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Abstract: Cloud occlusion challenges remote sensing image processing by 
degrading quality and analysis accuracy. Existing cloud removal methods 
capture local features but struggle with global dependencies and cloud 
morphology, limiting detail restoration and consistency. To address this, we 
propose a multi-scale adaptive graph convolution generative adversarial 
network (MAGC-GAN), integrating a multi-scale adaptive graph convolution 
network (MAGCN) and an adaptive patch discriminator (APD). MAGCN 
enhances spatial dependencies using adaptive graph convolution, effectively 
reconstructing cloud-covered regions by capturing global contextual 
relationships. A multi-scale feature fusion mechanism enables adaptation to 
varying cloud thicknesses. APD improves fine-detail recovery by evaluating 
multiple local patches individually, using an adaptive affine transformation 
matrix. It also incorporates texture-aware and global consistency losses to 
restore high-frequency details while maintaining coherence. Compared to 
existing methods, MAGC-GAN significantly enhances cloud-occluded region 
restoration, particularly in detail recovery and precise cloud edge 
reconstruction. 
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1 Introduction 

Remote sensing imagery has wide-ranging applications in geographic information 
systems, environmental monitoring, disaster assessment, and other fields (Zhou et al., 
2024a; Ebel et al., 2023; Ji and Zhong, 2024). However, cloud occlusion remains a 
significant challenge that affects both image quality and analytical accuracy (Zhao and 
Jia, 2023; Zheng et al., 2023; Jing et al., 2023). Clouds not only obscure ground objects, 
leading to data loss, but also interfere with subsequent image analysis and pattern 
recognition tasks. In cases of thick cloud coverage, cloud removal becomes particularly 
difficult, as it involves complex image restoration and detail reconstruction (Liu et al., 
2023a; Li et al., 2023b; Zhao et al., 2023). Traditional cloud removal methods primarily 
rely on pixel-based techniques, filtering approaches, or physical models. However, these 
methods exhibit limitations in handling the complex morphology of clouds, restoring fine 
details, and maintaining global consistency in the reconstructed images (Liu et al., 2024b; 
Dou et al., 2024; Zhou et al., 2022). In recent years, deep learning, particularly generative 
adversarial networks (GANs) and convolutional neural networks (CNNs), has emerged as 
a promising solution for cloud removal tasks (Jin et al., 2024; Zhou et al., 2024b; Ma  
et al., 2025; Han et al., 2024). 

Existing cloud removal methods can be broadly classified into traditional image 
processing-based approaches and deep learning-based approaches. Traditional methods 
primarily rely on image segmentation (Wang et al., 2024a), filtering (Liu et al., 2023b), 
and multispectral information fusion (Li et al., 2024a) to identify and remove cloud 
cover. While effective for simple cloud occlusion scenarios, these techniques struggle to 
handle the complex nature of cloud interference. On the other hand, deep learning 
methods, including CNNs (Ma et al., 2023; Zi et al., 2023) and GANs (Zhang et al., 
2023; Li et al., 2023a), have shown superior performance in cloud removal by learning 
image feature representations automatically and leveraging multi-level feature extraction. 
However, despite their advantages in restoring local details, these methods face two 
major challenges: 

1 Due to the limited receptive field of CNNs, they struggle to model global spatial 
dependencies between pixels, making it difficult to reconstruct complex cloud 
structures accurately. 

2 GAN-based methods, while excelling in global image generation, often fall short in 
restoring fine details and ensuring global consistency, particularly in heavily  
cloud-covered regions (Hao et al., 2023). 

To overcome these limitations, this paper proposes a multi-scale adaptive graph 
convolution generative adversarial network (MAGC-GAN), which integrates a  
multi-scale adaptive graph convolution network (MAGCN) and an adaptive patch 
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discriminator (APD). The core strength of MAGCN lies in its adaptive graph convolution 
mechanism, which significantly enhances global spatial dependencies among pixels, 
overcoming the limitation of traditional CNNs that rely solely on local convolution for 
feature extraction. Compared to existing GCN methods, MAGCN introduces two key 
breakthroughs. First, conventional GCNs typically construct graphs based on static or 
predefined adjacency matrices, making it difficult to dynamically adapt to the complex 
and variable spatial structures within images. In contrast, MAGCN incorporates an 
adaptive weighting mechanism that automatically adjusts adjacency relationships based 
on image content, enabling more accurate modelling of pixel-level spatial dependencies. 
This mechanism not only builds the graph structure according to pixel similarity but also 
integrates cloud-edge awareness, empowering the network with stronger perceptual and 
structural understanding in cloud-covered regions. Second, MAGCN integrates  
multi-scale feature extraction and weighted fusion, greatly improving its adaptability to 
cloud layers of varying thickness and distribution. Traditional GCNs often construct 
graphs at a single scale, which limits their ability to simultaneously capture fine-grained 
local features and broader structural context. MAGCN addresses this by constructing 
graph convolution branches at multiple scales and fusing the extracted features through 
adaptive weighting, allowing the network to achieve a better balance between fine detail 
restoration and global consistency. The APD is introduced to address the shortcomings of 
traditional discriminators in detail restoration. Conventional GANs use a global 
discriminator that evaluates the entire image for authenticity. However, this approach 
often neglects local details, leading to overly smooth or distorted regions in the generated 
images. APD generates multiple local patches through an adaptive affine transformation 
matrix and evaluates the authenticity of each patch separately. By independently 
assessing the realism of each local patch, APD ensures more refined and accurate detail 
restoration. This design significantly enhances the restoration of fine details, preventing 
the detail loss commonly seen in traditional methods. Furthermore, APD integrates 
texture-aware loss and global consistency loss, guiding the generator to restore  
high-frequency details in cloud-covered areas while ensuring consistency between local 
details and overall image structure. 

The primary contributions of this paper are as follows: 

1 Proposing the MAGCN, which enhances the global spatial dependencies between 
pixels through adaptive graph convolution operations. By integrating a multi-scale 
feature fusion mechanism, it improves the modelling capability of cloud-covered 
regions, overcoming the limitations of traditional CNNs in global modelling. 

2 Proposing the APD, which generates multiple local patches and evaluates their 
authenticity, enhancing local detail recovery and solving the problem where 
traditional discriminators fail to restore fine details accurately. 

