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Abstract: This article explores the innovative application of deep learning
technology in re-imagining ethnic elements in animation, based on Jungian
archetype theory. Addressing the homogenisation of traditional cultural
symbols in animation amid globalisation, a three-dimensional creation model of
‘archetype decoding-intelligent generation-cultural verification’ is proposed.
By building a deep neural network database of traditional patterns,
mythological themes, and opera elements, and utilising generative adversarial
networks (GANSs) and variational autoencoders (VAESs), cultural archetypes are
deconstructed and reassembled. Case studies demonstrate that this approach
effectively extracts collective unconscious features from ethnic elements while
preserving the spiritual core of cultural archetypes, generating innovative visual
expressions with modern aesthetics. The research offers interdisciplinary
insights for the innovative inheritance of cultural heritage from a digital
humanities perspective and opens new technological pathways for animation
creation in the Al era.
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1 Introduction

In the current era of globalisation and deep integration of digital technology, animation
art is undergoing unprecedented cultural reconstruction. As an important carrier of
cross-cultural communication, how animation works establish a creative dialogue
between local cultural genes and global aesthetic paradigms has become a key topic in
the field of digital humanities (Jiang et al., 2022; Crawford, 2013; Shuo, 2021). Carl
Jung’s prototype theory points out that there are primitive images that transcend time and
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space in the collective unconscious of human beings (Li and Zhuge, 2022). These cultural
prototypes constitute the spiritual matrix of national art, but they face a dual dilemma in
contemporary animation creation: on the one hand, the commercialisation wave has led to
visual fast food production, which has reduced national elements to formulaic visual
textures, resulting in a rupture between the signifier and signified of cultural symbols
(Leslie and McKim, 2017; Stadlinger et al., 2021). On the other hand, digital creation
driven by rational technological tools often falls into the value paradox of formal
innovation and cultural aphasia (Limano, 2021) This deep contradiction is particularly
prominent in the context of Chinese culture - the curves and rhythms of the eaves of the
Forbidden City, the geometric order of Dunhuang coffered ceilings, and the virtual and
real aesthetics of traditional Chinese opera. These visual prototypes, which carry the code
of a thousand years of civilisation, urgently need to be transformed into contemporary
forms through methodological breakthroughs in technical philosophy (Ding, 2023).

The intervention of digital technology has provided new possibilities for cultural
inheritance (Mihailova, 2013). In recent years, deep learning techniques such as GANs
and neural style transfer (NST) have demonstrated powerful image generation and
stylisation capabilities in the field of artistic creation (Yasa and Pratistha, 2024).
However, existing research mostly focuses on visual imitation at the technical level,
lacking a deep decoding of the spiritual core of cultural prototypes. The limitations of this
technological path lead to two fundamental problems: firstly, the cultural symbols
generated by algorithms often remain at the surface level of collage and reorganisation,
making it difficult to reach the collective unconscious emotional resonance layer;
secondly, there is an explanatory gap between the black box nature of machine learning
and the openness of humanistic interpretation, making it difficult to verify the cultural
legitimacy of the generated results. At its core, it lies in the failure to establish an
interdisciplinary research framework that connects cultural psychology and
computational aesthetics, resulting in a structural alienation between technological tools
and cultural subjectivity (Wang et al., 2022).

In response to the above challenges, this study proposes the methodology of
‘prototype theory driven artificial intelligence recreation’. A deep cultural analysis
framework based on Jung’s prototype theory, combined with the feature deconstruction
ability of deep learning technology, constructs a three-dimensional creative model of
‘prototype decoding intelligent generation cultural verification’. Its innovation is
reflected in three dimensions: firstly, at the cognitive level, ethnic elements are regarded
as ‘computable cultural prototypes’, and their multi-layered structures of signifier (visual
form), signified (symbolic meaning), and meta type (collective unconscious) are analysed
through semiotic matrices; secondly, at the technical level, develop generative models
with cultural awareness, use variational autoencoders (VAEs) to extract the potential
spatial distribution of prototype features, and creatively couple traditional aesthetic
paradigms with contemporary visual grammar through adversarial training; finally, at the
value level, a cultural subjectivity verification mechanism is introduced, combined with
semiotic analysis and anthropological evaluation, to ensure that algorithm generation
conforms to both machine computable style rules and humanistic interpretable cultural
legitimacy.

