i

   
 
 

 (8) 

where pos is the position of a word in the sequence. i stands for the embedded vector’s 
dimension index. Together with content and spatial information, the produced encoding 
is included into the input embedding vector. 

Following the self attention process in every transformer layer is a feedforward neural 
network. The equation looks like: 

 1 1 2 2( ) Re + +FFN X LU XW b W b  (9) 

where W1 and W2 are weight matrices. 
Residual connection and layer normalisation helps each sub layer produce better 

outputs for training stability: 

( + ( ))Output LayerNorm X SubLayer X  (10) 

Residual connections solve gradient vanishing in deep network training. By standardising 
the input distribution, layer normalising speeds convergence. 

Transformer’s theoretical heart is self attention mechanism and its extension (multi 
head attention), together with methods including position encoding, feedforward neural 
network, residual connection, and layer normalisation, so creating a potent and effective 
sequence modelling framework (Si et al., 2022). With its architecture, transformer has 
created a fresh paradigm for the field of deep learning with outstanding performance in 
tasks including natural language processing, time series analysis, and multimodal data 
fusion. 
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2.2 Variational autoencoder 

VAE is a generative model combining deep learning’s benefits with those of probabilistic 
graph models. It presents probabilistic inference theory to enable better under control and 
interpretable data creation. VAE is fundamentally based on using deep neural networks to 
rapidly learn latent variables via variational inference and estimate the latent distribution 
of high-dimensional data (Vahdat and Kautz, 2020). Figure 2 shows the VAE model; μ 
and σ respectively reflect the mean and standard deviation of the Gaussian distribution. 
One may export them from the decoder output. ε can be seen as a kind of random noise 
applied to preserve z’s randomness and produce ε from a normal distribution. 

Figure 2 VAE model schematic diagram (see online version for colours) 
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VAE is based on a probabilistic generative model framework, assuming that the observed 
data x is generated by the latent variable z. The generation process is modelled as: 
sampling the latent variable z from the prior distribution p(z), and then generating the 
observed data x based on the generative distribution pθ(x| z). 

Optimise the model by maximising the edge likelihood pθ(x) of the observed data. 
However, directly optimising pθ(x) is usually not feasible because it involves integrating 
all possible z values: 

( ) ( | ) ( )θ θp x p x z p z dz   (11) 

In high-dimensional settings, computing this integral can be somewhat challenging. VAE 
thus developed variational inference to simulate this distribution. 

To approximate pθ(x), an approximate posterior distribution qθ(x| z) was introduced, 
and then the evidence lower bound (ELBO) was maximised instead of directly optimising 
pθ(x). The ELBO equation is: 

   Φ ( | ) Φlog ( ) log ( | ) ( | ) ( )θ q z x θ KLp x E p x z D q x z p z   (12) 

Reconstruction error comes first and shows how similar the produced data is to the actual 
data. The second is Kullback Leibler divergence, which represents the difference between 
the approximate posterior distribution qΦ(x| z) and the prior distribution p(z). 

Maximising ELBO is equivalent to simultaneously minimising reconstruction error 
and KL divergence, thereby achieving a distribution qΦ(x| z) in the latent space that is 
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close to the prior distribution p(z), and a good representation of data x in the latent space, 
making it easy to generate. 

VAE consists of a decoder and an encoder. The goal of the encoder is to map the 
observed data x to the distribution parameters (mean and variance) of the latent variable 
z. Assuming qΦ(x| z) is a multidimensional Gaussian distribution: 

  2
Φ Φ Φ( | ) ( ), ( )q x z N z μ x diag σ x  (13) 

The encoder network outputs the mean μΦ(x) and logarithmic variance 2
Φlog ( )σ x  of the 

latent variables, and the specific process is as follows: 

2
Φ Φ Φ Φ( ) ( ), log ( ) ( )μ σμ x f x σ x f x   (14) 

where Φ Φandμ σf f  are neural networks. 

The goal of the decoder is to reconstruct data x from latent variable z. The generated 
distribution pθ(x| z) can also be assumed to be a Gaussian distribution: 

 ( | ) ( ),θ θp x z N x μ z I  (15) 

The average of the reconstructed data output by the decoder network is μθ(z), which is 
obtained through network mapping z: 

( ) ( )θ θμ z g z  (16) 

Direct sampling from the distribution will cause the gradient to be unable to be 
backpropagated, therefore sampling the latent variable z. VAE thus embraced a 
reparameterising trick: 

( ) + ( ) , (0, )z x x N I        (17) 

where ε is random noise sampled from the standard normal distribution. Through this 
technique, gradients can optimise network parameters Φ and θ. 

VAE is by effectively learning latent spatial structure characteristics from 
complicated data by aggregating the theories of deep learning and probabilistic graph 
models (Islam et al., 2021). 

2.3 LSTM 

LSTM is a unique kind of RNN intended to tackle the problem of vanishing or exploding 
gradients in standard RNNs when learning long-term dependencies (Greff et al., 2016). 
By including gating mechanisms and well crafted unit structures, LSTM efficiently 
captures both short-term and long-term dependencies in sequential data (Yadav and 
Thakkar, 2024). 

