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Abstract: This article explores the innovative application of deep learning 
technology in re-imagining ethnic elements in animation, based on Jungian 
archetype theory. Addressing the homogenisation of traditional cultural 
symbols in animation amid globalisation, a three-dimensional creation model of 
‘archetype decoding-intelligent generation-cultural verification’ is proposed. 
By building a deep neural network database of traditional patterns, 
mythological themes, and opera elements, and utilising generative adversarial 
networks (GANs) and variational autoencoders (VAEs), cultural archetypes are 
deconstructed and reassembled. Case studies demonstrate that this approach 
effectively extracts collective unconscious features from ethnic elements while 
preserving the spiritual core of cultural archetypes, generating innovative visual 
expressions with modern aesthetics. The research offers interdisciplinary 
insights for the innovative inheritance of cultural heritage from a digital 
humanities perspective and opens new technological pathways for animation 
creation in the AI era. 

Keywords: deep learning; generate adversarial networks; variational 
autoencoder; VAE; animation creation. 
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1 Introduction 

In the current era of globalisation and deep integration of digital technology, animation 
art is undergoing unprecedented cultural reconstruction. As an important carrier of  
cross-cultural communication, how animation works establish a creative dialogue 
between local cultural genes and global aesthetic paradigms has become a key topic in 
the field of digital humanities (Jiang et al., 2022; Crawford, 2013; Shuo, 2021). Carl 
Jung’s prototype theory points out that there are primitive images that transcend time and 
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space in the collective unconscious of human beings (Li and Zhuge, 2022). These cultural 
prototypes constitute the spiritual matrix of national art, but they face a dual dilemma in 
contemporary animation creation: on the one hand, the commercialisation wave has led to 
visual fast food production, which has reduced national elements to formulaic visual 
textures, resulting in a rupture between the signifier and signified of cultural symbols 
(Leslie and McKim, 2017; Stadlinger et al., 2021). On the other hand, digital creation 
driven by rational technological tools often falls into the value paradox of formal 
innovation and cultural aphasia (Limano, 2021) This deep contradiction is particularly 
prominent in the context of Chinese culture - the curves and rhythms of the eaves of the 
Forbidden City, the geometric order of Dunhuang coffered ceilings, and the virtual and 
real aesthetics of traditional Chinese opera. These visual prototypes, which carry the code 
of a thousand years of civilisation, urgently need to be transformed into contemporary 
forms through methodological breakthroughs in technical philosophy (Dinç, 2023). 

The intervention of digital technology has provided new possibilities for cultural 
inheritance (Mihailova, 2013). In recent years, deep learning techniques such as GANs 
and neural style transfer (NST) have demonstrated powerful image generation and 
stylisation capabilities in the field of artistic creation (Yasa and Pratistha, 2024). 
However, existing research mostly focuses on visual imitation at the technical level, 
lacking a deep decoding of the spiritual core of cultural prototypes. The limitations of this 
technological path lead to two fundamental problems: firstly, the cultural symbols 
generated by algorithms often remain at the surface level of collage and reorganisation, 
making it difficult to reach the collective unconscious emotional resonance layer; 
secondly, there is an explanatory gap between the black box nature of machine learning 
and the openness of humanistic interpretation, making it difficult to verify the cultural 
legitimacy of the generated results. At its core, it lies in the failure to establish an 
interdisciplinary research framework that connects cultural psychology and 
computational aesthetics, resulting in a structural alienation between technological tools 
and cultural subjectivity (Wang et al., 2022). 

In response to the above challenges, this study proposes the methodology of 
‘prototype theory driven artificial intelligence recreation’. A deep cultural analysis 
framework based on Jung’s prototype theory, combined with the feature deconstruction 
ability of deep learning technology, constructs a three-dimensional creative model of 
‘prototype decoding intelligent generation cultural verification’. Its innovation is 
reflected in three dimensions: firstly, at the cognitive level, ethnic elements are regarded 
as ‘computable cultural prototypes’, and their multi-layered structures of signifier (visual 
form), signified (symbolic meaning), and meta type (collective unconscious) are analysed 
through semiotic matrices; secondly, at the technical level, develop generative models 
with cultural awareness, use variational autoencoders (VAEs) to extract the potential 
spatial distribution of prototype features, and creatively couple traditional aesthetic 
paradigms with contemporary visual grammar through adversarial training; finally, at the 
value level, a cultural subjectivity verification mechanism is introduced, combined with 
semiotic analysis and anthropological evaluation, to ensure that algorithm generation 
conforms to both machine computable style rules and humanistic interpretable cultural 
legitimacy. 