3 Proposing a GAN combining MAGCN and APD, significantly improving cloud 
removal performance, particularly in handling complex cloud occlusion and detail 
recovery, providing an effective solution. 
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2 Related work 

2.1 GAN-based cloud removal 

GANs have demonstrated significant potential in cloud removal tasks for remote sensing 
images. Compared to traditional CNNs, GANs can better model global information and 
handle the complex structures of clouds. Dou et al. (2024) proposed a cloud removal 
method based on multi-scale spatial information perception. By employing convolutional 
kernels of various scales and integrating global semantic and local detail information, the 
method utilises an attention mechanism to dynamically adjust channel weights, 
enhancing feature reconstruction performance. However, despite its effectiveness in local 
detail restoration, this method still falls short in global modelling of cloud structures. 
Baskar et al. (2024) introduced an unsupervised cloud removal approach that incorporates 
variational mode decomposition (VMD) to enhance key image information. The method 
extracts high-information-content regions using VMD and then employs UVCGAN to 
generate images with thin clouds removed, significantly improving cloud removal 
effectiveness, particularly in the case of thin cloud occlusion. To address more complex 
cloud structures, Bie and Su (2024) proposed a multi-scale context-guided feature 
enhancement cloud removal network (MCGFE-CR). This method utilises a multi-scale 
context attention-guided module and a residual channel attention module to enhance the 
fusion of global and local information, thereby improving the quality of cloud removal. 
Similarly, Xiao (2024) proposed a thin cloud removal method based on multi-scale 
feature fusion, designed to enhance the network’s ability to extract details, achieving 
excellent results in fine detail restoration. Although these methods have achieved 
promising results in removing thin clouds, their effectiveness in handling thick clouds 
remains limited. To address this challenge, Li et al. (2024b) proposed a unified 
framework for processing both thin and thick clouds. Their method employs a residual 
structured network to restore image information in thin cloud regions, while leveraging 
synthetic aperture radar (SAR) images to assist in thick cloud removal. This approach 
significantly enhances cloud removal quality and visual consistency, achieving 
remarkable progress, particularly in the restoration of thick cloud-covered areas. 

2.2 GCN in remote sensing images 

Graph convolutional networks (GCNs) have increasingly demonstrated their unique 
advantages in remote sensing image analysis, particularly in handling spatial structures 
and contextual information. Compared to traditional methods, GCNs exhibit superior 
performance in these aspects. Wang et al. (2024b) proposed a change detection network 
(CF-GCN), which constructs a coordinate-space graph convolutional network (GCN_C) 
and a feature-interaction graph convolutional network (GCN_F) in the encoder and 
decoder, respectively. This approach successfully models spatial relationships and feature 
interactions within the image, enhancing the perception of image boundaries. Their 
results indicate that GCNs offer significant advantages in transmitting and precisely 
extracting boundary information. Zhang et al. (2024) proposed a U-GCN-based method 
for mining area extraction. By leveraging graph structure propagation and multi-level 
feature aggregation, the method effectively captures global spatial relationships and 
contextual information. This demonstrates the potential of GCNs in handling complex 
spatial structures and multi-level feature information in remote sensing images, 
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particularly for high-precision target extraction. Lu et al. (2024) introduced the BI2Net 
method, which employs graph convolution and soft clustering techniques to effectively 
extract boundary information of target areas. Additionally, their graph interaction module 
(GIM) enhances the correlation between boundary and internal information. This method 
highlights the advantages of GCNs in processing image boundaries and complex 
structures, especially in dynamic and intricate scenes. Song et al. (2024) developed the 
CSAGC method, which integrates CNN and GCN by designing multiple enhancement 
modules to process contextual information in remote sensing images. By fusing local and 
global features, this approach improves change detection performance, demonstrating the 
strong capability of GCNs in multi-scale spatial information fusion. Liu et al. (2024a) 
proposed the RDPGNet method, which utilises GCNs for automatic road extraction. 
Their approach adopts a multi-view information fusion strategy, enhancing the network’s 
ability to perceive complex road structures. This method showcases how GCNs can 
effectively handle diverse spatial relationships and adapt to remote sensing images with 
intricate features. 

Although the aforementioned methods are not specifically designed for cloud removal 
tasks, they highlight the significant advantages of GCNs in processing spatial structures, 
global information, and boundary perception in remote sensing images. These advantages 
provide valuable insights for cloud removal, suggesting that GCNs can play a crucial role 
in modelling relationships between clouds and ground information, as well as improving 
the accuracy of cloud boundary extraction. 

3 Proposed method 

To ensure detail restoration and address the issue of global consistency, we propose a 
MAGC-GAN. The workflow of MAGC-GAN is illustrated in Figure 1. 

Figure 1 Workflow of the proposed MAGC-GAN (see online version for colours) 

 

This method is based on a GAN and achieves thick cloud removal through an encoder-
decoder structure. The GAN encoder consists of three branches and three stages. In the 
first branch, the pixel-level features of the input image Hpixel are extracted. In the second 
branch, the cloud structure information Hcloud is extracted, describing the cloud’s 
distribution, occlusion intensity, and hierarchical structure. In the third branch, the 
contextual information Hcontext is extracted, providing environmental features surrounding 
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each pixel. After feature extraction, the first stage merges the pixel-level features and 
cloud structure information to form the first-round fusion features Hfusion1 = [Hpixel, Hcloud]. 
The second stage concatenates this fusion feature with the contextual information to 
obtain the final input feature matrix Hinput = [Hfusion1, Hcontext]. This is then fed into the 
MAGCN for further processing, where MAGCN enhances the global spatial 
dependencies of the image through graph convolution operations, particularly focusing 
on structured feature extraction in cloud-covered regions. Next, the decoder restores the 
image and generates the cloud-removed image Igenerated. This image, along with the real 
cloud-free image (ground truth), is input into the discriminator for comparison. 
Furthermore, the generated image Igenerated is passed through the APD, which evaluates 
the authenticity of the generated image at multiple granular scales. This guides the 
network to optimise the generated results, ensuring that the generated image performs 
well in detail restoration and structural consistency. 

3.1 Multi-scale adaptive graph convolution 

In the task of thick cloud removal in remote sensing images, the complexity and diversity 
of cloud occlusion pose challenges for traditional CNNs in handling global dependencies 
and cloud details. To overcome this issue, this paper proposes a MAGCN, which 
enhances the network’s global modelling capability by integrating adaptive graph 
convolution operations, multi-scale feature fusion, and cloud structure modelling. The 
workflow of MAGCN is illustrated in Figure 2. 

Figure 2 Workflow of the MAGCN and APD (see online version for colours) 

 

The process of MAGCN is shown in equation (1): 

( )( ) ( )( 1) ( )
j

l ll l
ij ji ji N

H σ H W H+
∈

= + α β  (1) 

where H(l) represents the node feature matrix at layer l, with each node corresponding to a 
pixel in the image, and the feature vector containing information such as colour and 
texture. W(l) is the learnable weight matrix of the layer, σ denotes the ReLU activation 
function, and Nj represents the neighbourhood of node j, which is the set of pixels 
adjacent to pixel j in the image. To better model the global spatial dependencies of the 
image, particularly the complex structures in cloud-covered regions, we further introduce 
the adaptive weight αij, which dynamically adjusts the adjacency matrix to reflect the 
spatial dependencies between nodes. Its calculation is given in equation (2): 
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where ||xi – xj||2 represents the Euclidean distance between nodes i and j, which measures 
the spatial similarity between pixels. σ controls the attenuation range of similarity, 
determining the influence of neighbouring pixels. ||∇xi – ∇xj||2 is the edge-aware 
function, designed to enhance feature extraction in cloud edges or complex structural 
regions. The adaptive weighting mechanism increases the weight of cloud edges, 
enabling the network to focus more on feature extraction in complex structural regions, 
thereby improving cloud removal performance. 