With the rapid development of artificial intelligence technology, especially the
breakthrough of deep learning technology in image processing and generation,
researchers have begun to explore the application of deep learning in cultural creation
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(Zhang and Pu, 2024). Deep learning, especially GAN and VAE, has achieved significant
results in image generation, style transformation, and other fields, which can greatly
achieve innovative re creation of traditional cultural elements (Yang, 2024).

Jung’s prototype theory provides a profound psychological framework for
understanding cultural symbols. According to Jung’s theory, prototypes not only exist in
an individual’s unconscious, but also serve as a common symbol across cultures and
histories, reflecting the foundation of human collective unconsciousness. Many studies
have combined prototype theory with artificial intelligence technology to explore how to
extract, reconstruct, and reproduce cultural prototypes using machine learning methods.
The prototype theory proposed by Jung (1936) provides a theoretical basis for subsequent
research, especially in exploring the common deep psychological structures behind
cultural symbols.

In recent years, research on the application of deep learning in cultural heritage and
artistic creation has gradually increased. Wu and Ko (2021) explored the application
principles and current status of generative adversarial networks in art, and studied the
theme of integrating generative adversarial networks into artistic creation. This study
indicates that GAN can effectively deconstruct and reconstruct traditional cultural
symbols, making them more in line with modern aesthetic needs and solving the
homogenisation problem faced by traditional culture in the context of globalisation. For
the recreation of ethnic art, Belhi et al. (2023) solved the problem related to physically
damage cultural relics through a new image reconstruction method based on supervised
and unsupervised learning. On the other hand, the application of deep learning in the
deconstruction of cultural prototypes is gradually gaining attention. Vougioukas et al.
(2020) studied how to combine GANs with traditional cultural elements and proposed the
feasibility of using deep learning models for prototype deconstruction and innovation
generation. This study indicates that deep learning techniques can extract and reproduce
the prototype features of traditional cultural symbols through digital processing, while
avoiding the loss of traditional culture in the process of re creation.

Although some progress has been made in existing research, there is still a lack of
systematic frameworks and innovative methods for systematically combining prototype
theory and deep learning techniques to promote the digital re creation of traditional
cultural symbols. This article proposes a three-dimensional creation model that combines
prototype decoding, intelligent generation, and cultural verification. By constructing a
deep neural network database containing traditional ethnic elements and using GAN and
VAE technologies, cultural prototypes can be deconstructed and regenerated to explore
more systematic cultural creation methods.

This study achieved systematic innovation in theoretical framework, technical path,
and evaluation system in the field of animation ethnic element re creation by deeply
integrating Jungian prototype theory and deep learning technology. In response to the
homogenisation crisis and mechanical replication dilemma faced by traditional cultural
symbols in the digital age, this article first constructs a three-dimensional
interdisciplinary paradigm of ‘prototype decoding intelligent generation cultural
verification’, bridging the theoretical gap between collective unconscious analysis and
computable aesthetic generation. At the technical implementation level, the developed
cultural perception generation architecture decouples the surface visual features and deep
semantic prototypes of ethnic elements through a hierarchical VAE-GAN model, and
combines cross modal attention mechanisms to achieve dynamic recombination of
cultural genes such as traditional patterns and mythological motifs.



Deep learning driven recreation of traditional ethnic elements 41

2 Relevant technologies

2.1 Generative adversarial networks

The theoretical framework of generative adversarial networks is based on the dynamic
game between generator (G) and discriminator (D), with the core goal of enabling the
generator to learn implicit representations of the real data distribution puu.(x) through
adversarial training (Goodfellow et al., 2020; Creswell et al., 2018; Wang et al., 2017).
The core mathematical expression of this theory is a minimax game, whose value
function is defined as:

minmax V'(D, G) = Ex-paaa(n [10g D(X)]+ E:-po( [log(1 — D(G(2)))] )

where x ~ paaa(x) represents the sample sampled from the real data distribution (such as
traditional ethnic pattern images), and z ~ p.(z) is the noise vector sampled from the latent
space (usually the standard Gaussian distribution N(0, ). The task of generator G(z) is to
map noise z to generated sample x' = G(z), while the output of discriminator D(x) is a
probability value representing the likelihood that input sample x comes from the true
distribution rather than generated distribution pe(x) (Aggarwal et al., 2021). The essence
of this game process is to gradually approach the true data distribution with the generator,
while the discriminator continuously improves its discriminative ability until both reach
Nash equilibrium. At this point, the generator’s distribution pg(x) completely overlaps
with the true distribution pga.(x), and the discriminator’s discriminative probability for all
samples remains constant at D(x) = 0.5.