With the rapid development of artificial intelligence technology, especially the 
breakthrough of deep learning technology in image processing and generation, 
researchers have begun to explore the application of deep learning in cultural creation 
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(Zhang and Pu, 2024). Deep learning, especially GAN and VAE, has achieved significant 
results in image generation, style transformation, and other fields, which can greatly 
achieve innovative re creation of traditional cultural elements (Yang, 2024). 

Jung’s prototype theory provides a profound psychological framework for 
understanding cultural symbols. According to Jung’s theory, prototypes not only exist in 
an individual’s unconscious, but also serve as a common symbol across cultures and 
histories, reflecting the foundation of human collective unconsciousness. Many studies 
have combined prototype theory with artificial intelligence technology to explore how to 
extract, reconstruct, and reproduce cultural prototypes using machine learning methods. 
The prototype theory proposed by Jung (1936) provides a theoretical basis for subsequent 
research, especially in exploring the common deep psychological structures behind 
cultural symbols. 

In recent years, research on the application of deep learning in cultural heritage and 
artistic creation has gradually increased. Wu and Ko (2021) explored the application 
principles and current status of generative adversarial networks in art, and studied the 
theme of integrating generative adversarial networks into artistic creation. This study 
indicates that GAN can effectively deconstruct and reconstruct traditional cultural 
symbols, making them more in line with modern aesthetic needs and solving the 
homogenisation problem faced by traditional culture in the context of globalisation. For 
the recreation of ethnic art, Belhi et al. (2023) solved the problem related to physically 
damage cultural relics through a new image reconstruction method based on supervised 
and unsupervised learning. On the other hand, the application of deep learning in the 
deconstruction of cultural prototypes is gradually gaining attention. Vougioukas et al. 
(2020) studied how to combine GANs with traditional cultural elements and proposed the 
feasibility of using deep learning models for prototype deconstruction and innovation 
generation. This study indicates that deep learning techniques can extract and reproduce 
the prototype features of traditional cultural symbols through digital processing, while 
avoiding the loss of traditional culture in the process of re creation. 

Although some progress has been made in existing research, there is still a lack of 
systematic frameworks and innovative methods for systematically combining prototype 
theory and deep learning techniques to promote the digital re creation of traditional 
cultural symbols. This article proposes a three-dimensional creation model that combines 
prototype decoding, intelligent generation, and cultural verification. By constructing a 
deep neural network database containing traditional ethnic elements and using GAN and 
VAE technologies, cultural prototypes can be deconstructed and regenerated to explore 
more systematic cultural creation methods. 

This study achieved systematic innovation in theoretical framework, technical path, 
and evaluation system in the field of animation ethnic element re creation by deeply 
integrating Jungian prototype theory and deep learning technology. In response to the 
homogenisation crisis and mechanical replication dilemma faced by traditional cultural 
symbols in the digital age, this article first constructs a three-dimensional 
interdisciplinary paradigm of ‘prototype decoding intelligent generation cultural 
verification’, bridging the theoretical gap between collective unconscious analysis and 
computable aesthetic generation. At the technical implementation level, the developed 
cultural perception generation architecture decouples the surface visual features and deep 
semantic prototypes of ethnic elements through a hierarchical VAE-GAN model, and 
combines cross modal attention mechanisms to achieve dynamic recombination of 
cultural genes such as traditional patterns and mythological motifs. 
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2 Relevant technologies 