Although RNN is one of the primary models for handling sequential input, its chain 
structure causes gradients to either swiftly erode (vanishing) or endlessly expand 
(exploding) when backpropagating over extended sequences. Ordinary RNNs find it 
challenging to recall contextual information from longer time steps as result (Kratzert  
et al., 2024). LSTM may perform well in long-term dependent sequence learning tasks 
via design of specific memory cells and gating mechanisms. LSTM’s fundamental 
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concept is to use cell state and gating processes to regulate memory and forgetting of 
information, therefore addressing long-term reliance. 

3 A dynamic evaluation method combining multimodal physiological 
signal fusion and deep generation model 

Combining multimodal physiological signal fusion with deep generative models, this 
paper suggests a dynamic psychological state evaluation technique. Three essential 
elements define the approach: dynamic modelling of hidden space using deep generative 
models, multimodal physiological signal pre-processing and feature extraction, and 
prediction of psychological state change trends. 

3.1 Acquisition and pre-processing of multimodal physiological signals 

Included among multimodal physiological signals are HRV, EDA, and EEG. These 
signals come from electroencephalogram devices, skin conductance measuring tools, and 
electrocardiogram sensors, in that sequence. Following timing synchronisation methods 
helps to guarantee signal consistency and timing alignment: 

+Δaligned source calibrationt t t  (18) 

where taligned represents the aligned timestamp, tsource is the original timestamp, and 
∆tcalibration is the correction value estimated based on time deviation. 

Pre-process the collected signals as follows: 

 Denoising: wavelet transform is used for signal denoising. Given signal x(t), its 
wavelet decomposition is: 

,( ) Ψ , ( )j k

j k

x t c j k t  (19) 

where Ψj, k(t) is the wavelet basis function, and cj,k is the wavelet coefficient. 

 Normalisation: normalise the modal signals using the following equation: 

x
normalised

x

x μ
x

σ


  (20) 

where μx and σx are the mean and standard deviation of signal x, respectively. 

3.2 Multi modal feature extraction and fusion based on transformer 

Varied modalities of physiological signals have varied temporal traits and information 
distribution. Every modality is encoded in a transformer-based feature extraction network 
in order to replicate the characteristics of the signal. The major actions consist in: 

 Input embedding: given time series signals of HRV, EDA, and EEG as XHRV, XEDA, 
and XEEG respectively, generate input embeddings through linear transformation: 

+modality embed modality embedz W X b  (21) 



   

 

   

   
 

   

   

 

   

    Dynamic evaluation of college students’ psychological state 141    
 

    
 
 

   

   
 

   

   

 

   

       
 

A multi head self attention method is proposed to capture temporal correlations.  
Key, query, and value of the provided input sequence are Q, K, V. Calculating  
self-attention requires: 

( , , )
T

k

QK
Attention Q K V softmax V

d

 
  

 
 (22) 

where kd  is the dimension of the key. 

 Feature output: the temporal correlation of multimodal signal features is obtained 
through self attention mechanism, which are FHRV, FEDA, and FEEG, respectively 

By linearly fusing the features of each modality, a multimodal feature representation is 
obtained: 

1 2 3+ +fusion HRV EDA EEGF F F F    (23) 

where 1, 2, 3 is a trainable weight that satisfies 1 + 2 + 3 = 1. 

3.3 Improved VAE model 

In order to generate dynamic features of psychological states, an improved VAE is used 
to model multimodal feature Ffusion. VAE models data generation by introducing 
probability distributions and its key steps include: 

 Encoder: generate distribution parameters of latent variables for input feature Ffusion: 

   2
Φ ,fusionq z F N μ σ  (24) 

where μ = fu(Ffusion) and σ = fσ(Ffusion) are generated by neural networks. 

 Reparameterisation technique: transform the sampling process into differentiable 
operations through reparameterisation: 

+ , (0, )z μ σ ε ε N I    (25) 

 Decoder: reconstruct features from hidden variable z: 

 | ( )θ fusion decodep F z f z  (26) 

 Loss function: the loss function consists of reconstruction error and KL divergence: 

      Φ Φ| log | | ( )
fusionVAE θ fusion fusionq z FL E p F z KL q F z p z      (27) 

Combining the latent space representation of z, model the trend of psychological state 
changes through LSTM. Given sequence {z1, z2, …, zt}, the formula for LSTM recursive 
update is: 

 1,t LSTM t th f z h   (28) 

+t out t outy W h b  (29) 
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where ht is the hidden state, and yt is the predicted psychological state feature. Finally, by 
combining the dynamic generation of latent space and time series prediction, a dynamic 
assessment of psychological states can be achieved. 

Combining multimodal feature extraction, enhanced VAE generating of latent space 
distribution, and LSTM time series modelling, this method fully achieves the dynamic 
evaluation of college students’ psychological status. Different modules taken together can 
efficiently capture the intricate dynamic properties of psychological states. 