Additionally, MAGCN employs a multi-scale feature fusion mechanism to enhance 
the network’s adaptability to multi-scale variations of clouds. Specifically, the feature 
matrix ( )l

sH  at each layer is extracted at different scales and, after weighting, forms the 
final feature matrix. The calculation process is given in equation (3): 

( ) ( )
- 1

Sl l
s smulti scale s

H w H
=

= ⋅  (3) 

where ( )l
sH  represents the feature matrix extracted at scale s in layer l, ws denotes the 

weighting coefficient for each scale, indicating the contribution of different scale features 
to the final result, and S is the total number of scales. By weighting and fusing features 
from multiple scales, MAGCN can adapt to clouds of varying thickness and complex 
occlusion, enabling the network to capture richer feature information at multiple scales 
and thereby improving the performance of thick cloud removal. 

In the design of input features, MAGCN integrates multiple information sources to 
optimise the construction of the input feature matrix H(l). Specifically, the input feature 
matrix consists of three components: pixel-level features ( ) ,l

pixelH  cloud structure 

information ( ) ,l
cloudH  and contextual information ( ) ,l

contextH , as shown in equation (4): 

( ) ( ) ( )( ) , ,l l ll
contextpixel cloudH H H H =    (4) 

where ( )l
pixelH  captures the detailed information of the image, primarily including low-

level features such as colour and texture. ( )l
cloudH  describes the distribution, occlusion 

intensity, and hierarchical structure of clouds, enhancing the modelling capability of 
cloud-covered regions. ( )l

contextH  provides environmental information surrounding each 
pixel, aiding in the understanding of long-range dependencies, especially in regions with 
complex cloud occlusion. By integrating these multi-source information components, 
MAGCN can more comprehensively model the spatial and contextual structure of the 
image, significantly improving the effectiveness of thick cloud removal. 
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3.2 Adaptive patch discriminator 

To enhance the quality of the generated images and improve detail restoration, we 
propose a novel discriminator network, the APD. The workflow of APD is illustrated in 
Figure 2. This method integrates CNNs with adaptive affine transformation matrices to 
generate multiple local patches and evaluate the authenticity of each patch. 

Specifically, given an input image ,H W CI × ×∈  where H and W represent the height 
and width of the image, respectively, and C denotes the number of channels, the 
discriminator first extracts global features using a CNN, obtaining a feature map 

,H W CF ′ ′ ′× ×∈  where H′ and W′ are the dimensions of the feature map, and C′ is the 
number of channels. Next, the discriminator applies a set of adaptive affine 
transformation matrices 2 3

1 2, , , nA A A ×∈   to the feature map F, performing spatial 
transformations to generate n different local patches. For the jth patch, the  
affine-transformed patch Pj is obtained using equation (5): 

j jP A F=  (5) 

where p pH W C
jP ′× ×∈  represents the jth patch, with Hp and Wp denoting the height and 

width of the patch, respectively, and C′ being the number of channels in the feature map. 
Each generated patch Pj is fed into a small CNN for local authenticity evaluation, 
producing a scalar output D(Pj) ∈ [0, 1]. This scalar value represents the authenticity of 
the patch, where a value closer to 1 indicates a more realistic patch, while a value closer 
to 0 indicates a more synthetic or fake patch. The process of authenticity evaluation by 
the discriminator is described in equation (6): 

( ) ( )( )j patch jD P σ CNN P=  (6) 

where σ is the sigmoid activation function, and CNNpatch represents the discriminator 
network applied to each patch. To optimise the network’s performance, a binary  
cross-entropy loss function is used to measure the authenticity of each patch between the 
generated and real images. The specific form is given in equation (7): 

( )( ) ( )( )1
log log 1

n fakereal
patch j jj

L D P D P
=
 = + −   (7) 

where real
jP  and fake

jP  represent the real and fake patches, respectively. The loss function 
trains the discriminator by maximising the authenticity of real patches while minimising 
the authenticity of fake patches. 

Additionally, cloud occlusion often results in the loss of fine texture details, making 
the generated images appear overly smooth. To address this issue, this paper introduces a 
texture loss, with the specific process described in equation (8): 

( ) ( )~ ( ) 1
( )datatexture x p x cloud freeL Texture G x Texture x − = −   (8) 

where Texture(x) represents the texture features extracted using the Gabor filter, and ||·||1 
denotes the L1 norm, which measures the texture difference between the generated and 
real images. 

To ensure the global consistency of the generated images, we further introduce a 
global consistency loss Lglobal. This loss function optimises the restoration of the overall 
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structure in the generated image, ensuring consistency in the overall composition. The 
calculation process is given in equation (9): 

~ ( ) 2( )dataglobal x p x cloud freeL G x x −=  −    (9) 

where ||·||2 denotes the L2 norm, which measures the difference between the generated and 
real images in terms of global structure. 

Finally, the total loss function of the entire network integrates texture-aware loss, 
global consistency loss, and the loss from the APD. The specific expression of the total 
loss function is given in equation (10): 

final texure global patchL L L γL= + +α β  (10) 

where Ltexture represents the texture-aware loss, Lglobal is the global consistency loss, and 
Lpatch is the loss computed by the APD. The coefficients α, β, and γ are the weighting 
factors for each loss term. By optimising this total loss function, the model can 
simultaneously enhance local detail restoration, cloud region reconstruction, and global 
structural consistency, thereby generating high-quality cloud-free images. 

4 Experiment 

4.1 Experimental setup and environment 

This experiment was conducted on a computer equipped with an Intel Core i9-10900K 
processor, an NVIDIA GeForce RTX 3090 GPU, and 64GB of RAM. The operating 
system was Ubuntu 20.04 LTS, and the implementation was based on PyTorch 1.10.0 
with Python 3.8. The model was trained using the Adam optimiser with an initial learning 
rate of 2 × 10–4, a batch size of 16, and a total of 200 training epochs. The learning rate 
was decayed every ten epochs. MAGCN employed a three-layer GCN network, with each 
layer containing 1,536 feature channels. Additionally, the discriminator network adopted 
the APD, generating a total of 256 patches, each with a size of 32 × 32 pixels. The loss 
function combined texture loss Ltexturer global consistency loss Lglobal, and adaptive patch 
loss Lpatch, with weight coefficients of 0.5, 0.3 and 0.2, respectively, to balance detail 
restoration and global structure consistency. 

4.2 Dataset and evaluation metrics 

This experiment utilises four datasets: RICE1, RICE2, T-CLOUD, and WHUS2-CR. 
RICE1 and RICE2 are from the RICE dataset, where RICE1 is a thin cloud dataset 
containing 500 image pairs. The data is sourced from Google Earth, with an image size of 
512 × 512 pixels, primarily focusing on thin cloud removal tasks. In contrast, RICE2 is a 
thick cloud dataset containing 736 image pairs, sourced from Landsat 8, with the same 
image size of 512 × 512 pixels. It is mainly used for handling thick cloud occlusion 
scenarios. To verify the generalisability of our algorithm, in addition to experiments on 
the RICE1 dataset, we also conducted experiments on RICE2 to evaluate the algorithm’s 
performance in more complex cloud conditions. T-CLOUD is a thin cloud dataset 
acquired by the Landsat 8 satellite, consisting of 2,939 real image pairs. The time interval 
between image pairs is 16 days. The dataset is divided into a training set with 2,351 pairs 
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and a test set with 588 pairs, with an image size of 256 × 256 pixels. The distinctive 
characteristic of the T-CLOUD dataset is its long-time interval, which results in more 
complex cloud variations, making it suitable for studying cloud removal over extended 
time spans. WHUS2-CR is a dataset acquired by the Sentinel-2A satellite, using the 
satellite’s visible light bands to construct true-colour images. The time interval between 
image pairs corresponds to the satellite’s revisit period. WHUS2-CR is also a thin cloud 
dataset, containing 3,776 image pairs for training and 944 image pairs for testing, with an 
image size of 256 × 256 pixels. 