2.1 Generative adversarial networks 

The theoretical framework of generative adversarial networks is based on the dynamic 
game between generator (G) and discriminator (D), with the core goal of enabling the 
generator to learn implicit representations of the real data distribution pdata(x) through 
adversarial training (Goodfellow et al., 2020; Creswell et al., 2018; Wang et al., 2017). 
The core mathematical expression of this theory is a minimax game, whose value 
function is defined as: 

( ) ( )min max ( , ) Ε [log ( )] Ε [log(1 ( ( )))]x Pdata x z Pz z
G D

V D G D x D G z∼ ∼= + −  (1) 

where x ~ pdata(x) represents the sample sampled from the real data distribution (such as 
traditional ethnic pattern images), and z ~ pz(z) is the noise vector sampled from the latent 
space (usually the standard Gaussian distribution N(0, I). The task of generator G(z) is to 
map noise z to generated sample x′ = G(z), while the output of discriminator D(x) is a 
probability value representing the likelihood that input sample x comes from the true 
distribution rather than generated distribution pg(x) (Aggarwal et al., 2021). The essence 
of this game process is to gradually approach the true data distribution with the generator, 
while the discriminator continuously improves its discriminative ability until both reach 
Nash equilibrium. At this point, the generator’s distribution pg(x) completely overlaps 
with the true distribution pdata(x), and the discriminator’s discriminative probability for all 
samples remains constant at D(x) = 0.5. 

However, the original GAN often faces gradient vanishing and mode collapse 
problems during training. Therefore, Wasserstein GAN (WGAN) introduces Wasserstein 
distance (also known as Earth Moore distance) as a measure of distribution differences, 
and its objective function is rewritten as: 

[ ]( ) ( )min max Ε ( ) Ε ( ( ))x Pdata x z Pz z
G D

D x D G z−   (2) 

The discriminator D is constrained to a 1-Lipschitz continuous function, i.e., its gradient 
norm satisfies ||∇xD(x)|| ≤ 1. This constraint can be implemented through gradient 
penalty: 

( )ˆ

2
ˆ ˆ 2ˆ( ) 1xx P xλ E D x∼

 ⋅ ∇ −   (3) 

where ˆ (1 ) ( )x εx ε G z= + −  is the linear interpolation between the real sample and the 
generated sample ε ~ U[0, 1]. By optimising the objective function, WGAN significantly 
improves training stability, enabling the generator to more comprehensively cover the 
multimodal characteristics of the true distribution (Gui et al., 2021; Liu and Tuzel, 2016; 
Wang et al., 2019). 

In the generation of ethnic elements in animation, it is often necessary to control the 
content based on specific cultural labels (such as ‘Dunhuang style’ or ‘opera program’). 
For this purpose, conditional generative adversarial networks (CGAN) input conditional 
information y (such as text descriptions or category labels) into both the generator and 
discriminator, and their objective function is extended to: 
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, ,min max ( , ) [log ( | )] [log(1 ( ( | )| )]x y Pdata z Pz y Py
G D

V D G E D x y E D G z y y∼ ∼ ∼= + −  (4) 

At this point, generator G(z|y) maps the noise z and condition y together into samples that 
conform to a specific cultural prototype. For example, when y represents ‘Miao silver 
decoration pattern’, the generator can output decorative patterns with geometric 
symmetry and plant totem features. 

During the training process, parameters θG and θD of the generator and discriminator 
are updated through alternating gradient descent. The update rule for the discriminator is: 

( ) ( )( )( )( ) ( )

1 1

1 1log log 1D

m m
i i

D D D θ
i i

θ θ η D x D G z
m m= =

 
← + ⋅∇ + −  

 
   (5) 

The update of the generator attempts to minimise the discriminator’s ability to recognise 
generated samples: 

( )( )( )( )

1

1 log 1G

m
i

G G G θ
i

θ θ η D G z
m =

 
← + ⋅∇ −  

 
  (6) 

where ηD and ηG are the learning rates of the discriminator and generator, respectively, 
and m is the batch size. To improve training stability, spectral normalisation technique is 
applied to constrain the spectral norm of the discriminator weight matrix, thereby 
enhancing Lipschitz continuity; feature matching avoids pattern collapse by forcing the 
generated samples to match the feature statistics (such as mean and variance) of the real 
samples in the middle layer of the discriminator (Hong et al., 2019). 