However, the original GAN often faces gradient vanishing and mode collapse
problems during training. Therefore, Wasserstein GAN (WGAN) introduces Wasserstein
distance (also known as Earth Moore distance) as a measure of distribution differences,
and its objective function is rewritten as:

mGin mgx [Ex~Pdata(x)D(x) - Ez~Pz(Z)D(G(Z))] (2)
The discriminator D is constrained to a 1-Lipschitz continuous function, i.e., its gradient

norm satisfies ||[V.D(x)|| < 1. This constraint can be implemented through gradient
penalty:

2 Een (VD@ -1)' ] 3)

where x=e&x+(1—¢)G(z) is the linear interpolation between the real sample and the

generated sample ¢ ~ U[0, 1]. By optimising the objective function, WGAN significantly
improves training stability, enabling the generator to more comprehensively cover the
multimodal characteristics of the true distribution (Gui et al., 2021; Liu and Tuzel, 2016;
Wang et al., 2019).

In the generation of ethnic elements in animation, it is often necessary to control the
content based on specific cultural labels (such as ‘Dunhuang style’ or ‘opera program’).
For this purpose, conditional generative adversarial networks (CGAN) input conditional
information y (such as text descriptions or category labels) into both the generator and
discriminator, and their objective function is extended to:
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min max V(D, G) = Es.y-pauall0g D(X| V)] + E:-pzy-py [log - D(G(z|MIN]  (4)

At this point, generator G(z]y) maps the noise z and condition y together into samples that
conform to a specific cultural prototype. For example, when y represents ‘Miao silver
decoration pattern’, the generator can output decorative patterns with geometric
symmetry and plant totem features.

During the training process, parameters 6 and 6p of the generator and discriminator
are updated through alternating gradient descent. The update rule for the discriminator is:

Op < 0p+1np-Vo, [%glogD(x("))+%[leog(1—D(G(z(") )))J ®)

The update of the generator attempts to minimise the discriminator’s ability to recognise
generated samples:

QG %HG +l16’Vgc {%Zm:lOg(l—D(G(Z(l))))] (6)
i=1

where #p and #¢ are the learning rates of the discriminator and generator, respectively,
and m is the batch size. To improve training stability, spectral normalisation technique is
applied to constrain the spectral norm of the discriminator weight matrix, thereby
enhancing Lipschitz continuity; feature matching avoids pattern collapse by forcing the
generated samples to match the feature statistics (such as mean and variance) of the real
samples in the middle layer of the discriminator (Hong et al., 2019).

In the task of generating cultural elements, the potential space of the generator can be
decoupled into style encoding s (such as the curve shape of cloud patterns) and content
encoding c (such as the topological structure of patterns), and the generation process can
be modelled as:

G(Z)=GS(S)®GC(C)>SNpSsc"pc (7)

where @ represents feature fusion operation (such as channel concatenation). The
multi-scale discriminator architecture further ensures that the generated results conform
to cultural prototypes at different granularities through a hierarchical verification
mechanism: the low resolution discriminator D; focuses on local details (such as line
accuracy), the mesoscale discriminator D, verifies structural symmetry, and the
high-resolution discriminator Ds evaluates the match between global semantics and
cultural prototypes.

From the perspective of mathematical convergence, the training of GANs can be seen
as minimising the Jensen Shannon divergence between the true distribution pga, and the
generated distribution py:

®)

pdata +pg 1 (
Ldaa T P8 KL
> j > Pg

JSD( Paaa | Pe ) = %KL ( D % j

WGAN achieves more stable distribution alignment by minimising Wasserstein distance
W(pdam, pg)-
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2.2 Variational autoencoder

VAE is a probabilistic generative model based on variational inference, whose core
objective is to learn the latent distribution structure of observed data x (such as ethnic
pattern images) through the inference and generation process of latent variable z (Cemgil
et al., 2020). The mathematical framework of VAE is based on a probability graph
model, assuming that the data generation process follows the following latent variable
model: the observed data x is generated by the latent variable z through the decoder
network ps(x|z), and the latent variable z follows a prior distribution p(z) (usually a
standard Gaussian distribution N(0, /)). Due to the difficulty in directly solving the true
posterior distribution p(zlx), VAE introduces a variational distribution gg(z|x)
(parameterised by the encoder network) to approximate the posterior and performs joint
optimisation by maximising the evidence lower bound (ELBO):

mGin mgx V(Ds G) = Ex,y~Pdata [log D(x | J’)] + Ez~Pz,y~Py [10g(1 - D(G((Z | y) ‘ y))] (9)