For the evaluation metrics, we selected three commonly used image quality 
assessment standards: PSNR, SSIM, and NIQE. The calculation processes are shown in 
equations (11), (12) and (13), respectively. 

2

1010 log IMAXPSNR
MSE

 = ⋅  
 

 (11) 

( )( )
( )( )

1 2
2 2 2 2

1 2

2 2
( , ) x y xy

x y x y

μ μ C σ C
SSIM x y

μ μ C σ σ C
+ +

=
+ + + +

 (12) 

( ) ( )
1

2
T t p

t p t pNIQE μ μ μ μ
−Σ + Σ = − − 

 
 (13) 

Peak signal-to-noise ratio (PSNR) is used to measure the quality of image reconstruction, 
where a higher value indicates a greater similarity between the reconstructed image and 
the original image. Structural similarity index measure (SSIM) evaluates image quality 
based on structural similarity, with values closer to 1 indicating a higher structural 
resemblance between images. Natural image quality evaluator (NIQE) is a no-reference 
quality assessment method that measures the naturalness and visual quality of an image, 
where a lower value corresponds to better image quality. By using these three metrics, we 
can comprehensively evaluate our method’s performance in cloud removal from different 
perspectives. 

4.3 Results and analysis 

4.3.1 Ablation study 
To further verify the contribution of each module to the performance of MAGC-GAN, 
we conducted an ablation study on the RICE2 and WHUS2-CR datasets. By 
progressively removing the multi-branch encoder, MAGCN, APD, and texture loss 
module, we analysed the impact of each component on image quality. A quantitative 
comparison was performed using PSNR, SSIM, and NIQE as evaluation metrics. The 
experimental results are shown in Table 1. 

It can be observed that MAGC-GAN achieves the best performance on the RICE2 
dataset, with a PSNR of 38.26, SSIM of 0.94, and NIQE of 3.12. The removal of any 
module leads to varying degrees of decline in these metrics. In particular, after removing 
the MAGCN module, PSNR drops to 34.98, SSIM decreases to 0.89, and NIQE rises to 
3.50, indicating that MAGCN plays a crucial role in capturing image structures and 
details. Similarly, removing the multi-branch encoder results in a decrease in PSNR to 
36.15 and SSIM to 0.91, while NIQE increases to 3.35, demonstrating its importance in 
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handling complex image details and multi-scale information. After removing the APD 
module, PSNR drops to 35.76, SSIM to 0.90, and NIQE rises to 3.45. Although the 
overall performance remains relatively good, there is a noticeable decline in image 
contrast and detail restoration. Removing the texture loss module results in PSNR of 
36.45, SSIM of 0.92, and NIQE of 3.30. While the performance is still competitive, the 
naturalness of the image and preservation of texture details are significantly affected. 
Table 1 Impact of each module in MAGC-GAN on model performance 

Methods 
RICE2  WHUS2-CR 

PSNR SSIM NIQE  PSNR SSIM NIQE 
w/o multi-branch encoder 36.15 0.91 3.35  30.85 0.88 4.05 
w/o MAGCN 34.98 0.89 3.50  29.67 0.85 4.18 
w/o APD 35.76 0.90 3.45  30.10 0.87 4.12 
w/o texture loss 36.45 0.92 3.30  31.50 0.89 4.00 
MAGC-GAN 38.26 0.94 3.12  32.67 0.93 3.76 

On the WHUS2-CR dataset, MAGC-GAN achieves a PSNR of 32.67, SSIM of 0.93, and 
NIQE of 3.76, still outperforming the models with removed modules. After removing the 
MAGCN module, PSNR drops to 29.67, SSIM decreases to 0.85, and NIQE rises to 4.18, 
showing a significant change. This highlights MAGCN’s critical role in restoring image 
details and structures in this dataset. The removal of the multi-branch encoder also leads 
to a decline in PSNR and SSIM, though the impact is less pronounced compared to 
removing MAGCN, yet still not negligible for image quality. Removing APD results in a 
significant drop in PSNR and SSIM, reflecting the importance of APD in enhancing 
image contrast and colour restoration. After removing texture loss, the PSNR is 31.50, 
SSIM is 0.89, and NIQE is 4.00, leading to slight losses in image details and naturalness. 

4.3.2 Comparison experiments 
To verify the advantages of MAGCN, we compare it with several commonly used graph 
neural network methods, including GCN (Kipf and Welling, 2016), GNN (Scarselli et al., 
2008), and GAT (Velickovic et al., 2017). Experiments were conducted on the RICE2 
and WHUS2-CR datasets, and the results are shown in Table 2. 
Table 2 Performance comparison between the proposed MAGCN and other graph neural 

network methods 

Methods 
RICE2  WHUS2-CR 

PSNR SSIM NIQE  PSNR SSIM NIQE 
GNN 35.65 0.91 3.36  31.35 0.89 3.91 
GCN 34.12 0.89 3.47  30.45 0.86 4.01 
GAT 36.08 0.92 3.25  31.85 0.90 3.83 
MAGCN 38.26 0.94 3.12  32.67 0.93 3.76 

From the experimental results, it can be observed that MAGCN achieves the best 
performance on both the RICE2 and WHUS2-CR datasets, significantly outperforming 
other methods in terms of PSNR, SSIM, and NIQE. On the RICE2 dataset, MAGCN 
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surpasses GCN, GNN, and GAT in all metrics, with the lowest NIQE value, indicating 
that it can restore more details and structural information while maintaining the most 
natural appearance of the images. In contrast, GCN exhibits weaker performance, with 
PSNR and SSIM values significantly lower than those of other methods, and a higher 
NIQE value, reflecting its limitations in cloud structure modelling and detail restoration. 
On the WHUS2-CR dataset, MAGCN maintains its superiority, achieving a PSNR of 
32.67, SSIM of 0.93, and NIQE of 3.76, all of which remain the highest among the 
compared methods. Although GNN and GAT show some improvements, with PSNR 
values of 31.35 and 31.85, respectively, they still fall short of MAGCN. Moreover, their 
NIQE values are higher than that of MAGCN, indicating that they are less effective in 
detail recovery and preserving the natural appearance of images. Overall, MAGCN, with 
its innovative graph convolution mechanism and multi-scale feature fusion, demonstrates 
clear advantages over GCN, GNN, and GAT in terms of detail restoration and the 
naturalness of image reconstruction. In particular, in complex cloud occlusion scenarios, 
MAGCN better captures global dependencies, thereby enhancing the visual quality and 
realism of the generated images. 

4.3.3 Hyperparameter experiment 
To further verify the performance of the APD, we conducted experiments with different 
numbers of patches, specifically using 4, 16, 64, and 256 patches. The performance of the 
model under different patch numbers was compared on the RICE2 and WHUS2-CR 
datasets, and the experimental results are shown in Figure 3. 