In the task of generating cultural elements, the potential space of the generator can be 
decoupled into style encoding s (such as the curve shape of cloud patterns) and content 
encoding c (such as the topological structure of patterns), and the generation process can 
be modelled as: 

( ) ( ) ( ), ,s c s cG z G s G c s p c p= ⊕ ∼ ∼  (7) 

where ⊕ represents feature fusion operation (such as channel concatenation). The  
multi-scale discriminator architecture further ensures that the generated results conform 
to cultural prototypes at different granularities through a hierarchical verification 
mechanism: the low resolution discriminator D1 focuses on local details (such as line 
accuracy), the mesoscale discriminator D2 verifies structural symmetry, and the  
high-resolution discriminator D3 evaluates the match between global semantics and 
cultural prototypes. 

From the perspective of mathematical convergence, the training of GANs can be seen 
as minimising the Jensen Shannon divergence between the true distribution pdata and the 
generated distribution pg: 

( ) 1 1
2 2 2 2

data g data g
data g data g

p p p p
JSD p p KL p KL p

 +   + 
= +   

   
 (8) 

WGAN achieves more stable distribution alignment by minimising Wasserstein distance 
W(pdata, pg). 
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2.2 Variational autoencoder 

VAE is a probabilistic generative model based on variational inference, whose core 
objective is to learn the latent distribution structure of observed data x (such as ethnic 
pattern images) through the inference and generation process of latent variable z (Cemgil 
et al., 2020). The mathematical framework of VAE is based on a probability graph 
model, assuming that the data generation process follows the following latent variable 
model: the observed data x is generated by the latent variable z through the decoder 
network pθ(x|z), and the latent variable z follows a prior distribution p(z) (usually a 
standard Gaussian distribution N(0, I)). Due to the difficulty in directly solving the true 
posterior distribution p(z|x), VAE introduces a variational distribution qθ(z|x) 
(parameterised by the encoder network) to approximate the posterior and performs joint 
optimisation by maximising the evidence lower bound (ELBO): 

, ,min max ( , ) [log  ( | )] Ε [log(1 ( (( | )| ))]x y Pdata z Pz y Py
G D

V D G E D x y D G z y y∼ ∼ ∼= + −  (9) 

The first item is the reconstruction loss, which measures the similarity between generated 
sample x′ = pθ(x|z) and the original data x; the second term is the KL divergence 
regularisation term, which constrains the degree of deviation between variational 
distribution qφ(z|x) and prior distribution p(z), and hyperparameter β is used to balance 
the weights of the two terms. Encoder qφ(z|x) is typically modelled as a Gaussian 
distribution: 

( )2( ), ( )N μ x σ x Iφ φ  (10) 

The mean μφ(x) and variance 2 ( )σ xφ  are output by the neural network; decoder qφ(z|x) 
selects Bernoulli or Gaussian distribution based on the data type. 

VAE employs reparameterisation trick to transform the sampling process of latent 
variable z from 2( ( ), ( ) )z N μ x σ x I φ φ  to a deterministic function: 

( ), ( ) , ~ (0, )z μ x σ x ε ε N I= φ φ  (11) 

where   represents element wise multiplication. This allows gradient calculation to 
bypass random node ε and propagate directly through nodes μφ(x) and σφ(x). In the 
generation of ethnic elements in animation, the encoder compresses the input pattern 
image x into latent encoding z (such as containing abstract features such as geometric 
symmetry and colour patterns), and the decoder reconstructs or generates new design 
variants based on z (An and Cho, 2015). 