The first item is the reconstruction loss, which measures the similarity between generated
sample x' = pg(x|z) and the original data x; the second term is the KL divergence
regularisation term, which constrains the degree of deviation between variational
distribution gg(z|x) and prior distribution p(z), and hyperparameter £ is used to balance
the weights of the two terms. Encoder gg(z|x) is typically modelled as a Gaussian
distribution:

N (19 (), a3 (01 ) (10)

The mean u¢(x) and variance o;(x) are output by the neural network; decoder gq(zlx)

selects Bernoulli or Gaussian distribution based on the data type.
VAE employs reparameterisation trick to transform the sampling process of latent
variable z from z ~ N(u4(x), aé (x)I) to a deterministic function:

z=py(x),04(x)O¢, &~ N(0, 1) (11)

where © represents element wise multiplication. This allows gradient calculation to
bypass random node & and propagate directly through nodes ug(x) and ogx). In the
generation of ethnic elements in animation, the encoder compresses the input pattern
image x into latent encoding z (such as containing abstract features such as geometric
symmetry and colour patterns), and the decoder reconstructs or generates new design
variants based on z (An and Cho, 2015).

Unlike the implicit modelling of GANs, the explicit probabilistic nature of VAE
naturally supports structured manipulation of latent space. For example, in the task of
cross style transfer of ethnic clothing patterns, local feature decoupling can be achieved
by separating the style component z; and content component z. of the latent encoding z:

L=E[log py(x|z.. z.) |- BiDxe (%) p(20)) = BeDxe (g0 (ze|x)|p(2))  (12)

where z, controls the decorative style of the pattern (such as line curvature and colour
saturation), and z. encodes the topological structure (such as the number of symmetry
axes and unit repetition patterns).
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3 Cultural prototype driven generation framework

The archetype driven generative framework (ADGF) proposed in this study achieves
deep analysis and innovative regeneration of ethnic elements through a three-stage
collaborative mechanism of multimodal data encoding, prototype decoupling and
recombination, and cross domain generation verification. The model structure of this
paper is shown in Figure 1. The methodology is described from three levels: data
representation, model architecture, and optimisation objectives.

Figure 1 Method framework diagram (see online version for colours)

DNN

el

.

Traditional cultural symbols

= <
J10JRIOUID)
/19p023(]

Zr»Q

3.1 Construction of a multimodal cultural prototype database

The input data includes visual elements, textual descriptions, and dynamic sequences.
Establish a joint embedding space through cross modal alignment:

1 Visual prototype encoding: using hierarchical convolutional encoder E, to extract
multi scale features from images:

[0V =B, (x,), £ € RO (13)

where L = 4 corresponds to the feature hierarchy from the bottom texture (/= 1) to
the high-level semantics (/ = 4).

2 Text semantic embedding: using pre trained CLIP text encoder E; to obtain semantic
vectors of mythological motifs:

e, =E(t)e R¥, d, =512 (14)

3 Action dynamics modelling: encoding opera program actions through spatiotemporal
graph convolutional network E,,;:

r
o = MaxPool(ZEm (m, )Je R (15)

t=1
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Construct joint embedding space Z = Z, x Z; x Z,, and achieve alignment through
cross modal contrastive loss:

exp v,,t,-)/r)
altgn - lO (16)
Z Z/’ exp( (v,,ti)/f)

where s(v, t) = cos(g,( fv(4), g,(e)), gv, g are projection heads, and = 0.07 is the

temperature coefficient.

3.2 Prototype decoupling and recombination generation

3.2.1 Decoupling of layered prototypes

Design a decoupled variational autoencoder to decompose visual feature f£,'*) into:

1 style prototype z, € R%: control surface attributes such as colour distribution and
stroke texture

2 structural prototype z, € R%: geometric features such as encoding topological

connectivity and number of symmetrical axes

3 semantic prototype z, € R%: linking mythical themes, metaphors, and collective

unconscious symbols.