Figure 3 Impact of different patch numbers in the APD module on model performance  
(see online version for colours) 

 

It can be observed that as the number of patches increases, the model’s performance 
improves significantly. On the RICE2 dataset, when the number of patches is only 4, 
PSNR is 35.10, SSIM is 0.88, and NIQE is relatively high at 3.95. This indicates that 
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with too few patches, the model fails to fully capture local image details, resulting in poor 
cloud removal performance, blurry cloud edges, and detail loss. A similar trend can be 
observed on the WHUS2-CR dataset, where with only four patches, PSNR is 29.78, 
SSIM is 0.84, and NIQE is as high as 4.25. This suggests that at higher resolutions, a 
small number of patches cannot ensure the naturalness and consistency of image 
reconstruction. When the number of patches increases to 16, PSNR and SSIM improve 
moderately, while NIQE decreases, indicating that more patches allow the model to focus 
more precisely on local textures and contrast. However, certain limitations remain. With 
64 patches, the performance improves further, particularly in SSIM and NIQE, 
demonstrating that the model can better restore details in cloud-covered regions, 
producing images that more closely resemble real ground textures. When the number of 
patches is further increased to 256, the model achieves its best performance on both the 
RICE2 and WHUS2-CR datasets, with PSNR values of 38.26 and 32.67, SSIM values of 
0.94 and 0.93, and NIQE values dropping to 3.12 and 3.76, respectively. This indicates 
that using 256 patches allows the model to fully leverage local discrimination 
information, enhancing the detail quality in cloud-removed areas while maintaining 
overall image consistency. However, although increasing the number of patches improves 
model performance, it also significantly increases computational cost. The number of 
parameters grows from 65.32 M at four patches to 92.10 M at 256 patches, while FLOPs 
increase from 12.50 G to 58.75 G, indicating that computational complexity increases 
exponentially with the number of patches. Therefore, in practical applications, the choice 
of patch number should balance computational resources and model performance. When 
computational resources are limited, 256 patches may be a more cost-effective choice, 
providing high image quality while controlling computational cost. 

4.3.4 SOTA comparison experiment 
To comprehensively evaluate the performance of MAGC-GAN, we compared it with 
state-of-the-art (SOTA) cloud removal methods across four datasets. The comparison 
results on RICE1 and RICE2 datasets are shown in Table 3, while the results on  
T-CLOUD and WHUS2-CR datasets are also presented in Table 3. 

Experimental results show that MAGC-GAN achieves consistently superior 
performance on both the RICE1 and RICE2 remote sensing datasets. Its PSNR and SSIM 
scores are significantly higher than those of existing methods, while its NIQE is the 
lowest among all, indicating that the images generated by MAGC-GAN are visually 
closer to real cloud-free images and exhibit a more natural and realistic appearance 
overall. 

In comparison with mainstream methods, MS-GAN demonstrates strong performance 
on the RICE1 dataset, achieving a PSNR of 32.50 and an SSIM of 0.93, validating the 
effectiveness of its multi-scale generation architecture for detail restoration. However, on 
the more challenging RICE2 dataset, MS-GAN’s NIQE rises to 5.31, suggesting that it 
still produces noticeable artefacts when dealing with thick cloud occlusion, and struggles 
to accurately reconstruct ground objects, thereby limiting the overall image quality. 

Another method, RCAN, also shows some advantage in SSIM, but its PSNR scores 
are only 26.68 on RICE1 and 19.39 on RICE2 – both considerably lower than those of 
MAGC-GAN. This indicates that although RCAN utilises a residual channel attention 
mechanism to enhance feature extraction in cloud-covered regions, its ability to 
reconstruct information under complex cloud conditions remains limited, especially in 
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thick cloud areas where the reconstruction quality is poor and the overall image fidelity is 
low. 
Table 3 Quantitative comparison of different SOTA cloud removal methods on the RICE1 and 

RICE2 datasets 

Methods 
RICE1  RICE2 

PSNR SSIM NIQE  PSNR SSIM NIQE 
DCP (He et al., 2010) 18.79 0.76 4.83  16.99 0.64 4.82 
SPA-GAN (Pan, 2020) 29.60 0.91 4.91  30.93 0.87 5.03 
YUV-GAN (Wen et al., 2021) 23.45 0.88 5.22  18.23 0.81 7.29 
MS-GAN (Xu et al., 2021) 32.50 0.93 3.87  32.34 0.88 5.31 
RCAN (Wen et al., 2022) 26.68 0.93 4.27  19.39 0.84 3.87 
CVAE (Ding et al., 2022) 33.05 0.88 5.63  35.54 0.91 5.52 
CMNet (Liu et al., 2024b) 37.59 0.96 4.19  37.56 0.92 5.21 
Patch-GAN (Ma et al., 2025) 35.72 0.94 3.96  36.11 0.91 3.48 
SRG-GAN (Yang et al., 2024) 36.38 0.95 3.88  36.67 0.92 3.29 
Cloudformer-CycleGAN (Fang, 2024) 36.91 0.95 3.65  37.23 0.93 3.22 
MAGC-GAN 38.34 0.97 3.36  38.26 0.94 3.12 

In contrast, MAGC-GAN achieves a significant breakthrough in modelling spatial 
dependencies within images. Its introduction of the MAGCN not only overcomes the 
limitations of traditional CNNs constrained by local receptive fields, but also outperforms 
existing GCN-based approaches through dynamic graph modelling and multi-scale 
feature integration. MAGCN captures both fine-grained local details and global structural 
information across multiple scales and fuses them using adaptive weighting, enabling 
more accurate cloud structure modelling and ground object restoration – particularly 
effective in scenes with thick cloud cover. 

Unlike MS-GAN, which relies on synthetic cloud generation strategies for training, 
MAGC-GAN directly learns cloud removal features from real remote sensing data, 
avoiding potential domain bias and enhancing generalisation and restoration quality in 
real-world scenarios. Moreover, the APD adopted in MAGC-GAN addresses the 
shortcomings of RCAN, which relies solely on global information. By combining global 
structural optimisation with localised cloud-edge refinement, APD significantly improves 
detail restoration in heavily cloud-covered areas, enhancing both the realism and 
structural consistency of the generated images. 

Experimental results demonstrate that MAGC-GAN outperforms existing mainstream 
methods on both the T-CLOUD and WHUS2-CR remote sensing cloud removal datasets. 
It achieves the highest scores in PSNR and SSIM, while also delivering the best 
performance in NIQE evaluation. These results indicate that the cloud-free images 
generated by MAGC-GAN surpass other methods in detail preservation, structural 
reconstruction, and visual naturalness, resulting in superior overall image quality. 