Unlike the implicit modelling of GANs, the explicit probabilistic nature of VAE 
naturally supports structured manipulation of latent space. For example, in the task of 
cross style transfer of ethnic clothing patterns, local feature decoupling can be achieved 
by separating the style component zs and content component zc of the latent encoding z: 

( ) ( ) ( )( ) ( ) ( )( )1 2log ,θ s c KL s s KL c cL E p x z z D z x p z D q z x p z = − −  φβ β  (12) 

where zs controls the decorative style of the pattern (such as line curvature and colour 
saturation), and zc encodes the topological structure (such as the number of symmetry 
axes and unit repetition patterns). 
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3 Cultural prototype driven generation framework 

The archetype driven generative framework (ADGF) proposed in this study achieves 
deep analysis and innovative regeneration of ethnic elements through a three-stage 
collaborative mechanism of multimodal data encoding, prototype decoupling and 
recombination, and cross domain generation verification. The model structure of this 
paper is shown in Figure 1. The methodology is described from three levels: data 
representation, model architecture, and optimisation objectives. 

Figure 1 Method framework diagram (see online version for colours) 
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3.1 Construction of a multimodal cultural prototype database 

The input data includes visual elements, textual descriptions, and dynamic sequences. 
Establish a joint embedding space through cross modal alignment: 

1 Visual prototype encoding: using hierarchical convolutional encoder Ev to extract 
multi scale features from images: 

{ } ( )( ) ( )
1 , l l l

Ll l C H W
v v v vlf E x f × ×

= = ∈  (13) 

where L = 4 corresponds to the feature hierarchy from the bottom texture (l = 1) to 
the high-level semantics (l = 4). 

2 Text semantic embedding: using pre trained CLIP text encoder Et to obtain semantic 
vectors of mythological motifs: 

( ) , 512td
t t te E t d= ∈ =  (14) 

3 Action dynamics modelling: encoding opera program actions through spatiotemporal 
graph convolutional network Em: 

( )
1

m

T
d

m m t
t

f MaxPool E m
=

 
= ∈  

 
   (15) 
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Construct joint embedding space Z = Zv × Zt × Zm and achieve alignment through 
cross modal contrastive loss: 

( )( )
( )( )1

1

exp ,
log

exp ,

B
i i

align B
i i ij

s v t τ
L

s v t τ=
=

= −


 (16) 

where (4)( , ) cos( ( , ( )),v v t ts v t g f g e=  gv, gt are projection heads, and τ = 0.07 is the 
temperature coefficient. 

3.2 Prototype decoupling and recombination generation 

3.2.1 Decoupling of layered prototypes 

Design a decoupled variational autoencoder to decompose visual feature (4)
vf  into: 

1 style prototype :sd
sz ∈  control surface attributes such as colour distribution and 

stroke texture 

2 structural prototype :cd
cz ∈  geometric features such as encoding topological 

connectivity and number of symmetrical axes 

3 semantic prototype :ad
az ∈  linking mythical themes, metaphors, and collective 

unconscious symbols. 

The variational inference process is defined as: 

( ) ( ) ( )( )2

{ , , }

; ,v k k v vk
k s c a

q z x N z μ x σ x I
∈

= ∏φ  (17) 

Decoder pθ(xv|z) adopts a multi branch architecture: 

( ) ( ) ( )( )ˆ ; ;v v s c ax D MLP z ConvT z AdaIN z =    (18) 

where adaptive instance normalisation (AdaIN) implements the modulation of semantic 
prototypes on the generated style. 

3.2.2 Cross modal condition generation 
Build a dual path GAN (DP-GAN) with generator G receiving mixed conditional inputs: 

( ) ( )( ) , ,main s c aux a mG y G z z G z f= ⊕  (19) 

where ⊕ represents feature fusion operation, Gmain is the main path generation, and Gaux is 
the auxiliary path. Combining action dynamics fm with semantic prototype za generates 
dynamic details (Yoon et al., 2019; Dallaire-Demers and Killoran, 2018; Karras et al., 
2020). Discriminator D adopts a multi-scale structure: 

( )
3

( ) ( )

1

( ) l l

l

D x D x
=

=  (20) 
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where x(l) is the downsampling result of the input image at resolution 28–l × 28–l, and each 
sub discriminator D(l) outputs the authenticity probability and cultural fit score. 