The variational inference process is defined as:

g5 (zlx,) = H N(zi; i (x,), 02 (x,)1) (17

ke{s,c,a}
Decoder py(x.|z) adopts a multi branch architecture:
=D, ([MLP(z,); ConvT (z.); AdaIN (z.))) (18)

where adaptive instance normalisation (AdalN) implements the modulation of semantic
prototypes on the generated style.

3.2.2 Cross modal condition generation
Build a dual path GAN (DP-GAN) with generator G receiving mixed conditional inputs:
G(y)=Gmain (Zsyzc)@Gaux (Zay.f;n) (19)

where @ represents feature fusion operation, Gy, is the main path generation, and G, is
the auxiliary path. Combining action dynamics f, with semantic prototype z, generates
dynamic details (Yoon et al., 2019; Dallaire-Demers and Killoran, 2018; Karras et al.,
2020). Discriminator D adopts a multi-scale structure:

3
D(x) = Z DO (x®) (20)
=1
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where x? is the downsampling result of the input image at resolution 28~ x 28~ and each
sub discriminator D outputs the authenticity probability and cultural fit score.

3.2.3 Optimisation of cultural legitimacy constraints

1 Prototype retention loss.

Introducing CLIP-based semantic consistency constraints:

Lap = |E(GO)=E, (s ), @1

where #,.ris the reference text description
2 Dynamic style continuity.

Apply temporal smoothing constraints to the action driven generation sequence of
traditional Chinese opera programs:

-1
Liemp = %Z"Gmm(G () - Gram(G (v ))"; (22)
t=1

where Gram matrix captures style statistics, ||-||r is the Frobenius norm.
3 Overall optimisation objective.

Joint optimisation of encoder, generator, and discriminator parameters:

rglél max Ltotal = /llLVAE + /12LGAN + )L3Lal[gn + /14Lcl[p + /15 Ltemp (23)
s D

4 Experiment and result analysis

This chapter is based on a publicly available multimodal dataset, and systematically
validates the effectiveness of the archetype-driven generative framework (ADGF)
through quantitative evaluation, cultural legitimacy verification, and case studies. The
experiment used FolkArt-1M (public ethnic cultural dataset), ChineseMyth Corpus
(mythological text database), and TaiChi Motion (traditional action dataset) to compare
mainstream generative models and introduce interdisciplinary evaluation indicators.

4.1 Experimental setup

The experimental dataset includes FolkArt-1M, ChineseMyth Corpus, and TaiChi
Motion.

1 FolkArt-1M: contains ten types of traditional patterns, covering ethnic styles such as
Han, Tibetan and Miao. The image resolution is 512 x 512, 512 x 512, and cultural
labels (such as ‘cloud patterns’ and ‘coffered ceilings’) are labelled.
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2 ChineseMyth-Corpus: collected 15,000 textual descriptions of mythological themes
(such as ‘Green Dragon — Eastern Birth’ and ‘Phoenix — Nirvana Rebirth”), verified
for semantic accuracy by linguistic experts.

3 TaiChi-Motion: contains 500 segments of Tai Chi motion capture data (60 FPS),
which can simulate the dynamic features of traditional Chinese opera programs.

The baseline model includes standard VAE, CycleGAN, AttnGAN, and fine tuned Stable
Diffusion v1.5. The evaluation indicators include technical indicators (FID, SSIM),
cultural indicators (prototype matching PM, expert rating CC/AI), and efficiency
indicators (FPS).

4.2 Comparison of experimental results

As shown in Table 1, the FID value of ADGF on the test set is 29.4, significantly lower
than VAE (53.2), CycleGAN (47.8) and Stable Diffusion (36.7), indicating that its
generated images are closer to the true data distribution. The SSIM value of 0.85
validates the high fidelity characteristics of the local structure (such as pattern topological
connectivity error < 3%). In terms of cultural indicators, the prototype matching degree
(PM = 0.81) of ADGF far exceeds the baseline model. In expert ratings, cultural fit
(CC =4.3) and aesthetic innovation (Al = 4.1) are positively balanced, while models such
as AttnGAN have a negative correlation between CC and Al due to excessive pursuit of
visual novelty (such as AttnGAN’s CC = 3.4, Al = 3.3). In terms of generation
efficiency, ADGF reaches 17.5 FPS, which is 23% higher than Stable Diffusion and
meets real-time requirements.