Among the compared methods, CMNet achieves SSIM scores close to those of 
MAGC-GAN, suggesting that its use of the Swin Transformer architecture is effective in 
modelling global information and enhancing cloud removal. However, CMNet falls 
slightly behind MAGC-GAN in terms of PSNR and NIQE, indicating that its generated 
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images still contain blurry regions – especially in thick cloud-covered areas – where it 
fails to fully recover the details of occluded ground objects. 
Table 4 Quantitative comparison of different SOTA cloud removal methods on the T-CLOUD 

and WHUS2-CR datasets 

Methods 
T-CLOUD  WHUS2-CR 

PSNR SSIM NIQE  PSNR SSIM NIQE 
DCP (He et al., 2010) 17.55 0.67 7.37  15.08 0.59 5.44 
SPA-GAN (Pan, 2020) 27.41 0.82 5.37  027.72 0.83 5.83 
YUV-GAN (Wen et al., 2021) 22.91 0.81 6.06  17.75 0.76 5.72 
MS-GAN (Xu et al., 2021) 28.05 0.83 4.93  22.63 0.77 5.18 
RCAN (Wen et al., 2022) 25.06 0.86 4.99  21.36 0.75 5.38 
CVAE (Ding et al., 2022) 29.67 0.89 4.91  29.50 0.85 5.82 
CMNet (Liu et al., 2024b) 31.89 0.90 4.94  30.84 0.90 4.81 
Patch-GAN (Ma et al., 2025) 31.35 0.91 4.52  30.65 0.89 4.05 
SRG-GAN (Yang et al., 2024) 32.04 0.92 4.31  31.15 0.91 3.91 
Cloudformer-CycleGAN (Fang, 2024) 32.77 0.92 4.15  32.05 0.92 3.83 
MAGC-GAN 33.48 0.93 3.83  32.67 0.93 3.76 

The CVAE method utilises a conditional variational autoencoder to generate multiple 
candidate cloud-free images for improved accuracy. However, its NIQE score on the 
WHUS2-CR dataset reaches 5.82, revealing the presence of noticeable artefacts that 
compromise visual quality. This is particularly evident in complex cloud conditions, 
where the single encoder-decoder architecture of CVAE struggles to balance global 
structural consistency with local detail reconstruction. 

In contrast, MAGC-GAN demonstrates significant advantages in restoring regions 
affected by thick cloud coverage. Although CMNet incorporates a local information 
memory module (LIMM) and a global information assistance module (GIAM), it still 
relies primarily on the transformer structure for global modelling. This results in limited 
performance in accurately recovering cloud boundaries, thus constraining further 
improvement in PSNR. MAGC-GAN addresses this issue by introducing the MAGCN, 
which models pixel relationships across multiple scales. Through graph-based spatial 
modelling, MAGCN enhances the recognition and reconstruction of cloud-covered 
regions, achieving a balance between global consistency and local detail restoration. 

Furthermore, the APD in MAGC-GAN further improves the precision of local detail 
recovery, particularly in heavily clouded regions. Unlike CVAE, which depends on a 
single network to generate cloud-free images, MAGC-GAN incorporates multi-scale 
feature fusion and edge-aware weighting strategies. These mechanisms enable the 
network to effectively model and restore clouds of varying thickness and complexity, 
ultimately producing clearer, more natural, and higher-quality cloud-free images. 

Finally, to evaluate the computational complexity of the proposed algorithm and 
explore its feasibility for real-world deployment, we further compared the performance of 
mainstream methods in terms of both time and space complexity. Specifically, we 
considered three key indicators: the number of model parameters (Params), the number of 
floating-point operations (FLOPs), and the inference speed (FPS). The comparison results 
are presented in Table 5. 
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Table 5 Comprehensive comparison including parameters, FLOPs, and inference speed 

Methods Params (M) FLOPs (G) FPS 
DCP (He et al., 2010) 1.2 3.8 62.3 
SPA-GAN (Pan, 2020) 17.6 45.2 22.1 
YUV-GAN (Wen et al., 2021) 12.9 39.5 26.4 
MS-GAN (Xu et al., 2021) 25.7 68.9 18.3 
RCAN (Wen et al., 2022) 15.3 51.4 20.5 
CVAE (Ding et al., 2022) 34.2 74.8 14.8 
CMNet (Liu et al., 2024b) 42.1 82.5 16.0 
Patch-GAN (Ma et al., 2025) 35.5 60.2 20.3 
SRG-GAN (Yang et al., 2024) 36.8 63.9 18.7 
Cloudformer-CycleGAN (Fang, 2024) 37.2 66.1 18.1 
MAGC-GAN 39.4 58.7 19.6 

As shown in Table 5, MAGC-GAN achieves the best overall trade-off between 
performance and efficiency. While maintaining a moderate model size (39.4M 
parameters) and lower computational complexity than some recent methods like CVAE 
or CMNet, it delivers the highest PSNR (33.48), SSIM (0.93), and the lowest NIQE 
(3.83). Its inference speed of 19.6 FPS is also competitive, making it suitable for practical 
deployment scenarios. These results confirm that MAGC-GAN achieves SOTA cloud 
removal performance with superior balance in quality, complexity, and efficiency. 

4.3.5 Visualisation experiment 
To further verify the effectiveness of MAGC-GAN in cloud removal tasks, we conducted 
a visualisation experiment by selecting cloud-removed images from four datasets and 
comparing them with the cloud removal results of other SOTA methods, as shown in 
Figure 4. 

From the visualisation experiment results, MAGC-GAN demonstrates a clear 
advantage in cloud removal tasks. Compared to other SOTA methods, MAGC-GAN can 
better restore ground object information obscured by clouds while preserving rich details 
and natural colours. Specifically, in terms of cloud removal effectiveness, MS-GAN, 
RCAN, and CVAE can reduce cloud interference to some extent, but they still suffer 
from varying degrees of information loss and blurring in thick cloud areas. MS-GAN 
relies on synthetic data for training, which enables good recovery in thin cloud regions 
but results in noticeable distortion and detail loss in thick cloud areas. RCAN employs a 
channel attention mechanism to enhance feature representation; however, it tends to 
introduce excessive smoothing during cloud removal, leading to the loss of fine details. 
Additionally, CVAE generates multiple possible cloud-free images, but its results often 
lack sharpness, causing blurred texture details. CMNet, one of the stronger-performing 
methods, effectively restores ground structure information and performs better in 
preserving local details than the previously mentioned methods. However, since it uses a 
cascaded memory network, it still struggles in extreme thick cloud regions, where 
unnatural edge transitions or partial detail loss may occur. 

In contrast, MAGC-GAN achieves a more comprehensive restoration of ground 
objects, depicting cloud-covered details more naturally while avoiding excessive 
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smoothing and edge blurring issues. The adaptive graph convolution mechanism in 
MAGCN effectively enhances spatial information modelling, making the cloud-removed 
image structure more coherent. Meanwhile, APD strengthens local discrimination, 
improving detail restoration and ensuring that the cloud-free image retains rich  
high-frequency information and natural textures. 

Figure 4 Qualitative comparison of different methods across multiple datasets (see online version 
for colours) 

 

Additionally, to further analyse the attention distribution of MAGC-GAN during image 
processing, we applied heatmap visualisation to intuitively display the areas focused on 
during cloud removal. The results are shown in Figure 5. 