3.2.3 Optimisation of cultural legitimacy constraints 
1 Prototype retention loss. 

Introducing CLIP-based semantic consistency constraints: 

( ) 2

2
( ( ))clip v t refL E G y E t= −  (21) 

where tref is the reference text description 

2 Dynamic style continuity. 

Apply temporal smoothing constraints to the action driven generation sequence of 
traditional Chinese opera programs: 

( )( ) ( )( )
1 2

1
1

1
1

T

temp t t F
t

L Gram G y Gram G y
T

−

+
=

= −
−   (22) 

where Gram matrix captures style statistics, ||·||F is the Frobenius norm. 

3 Overall optimisation objective. 

Joint optimisation of encoder, generator, and discriminator parameters: 

1 2 3 4 5
,

min max total VAE GAN align clip temp
E G D

L λ L λ L λ L λ L λ L= + + + +  (23) 

4 Experiment and result analysis 

This chapter is based on a publicly available multimodal dataset, and systematically 
validates the effectiveness of the archetype-driven generative framework (ADGF) 
through quantitative evaluation, cultural legitimacy verification, and case studies. The 
experiment used FolkArt-1M (public ethnic cultural dataset), ChineseMyth Corpus 
(mythological text database), and TaiChi Motion (traditional action dataset) to compare 
mainstream generative models and introduce interdisciplinary evaluation indicators. 

4.1 Experimental setup 

The experimental dataset includes FolkArt-1M, ChineseMyth Corpus, and TaiChi 
Motion. 

1 FolkArt-1M: contains ten types of traditional patterns, covering ethnic styles such as 
Han, Tibetan and Miao. The image resolution is 512 × 512, 512 × 512, and cultural 
labels (such as ‘cloud patterns’ and ‘coffered ceilings’) are labelled. 
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2 ChineseMyth-Corpus: collected 15,000 textual descriptions of mythological themes 
(such as ‘Green Dragon – Eastern Birth’ and ‘Phoenix – Nirvana Rebirth’), verified 
for semantic accuracy by linguistic experts. 

3 TaiChi-Motion: contains 500 segments of Tai Chi motion capture data (60 FPS), 
which can simulate the dynamic features of traditional Chinese opera programs. 

The baseline model includes standard VAE, CycleGAN, AttnGAN, and fine tuned Stable 
Diffusion v1.5. The evaluation indicators include technical indicators (FID, SSIM), 
cultural indicators (prototype matching PM, expert rating CC/AI), and efficiency 
indicators (FPS). 

4.2 Comparison of experimental results 

As shown in Table 1, the FID value of ADGF on the test set is 29.4, significantly lower 
than VAE (53.2), CycleGAN (47.8) and Stable Diffusion (36.7), indicating that its 
generated images are closer to the true data distribution. The SSIM value of 0.85 
validates the high fidelity characteristics of the local structure (such as pattern topological 
connectivity error ≤ 3%). In terms of cultural indicators, the prototype matching degree 
(PM = 0.81) of ADGF far exceeds the baseline model. In expert ratings, cultural fit  
(CC = 4.3) and aesthetic innovation (AI = 4.1) are positively balanced, while models such 
as AttnGAN have a negative correlation between CC and AI due to excessive pursuit of 
visual novelty (such as AttnGAN’s CC = 3.4, AI = 3.3). In terms of generation 
efficiency, ADGF reaches 17.5 FPS, which is 23% higher than Stable Diffusion and 
meets real-time requirements. 
Table 1 Model comparison experiment 