Table 1 Model comparison experiment
Method FID SSIM PM cc Al FPS
VAE 532 0.68 0.52 29 2.6 28.1
CycleGAN 47.8 0.63 0.55 3.1 3.0 24.3
AttnGAN 41.5 0.71 0.61 3.4 33 19.8
Stable Diffusion 36.7 0.79 0.68 3.8 3.7 14.2
ADGF 29.4 0.85 0.81 43 4.1 17.5

4.3  Ablation experiment

The ablation experimental system evaluated the contributions of each module. When the
cross modal alignment loss is removed, the PM value drops sharply from 0.81 to 0.65,
and the FID deteriorates to 35.6; after disabling the prototype decoupling module, the
FID increased to 39.2, and experts pointed out that there was confusion between the style
and structure of the generated patterns (such as the Tang Dynasty’s Baoxiang pattern
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mistakenly integrating the Ming Dynasty’s colour paradigm); if the cultural constraints
guided by CLIP are removed, the PM value drops sharply to 0.54, and elements that
conflict with mythological themes appear in the generated image (such as the incorrect
overlay of Buddhist lotus symbols on the ‘Green Dragon’ pattern). Although the dynamic
temporal smoothing loss has limited impact on static generation (FID increased from 29.4
to 30.8), its absence can lead to abrupt style changes between action driven dynamic
pattern frames (with adjacent frame Gram matrix differences exceeding 15%). As shown
in Figure 2, the heatmap visually displays the contribution weights of each module to the
model performance.

Figure 2 Thermal map of ablation experiment (see online version for colours)
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4.4 Cultural legitimacy verification

The verification of cultural legitimacy is carried out through expert rating distribution and
heatmap analysis. As shown in Figure 3, the CC scores generated by ADGF are
concentrated in the range of 4-5 points (mean 4.3), while the Al scores fluctuate between
4-4.1 points. 83% of the samples are labelled as ‘innovative within the norm’; in contrast,
only 45% of the cases generated by Stable Diffusion were criticised for their excessive
stylisation, which resulted in a ‘similar in appearance but dissimilar in demeanour’. As
shown in Figure 4, ADGF has the highest matching degree on concrete cultural symbols
such as ‘cloud patterns’ (PM = 0.84) and ‘coffered ceiling’ (PM = 0.82), while the PM
values for abstract metaphors such as ‘endless life’ and ‘chaotic opening’ remain stable at
0.7 or above, which is more than 40% higher than the baseline model.
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Figure 3 Distribution of expert ratings (see online version for colours)
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Figure 4 Comparison of prototype matching degree (see online version for colours)
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5 Conclusions

This study proposes an ADGF based on Jung’s archetypal theory to address the
homogenisation crisis and mechanical replication dilemma faced by traditional cultural
symbols in the digital age. The framework utilises deep learning techniques to achieve
feature deconstruction and recombination regeneration of ethnic elements. The core
contribution of ADGF lies in the construction of a three-dimensional interdisciplinary
paradigm of ‘prototype decoding intelligent generation cultural verification’, which
organically combines collective unconscious analysis with computable aesthetic
generation, providing theoretical support and technical path for digital innovation of
cultural heritage.

At the methodological level, ADGF decouples the style, structure, and semantic
prototypes of cultural symbols through a layered VAE, combines GANs to achieve cross
modal feature recombination, and introduces CLIP guided cultural constraints and
dynamic temporal smoothing loss to ensure balanced representation of the generated
results in visual realism, cultural legitimacy, and dynamic continuity. The experiment
was based on publicly available multimodal datasets (FolkArt-1M, ChineseMyth Corpus,
TaiChi Motion) to verify the comprehensive advantages of ADGF in terms of generation
quality (FID = 29.4, SSIM = 0.85), cultural fit (PM = 0.81, CC = 4.3), and generation
efficiency (17.5 FPS). The ablation experiment further revealed the critical role of cross
modal alignment, prototype decoupling, and cultural constraints in model performance,
while expert ratings and heatmap analysis validated the cultural legitimacy of the
generated results from a humanistic perspective.

This study not only provides reproducible and scalable technical solutions for the
regeneration of traditional culture in the era of artificial intelligence, but also establishes a
practical paradigm for interdisciplinary methodological innovation in the field of digital
humanities. By transforming prototype theory into computable constraints, ADGF
redefines the boundaries of cultural subjectivity in human-computer collaborative
creation, opening up new paths for the digital preservation and innovative dissemination
of cultural heritage.
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