From the heatmap visualisation experiment, it can be observed that MAGC-GAN 
effectively focuses on cloud-covered areas during the cloud removal process and 
accurately restores key ground object information. The heatmap illustrates the model’s 
attention distribution in the cloud removal task, where red and yellow areas indicate 
regions with high attention, while blue areas represent regions with low attention. The 
results show that MAGC-GAN primarily concentrates on severely cloud-covered areas, 
particularly along cloud edges, where it exhibits a stronger response. This indicates that 
MAGCN, through adaptive graph convolution operations, effectively enhances the 
modelling capability for complex cloud structures, enabling the network to accurately 
locate cloud-covered areas and utilise surrounding information for better restoration. 
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Figure 5 Heatmap visualisation of intermediate feature maps in MAGC-GAN (see online version 
for colours) 

 

5 Conclusions 

Thick cloud occlusion significantly affects the quality and application of optical remote 
sensing images. To address this issue, this paper proposes the MAGC-GAN, which 
integrates the MAGCN to enhance global modelling capability and employs the APD to 
refine local detail restoration. Experimental results demonstrate that MAGC-GAN 
outperforms existing methods across multiple datasets, achieving the best performance in 
PSNR, SSIM, and NIQE, while also demonstrating advantages in thick cloud removal, 
edge detail recovery, and visual consistency. Ablation experiments and heatmap 
visualisations further verify the effectiveness of MAGCN and APD in improving cloud 
removal quality. Despite its excellent performance in thick cloud removal tasks,  
MAGC-GAN still has some limitations. When dealing with extremely complex cloud 
structures, the model may still suffer from detail loss or reconstruction bias, and its 
computational complexity remains relatively high. Future work will focus on optimising 
the lightweight design of the model, exploring more efficient graph convolution 
structures and attention mechanisms, and integrating multi-source remote sensing data to 
further enhance the model’s stability and generalisation ability, making it more suitable 
for large-scale remote sensing applications. 



   

 

   

   
 

   

   

 

   

    Multi-scale adaptive graph convolution-based thick cloud removal method 75    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Declarations 

All authors declare that they have no conflicts of interest. 

Data availability statement 

The datasets used and analysed during the current study available from the corresponding 
author on reasonable request. 

References 
Baskar, D., Parambalath, N.K. and Krishnanunni, S.O. (2024) ‘Variational mode  

decomposition-enhanced thin cloud removal using UNet vision transformer cycle-consistent 
generative adversarial network’, Journal of Applied Remote Sensing, Vol. 18, No. 2, 
pp.26504–26504. 

Bie, Q. and Su, X. (2024) ‘MCGFE-CR: cloud removal with multiscale context-guided feature 
enhancement network’, IEEE Access, Vol. 12, pp.181303–181315, DOI: 10.1109/ACCESS. 
2024.3491171.. 

Ding, H., Zi, Y. and Xie, F. (2022) ‘Uncertainty-based thin cloud removal network via conditional 
variational autoencoders’, in Proceedings of the Asian Conference on Computer Vision, 
pp.469–485. 

Dou, A., Hao, Y., Liu, W., Li, L., Wang, Z. and Liu, B. (2024) ‘Remote sensing image cloud 
removal based on multi-scale spatial information perception’, Multimedia Systems, Vol. 30, 
No. 5, p.249. 

Ebel, P., Garnot, V.S.F., Schmitt, M., Wegner, J.D. and Zhu, X.X. (2023) ‘UnCRtainTS: 
uncertainty quantification for cloud removal in optical satellite time series’, in Proceedings of 
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.2086–2096. 

Fang, Y. (2024) ‘Cloudformer-CycleGAN: an efficient cloud removal network integrating residual 
learning and channel spatial attention mechanism’, in Journal of Physics: Conference Series, 
IOP Publishing, Vol. 2863, No. 1, p.12035. 

Han, J., Zhou, Y., Gao, X. and Zhao, Y. (2024) ‘Thin cloud removal generative adversarial network 
based on sparse transformer in remote sensing images’, Remote Sensing, Vol. 16, No. 19, 
p.3658. 

Hao, Y., Jiang, W., Liu, W., Li, Y. and Liu, B.D. (2023) ‘Selecting information fusion generative 
adversarial network for remote-sensing image cloud removal’, IEEE Geoscience and Remote 
Sensing Letters, Vol. 20, pp.1–5, DOI: 10.1109/LGRS.2023.3296517. 

He, K., Sun, J. and Tang, X. (2010) ‘Single image haze removal using dark channel prior’, IEEE 
Transactions on Pattern Analysis and Machine Intelligence, Vol. 33, No. 12, pp.2341–2353. 

Ji, Z. and Zhong, X. (2024) ‘Bidirectional attention network for real-time segmentation of forest 
fires based on UAV images’, International Journal of Information and Communication 
Technology, Vol. 25, No. 6, pp.38–51. 

Jin, M., Wang, P. and Li, Y. (2024) ‘HYA-GAN: remote sensing image cloud removal based on 
hybrid attention generation adversarial network’, International Journal of Remote Sensing, 
Vol. 45, No. 6, pp.1755–1773. 

Jing, R., Duan, F., Lu, F., Zhang, M. and Zhao, W. (2023) ‘Denoising diffusion probabilistic 
feature-based network for cloud removal in Sentinel-2 imagery’, Remote Sensing, Vol. 15,  
No. 9, p.2217. 

Kipf, T.N. and Welling, M. (2016) Semi-Supervised Classification with Graph Convolutional 
Networks, arXiv preprint arXiv:1609.02907. 



   

 

   

   
 

   

   

 

   

   76 H. Qiu and K. Zhang    
 

    
 
 

   

   
 

   

   

 

   

       
 

Li, A., Guan, G., Zhao, H., Li, S., Zhu, J., Han, X., Wang, Y. and Pan, J. (2024a) ‘Integrated 
methodology for atmospheric correction and cloud removal of multispectral remote sensing 
images using guided diffusion model’, IEEE Transactions on Geoscience and Remote 
Sensing, Vol. 62, pp.1–21, DOI: 10.1109/TGRS.2024.3497180. 

Li, X., Zhao, X., Wang, F. and Ren, P. (2024b) ‘HF-T2CR: high-fidelity thin and thick cloud 
removal in optical satellite images through SAR fusion’, IEEE Transactions on Geoscience 
and Remote Sensing, Vol. 62, pp.1–13, DOI: 10.1109/TGRS.2024.3416128. 

Li, C., Liu, X. and Li, S. (2023a) ‘Transformer meets GAN: cloud-free multispectral image 
reconstruction via multisensor data fusion in satellite images’, IEEE Transactions on 
Geoscience and Remote Sensing, Vol. 61, pp.1–13, DOI: 10.1109/TGRS.2023.3326545. 

Li, J., Shi, P., Hu, Q. and Zhang, Y. (2023b) ‘QGORE: quadratic-time guaranteed outlier removal 
for point cloud registration’, IEEE Transactions on Pattern Analysis and Machine 
Intelligence, Vol. 45, No. 9, pp.11136–11151. 

Liu, G., Shan, Z., Meng, Y., Akbar, T.A. and Ye, S. (2024a) ‘RDPGNet: a road extraction network 
with dual-view information perception based on GCN’, Journal of King Saud University – 
Computer and Information Sciences, Vol. 36, No. 3, p.102009. 

Liu, J., Pan, B. and Shi, Z. (2024b) ‘Cascaded memory network for optical remote sensing imagery 
cloud removal’, IEEE Transactions on Geoscience and Remote Sensing, Vol. 62, pp.1–11, 
DOI: 10.1109/TGRS.2024.3376609. 