4 Experiment 

4.1 Dataset 

Mostly containing HRV, EDA, and EEG data, the carefully screened and scientifically 
developed set of multimodal physiological signal data used in this work contains. These 
data are obtained from publically accessible databases of multimodal mental health 
research covering the physiological expressions of college students in various 
psychological states, therefore guaranteeing the variety and representateness of the data. 

This work selected data from publicly available multimodal sentiment analysis and 
mental health research datasets, AMIGOS (a dataset for multimodal research of affect, 
personality, and mood) and DEAP (a dataset for emotion analysis using physiological 
signals), so ensuring the dependability and comparability of the data. These datasets 
cover variations in the psychological state of participants by means of physiological 
signals gathered under various experimental settings, therefore reflecting changes in the 
psychological state of viewers watching emotional movies or accomplishing particular 
activities. 

4.2 Data pre-processing 

A sequence of standardised data pre-treatment and signal processing methods has been 
followed to guarantee the correctness and effectiveness of multimodal data: 

Low-pass filters help to remove HRV signal high-frequency noise; the wavelet 
denoising of EDA signals reduces electrode noise interference; Using independent 
component analysis ICA approach and electromyographic artefact processing including 
eye electrical interference, remove artefacts from EEG recordings. 

Time-domain and frequency-domain aspects of HRV signal feature extraction (such 
as high-frequency power HF, low-frequency power LF); EDA signal feature extraction: 
based on signal derivatives, skin conductance response event extraction Calculate the 
power spectral density of several frequency ranges (like alpha and beta waves) by 
wavelet transform. 

After pre-processing, all modalities’ data are standardised so standardising the 
numerical range and so removing the impact of data scales between several modalities. 

4.3 Baseline model 

This work performed comparison studies using the following four current models to 
confirm the efficiency of the approach: 
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1 Single modal feature extraction model (WTSVM) (Chui et al., 2023): uses CNN to 
extract features from HRV signals. 

2 Early multimodal feature fusion model (ACMNet) (Zhao et al., 2021): directly 
concatenate multimodal signals and input them into a multi-layer perceptron (MLP) 
for classification. 

3 Traditional time series prediction model (GRU) (Salem, 2022): using GRU to 
process time series data of psychological states, it has the ability to handle long-term 
dependencies. 

4 AEVB model (Lopez et al., 2020): making decisions based on a model that conforms 
to AEVB. 

4.4 Comparison of experimental results 

In order to measure the training effect of this model, the experimental scores are plotted 
in this section, as shown in Figure 3. As shown in the figure, it is the AUC curve in a 
model experiment, and the AUC value is 0.85, indicating that this chapter has achieved 
good detection effect. This is because the improved enhanced encoder can obtain better 
feature extraction effect, and the counter decoder can amplify the reconstruction error. 

Figure 3 Experimental score chart 

 

In order to observe the overall reconstruction effect, a sensor is selected in this section to 
visualise the original data and reconstruction data respectively. The reconstruction effect 
is shown in Figure 4. The colour of the original data is black, and the colour of the 
reconstructed data is red. It can be observed that the overall data reconstruction effect is 
very good, and the complex multi frequency changes of the sensor can also coincide well, 
which shows the effectiveness of the reconstruction algorithm. 
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Figure 4 Sensor reconstruction rendering (see online version for colours) 

 

In order to verify the improvement of the training speed of this model, this section 
conducts a comparative experiment of detection time and training time for the above 
baseline algorithm, records the detection time of the whole test set and the average time 
spent on training on each epoch, and draws the comparison of detection time as shown in 
Table 1 and the comparison of training time as shown in Table 2. 

Table 1 Comparison of detection time 

Method Test duration (seconds) 

WTSVM 3.12 

ACMNet 2.7 

GRU 2.52 

AEVB 1.84 

TVLSTM 1.53 

Table 2 Comparison of training time 

Method Training duration (seconds) 

WTSVM 563 

ACMNet 105 

GRU 22 

AEVB 10 

TVLSTM 87 

5 Conclusions 

Combining multimodal physiological signal fusion with deep generation models, this 
paper suggests a dynamic assessment approach for the psychological condition of college 
students. Using temporal synchronising and data pre-processing methods, the study 



   

 

   

   
 

   

   

 

   

    Dynamic evaluation of college students’ psychological state 145    
 

    
 
 

   

   
 

   

   

 

   

       
 

gathered multimodal physiological data including HRV, EDA, and EEG and guaranteed 
signal consistency and high quality. Based on Transformer structure, the feature 
extraction network efficiently combines multimodal data, detects the temporal correlation 
and complementary properties of signals. Enhanced VAE combines LSTM to forecast the 
dynamic trends of psychological states and develops their latent spatial distribution. This 
work offers a fresh method for field-based quantitative evaluation in the domain of 
mental health. Integration of multimodal physiological information with deep learning 
models not only increases the accuracy of dynamic assessment but also has major 
consequences for the research of psychological state prediction and intervention 
mechanisms. To improve the resilience and generality of the model even further, future 
research will widen application situations and enlarge datasets. 
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