Preliminary results on modelling of primary water stress corrosion cracking at control rod drive mechanism nozzles of PWR nuclear plants
by Omar F. Aly, A.H.P. Andrade, M. Mattar Neto
International Journal of Nuclear Energy Science and Technology (IJNEST), Vol. 3, No. 2, 2007

Abstract: One of the main deterioration modes that cause risks to pressurised water reactors is the Primary Water Stress Corrosion Cracking (PWSCC) at the Control Rod Drive Mechanism (CRDM) nozzles in the reactor pressure vessel. These cracks can cause accidents that reduce nuclear safety, and/or leakage of primary water. In this paper, preliminary modelling to predict these failures is proposed. The potential-pH diagram for Alloy 600 on primary water at high temperature is assumed. Over it is marked the region where the PWSCC cracks can initiate and propagate. Later, a comparative model is superimposed based on strength fraction to PWSCC, a strain rate damage model and a semi-empirical one that can describe the time of failure. Some preliminary results are presented and discussed. These models are adequate for using experimental data to be obtained from Slow Strain Rate Testing (SSRT) at the CDTN-Development Center of Nuclear Technology, Belo Horizonte, Brazil.

Online publication date: Mon, 23-Jul-2007

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nuclear Energy Science and Technology (IJNEST):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com