Liu, K., Xia, L. and Xu, J. (2023a) ‘An information management system of land resources based on 
UAV remote sensing’, International Journal of Information and Communication Technology, 
Vol. 23, No. 2, pp.107–125. 

Liu, Z., Zhao, Y., Zhan, S., Liu, Y., Chen, R. and He, Y. (2023b) ‘PCDNF: revisiting learning-
based point cloud denoising via joint normal filtering’, IEEE Transactions on Visualization 
and Computer Graphics. 

Lu, Y., Zhao, Y., Yang, M., Zhao, Y., Huang, L. and Cui, B. (2024) ‘BI2Net: graph-based 
boundary-interior interaction network for raft aquaculture area extraction from remote sensing 
images’, IEEE Geoscience and Remote Sensing Letters, Vol. 21, pp.1–5, DOI: 10.1109/ 
LGRS.2024.3369721. 

Ma, W., Karakus, O. and Rosin, P.L. (2025) Patch-GAN Transfer Learning with Reconstructive 
Models for Cloud Removal, arXiv preprint arXiv:2501.05265. 

Ma, X., Huang, Y., Zhang, X., Pun, M.O. and Huang, B. (2023) ‘Cloud-EGAN: rethinking 
CycleGAN from a feature enhancement perspective for cloud removal by combining CNN and 
transformer’, IEEE Journal of Selected Topics in Applied Earth Observations and Remote 
Sensing, Vol. 16, pp.4999–5012, DOI: 10.1109/JSTARS.2023.3280947. 

Pan, H. (2020) Cloud Removal for Remote Sensing Imagery via Spatial Attention Generative 
Adversarial Network, arXiv preprint arXiv:2009.13015. 

Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M. and Monfardini, G. (2008) ‘The graph neural 
network model’, IEEE Transactions on Neural Networks, Vol. 20, No. 1, pp.61–80. 

Song, X., Hua, Z. and Li, J. (2024) ‘Context spatial awareness remote sensing image change 
detection network based on graph and convolution interaction’, IEEE Transactions on 
Geoscience and Remote Sensing, Vol. 62, pp.1–16, DOI: 10.1109/TGRS.2024.3357524. 

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P. and Bengio, Y. (2017) ‘Graph 
attention networks’, Stat., Vol. 1050, No. 20, pp.10–48550. 

Wang, M., Song, Y., Wei, P., Xian, X., Shi, Y. and Lin, L. (2024a) ‘IDF-CR: iterative diffusion 
process for divide-and-conquer cloud removal in remote-sensing images’, IEEE Transactions 
on Geoscience and Remote Sensing, Vol. 62, pp.1–14, DOI: 10.1109/TGRS.2024.3378720. 

Wang, W., Liu, C., Liu, G. and Wang, X. (2024b) ‘CF-GCN: graph convolutional network for 
change detection in remote sensing images’, IEEE Transactions on Geoscience and Remote 
Sensing, Vol. 62, pp.1–13, DOI: 10.1109/TGRS.2024.3357085. 

Wen, X., Pan, Z., Hu, Y. and Liu, J. (2021) ‘Generative adversarial learning in YUV color space 
for thin cloud removal on satellite imagery’, Remote Sensing, Vol. 13, No. 6, p.1079. 



   

 

   

   
 

   

   

 

   

    Multi-scale adaptive graph convolution-based thick cloud removal method 77    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Wen, X., Pan, Z., Hu, Y. and Liu, J. (2022) ‘An effective network integrating residual learning and 
channel attention mechanism for thin cloud removal’, IEEE Geoscience and Remote Sensing 
Letters, Vol. 19, pp.1–5, DOI: 10.1109/LGRS.2022.3161062. 

Xiao, Y. (2024) ‘Removal of thin clouds from high-resolution optical images based on multiscale 
feature fusion’, in International Conference on Advanced Image Processing Technology 
(AIPT 2024), SPIE, Vol. 13257. 

Xu, Z., Wu, K., Huang, L., Wang, Q. and Ren, P. (2021) ‘Cloudy image arithmetic: a cloudy scene 
synthesis paradigm with an application to deep-learning-based thin cloud removal’, IEEE 
Transactions on Geoscience and Remote Sensing, Vol. 60, pp.1–16, DOI: 10.1109/TGRS. 
2021.3122253. 

Yang, J., Wang, W., Chen, K., Liu, L., Zou, Z. and Shi, Z. (2024) ‘Structural representation-guided 
GAN for remote sensing image cloud removal’, IEEE Geoscience and Remote Sensing 
Letters, Vol. 22, pp.1–5, DOI: 10.1109/LGRS.2024.3516078. 

Zhang, S., Li, X., Zhou, X., Wang, Y. and Hu, Y. (2023) ‘Cloud removal using SAR and optical 
images via attention mechanism-based GAN’, Pattern Recognition Letters, Vol. 175, pp.8–15, 
https://doi.org/10.1016/j.patrec.2023.09.014. 

Zhang, Y., Ming, D., Dong, D. and Xu, L. (2024) ‘Object-oriented U-GCN for open-pit mining 
extraction from high spatial resolution remote-sensing images of complex scenes’, 
International Journal of Remote Sensing, Vol. 45, No. 22, pp.8313–8333. 

Zhao, M., Olsen, P. and Chandra, R. (2023) ‘Seeing through clouds in satellite images’, IEEE 
Transactions on Geoscience and Remote Sensing, Vol. 61, pp.1–16, DOI: 10.1109/TGRS. 
2023.3239592. 

Zhao, X. and Jia, K. (2023) ‘Cloud removal in remote sensing using sequential-based diffusion 
models’, Remote Sensing, Vol. 15, No. 11, p.2861. 

Zheng, W.J., Zhao, X.L., Zheng, Y.B., Lin, J., Zhuang, L. and Huang, T.Z. (2023)  
‘Spatial-spectral-temporal connective tensor network decomposition for thick cloud removal’, 
ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 199, pp.182–194, https://doi.org/ 
10.1016/j.isprsjprs.2023.04.006. 

Zhou, W., Huang, S., Luo, Q. and Yu, L. (2024a) ‘Research on a ship target detection method in 
remote sensing images at sea’, International Journal of Information and Communication 
Technology, Vol. 25, No. 12, pp.29–45. 

Zhou, H., Wang, Y., Liu, W., Tao, D., Ma, W. and Liu, B. (2024b) ‘MSC-GAN: a multi-stream 
complementary generative adversarial network with grouping learning for multitemporal 
cloud removal’, IEEE Transactions on Geoscience and Remote Sensing, Vol. 63, pp.1–17, 
DOI: 10.1109/TGRS.2024.3507214. 

Zhou, Y., Jing, W., Wang, J., Chen, G., Scherer, R. and Damaševičius, R. (2022)  
‘MSAR-DefogNet: lightweight cloud removal network for high resolution remote sensing 
images based on multi scale convolution’, IET Image Processing, Vol. 16, No. 3, pp.659–668. 

Zi, Y., Ding, H., Xie, F., Jiang, Z. and Song, X. (2023) ‘Wavelet integrated convolutional neural 
network for thin cloud removal in remote sensing images’, Remote Sensing, Vol. 15, No. 3, 
p.781. 