Method FID SSIM PM CC AI FPS 

VAE 53.2 0.68 0.52 2.9 2.6 28.1 

CycleGAN 47.8 0.63 0.55 3.1 3.0 24.3 

AttnGAN 41.5 0.71 0.61 3.4 3.3 19.8 

Stable Diffusion 36.7 0.79 0.68 3.8 3.7 14.2 

ADGF 29.4 0.85 0.81 4.3 4.1 17.5 

4.3 Ablation experiment 

The ablation experimental system evaluated the contributions of each module. When the 
cross modal alignment loss is removed, the PM value drops sharply from 0.81 to 0.65, 
and the FID deteriorates to 35.6; after disabling the prototype decoupling module, the 
FID increased to 39.2, and experts pointed out that there was confusion between the style 
and structure of the generated patterns (such as the Tang Dynasty’s Baoxiang pattern  
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mistakenly integrating the Ming Dynasty’s colour paradigm); if the cultural constraints 
guided by CLIP are removed, the PM value drops sharply to 0.54, and elements that 
conflict with mythological themes appear in the generated image (such as the incorrect 
overlay of Buddhist lotus symbols on the ‘Green Dragon’ pattern). Although the dynamic 
temporal smoothing loss has limited impact on static generation (FID increased from 29.4 
to 30.8), its absence can lead to abrupt style changes between action driven dynamic 
pattern frames (with adjacent frame Gram matrix differences exceeding 15%). As shown 
in Figure 2, the heatmap visually displays the contribution weights of each module to the 
model performance. 

Figure 2 Thermal map of ablation experiment (see online version for colours) 
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4.4 Cultural legitimacy verification 

The verification of cultural legitimacy is carried out through expert rating distribution and 
heatmap analysis. As shown in Figure 3, the CC scores generated by ADGF are 
concentrated in the range of 4–5 points (mean 4.3), while the AI scores fluctuate between 
4-4.1 points. 83% of the samples are labelled as ‘innovative within the norm’; in contrast, 
only 45% of the cases generated by Stable Diffusion were criticised for their excessive 
stylisation, which resulted in a ‘similar in appearance but dissimilar in demeanour’. As 
shown in Figure 4, ADGF has the highest matching degree on concrete cultural symbols 
such as ‘cloud patterns’ (PM = 0.84) and ‘coffered ceiling’ (PM = 0.82), while the PM 
values for abstract metaphors such as ‘endless life’ and ‘chaotic opening’ remain stable at 
0.7 or above, which is more than 40% higher than the baseline model. 
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Figure 3 Distribution of expert ratings (see online version for colours) 

 

Figure 4 Comparison of prototype matching degree (see online version for colours) 
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5 Conclusions 

This study proposes an ADGF based on Jung’s archetypal theory to address the 
homogenisation crisis and mechanical replication dilemma faced by traditional cultural 
symbols in the digital age. The framework utilises deep learning techniques to achieve 
feature deconstruction and recombination regeneration of ethnic elements. The core 
contribution of ADGF lies in the construction of a three-dimensional interdisciplinary 
paradigm of ‘prototype decoding intelligent generation cultural verification’, which 
organically combines collective unconscious analysis with computable aesthetic 
generation, providing theoretical support and technical path for digital innovation of 
cultural heritage. 

At the methodological level, ADGF decouples the style, structure, and semantic 
prototypes of cultural symbols through a layered VAE, combines GANs to achieve cross 
modal feature recombination, and introduces CLIP guided cultural constraints and 
dynamic temporal smoothing loss to ensure balanced representation of the generated 
results in visual realism, cultural legitimacy, and dynamic continuity. The experiment 
was based on publicly available multimodal datasets (FolkArt-1M, ChineseMyth Corpus, 
TaiChi Motion) to verify the comprehensive advantages of ADGF in terms of generation 
quality (FID = 29.4, SSIM = 0.85), cultural fit (PM = 0.81, CC = 4.3), and generation 
efficiency (17.5 FPS). The ablation experiment further revealed the critical role of cross 
modal alignment, prototype decoupling, and cultural constraints in model performance, 
while expert ratings and heatmap analysis validated the cultural legitimacy of the 
generated results from a humanistic perspective. 

This study not only provides reproducible and scalable technical solutions for the 
regeneration of traditional culture in the era of artificial intelligence, but also establishes a 
practical paradigm for interdisciplinary methodological innovation in the field of digital 
humanities. By transforming prototype theory into computable constraints, ADGF 
redefines the boundaries of cultural subjectivity in human-computer collaborative 
creation, opening up new paths for the digital preservation and innovative dissemination 
of cultural heritage. 
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