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Abstract: This is one of the first regression machines that data scientists will 
encounter because it is easier and easier to interpret. It suffers from complex, 
nonlinear and high dimensional data. In the context of finance, healthcare and 
climate domains, this study suggests a hybrid machine learning framework 
combining Adam, RMSProp, XGBoost, SVMs, and neural networks to 
significantly improve the regression performance. MSE, R2 and efficiency 
metrics are used to analyse real world datasets. The financial forecasting MSE 
is reduced by 18% and the healthcare R2 improved by 22%. Noisy data was 
easier to deal with for climate models. Because they preserved interpretability, 
features were indicated by SHAP values. Blending classical statistics with 
modern AI transforms the problem into more accurate, scalable, and 
interpretable models, providing robust solutions for today’s complex data 
challenges, which are proven. 

Keywords: AI-driven regression enhancement; ensemble learning regression; 
predictive modelling AI; SHAP interpretability in regression; gradient 
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1 Introduction 

Data analysis and predictive modelling are linear regression’s leading statistical 
techniques. The method’s simplicity, rapid computation, and easy-to-read direct model 
have put it at the heart of social programs such as medicine, finance, engineering, and 
social research (Warne, 2020; Addison, 2017; Lee and Yang, 2022; Safi et al., 2023). 
From the real-world observation data, linear regression predicts dependency with the help 
of the equation, which correlates the dependent and independent variables (Sarker, 2021). 
Researchers often overlook linear regression’s limitations when a technique like linear 
regression applies to a high-dimensional dataset with nonlinear patterns, random error, 
and multiple variable interactions. 

To be precise, during this era of processing big data, traditional linear regression 
methods lost accuracy and robustness (Zhou et al., 2017). Linear regression suffers from 
multicollinearity, excessive fitting, and, more generally, linear relationship constraints 
when dealing with complex scenarios with detailed datasets (Chan et al., 2022). It is often 
impossible to comprehensively analyse the complex dynamic elements displayed in retail 
financial market operations, such as sentiment and macroeconomic indicators, using a 
straightforward linear functional framework (Dückerhoff, 2024). Patient healthcare data 
are also considered as they exhibit nonlinear interaction amongst demographics, clinical 
metrics, and treatment results (Cook et al., 2009) and, therefore, necessitate specialised 
modelling approaches. 

The latest artificial intelligence technology developments and machine learning 
systems have delivered creative solutions to enhance modelling capabilities (Gupta et al., 
2021). Enhanced predictive capabilities and flexibility in linear regression models result 
from combining regularisation techniques, automated feature engineering, ensemble 
learning, and advanced optimisation approaches. Modern data processing challenges 
become manageable by combining these methods, transforming traditional regression 
models into adaptable tools (Rane et al., 2024; Ren et al., 2016). The SHAP framework 
makes these improved models more explainable (Ahmed et al., 2024) because it ensures 
high transparency. Both healthcare and finance applications need this actual transparency. 
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Artificial intelligence technology developments and machine learning systems have 
produced creative ways to increase modelling capabilities (Gupta et al., 2021). 
Combining regularisation techniques, automated feature engineering, ensemble learning, 
and some advanced optimisation approaches, the predictive capabilities of the linear 
regression models are enhanced, and flexibility is provided in the selection of model 
terms. These methods combine to make modern data processing problems tractable, 
turning conventional regression models into flexible tools (Rane et al., 2024; Ren et al., 
2016). It provides the developed models with high transparency and is more explainable 
(Ahmed et al., 2024) using the SHAP framework. This transparency is needed in 
healthcare and finance applications alike. 

This paper makes the following key contributions to the field of predictive analytics 
and regression modelling: 

• Development of an AI-enhanced linear regression framework: adaptive gradient 
optimisation, ensemble learning, and automated feature engineering modules were 
integrated to create a new analytical framework, overcoming the limitations of the 
regression method. 

• Emphasis on interpretability: incorporated into the proposed framework, it preserves 
high interpretability standards while delivering improved performance outcomes that 
matter for the practical implementation of the framework. 

• Empirical validation across domains: this framework generally applies to any  
real-world dataset, including combinations of financial sectors, healthcare, and 
climate science. 

• Analysis of computational trade-offs: the study describes the resource allocation 
needs of the enhanced framework and strategies to optimise accuracy against 
efficiency needs. 

• Blueprint for hybrid approaches: the paper lays down the foundation for hybrid 
models that produce sophisticated and statistically interpretable predictions while 
retaining the simplicity and power of traditional statistical methods. 

The remainder of this paper is organised as follows: Section 2 contains an extensive 
overview of traditional linear regression analytics followed by trends in machine learning 
innovation within this field. Section 3 presents the methodology by describing the 
proposed AI-enhanced framework, design structure, data collection methods, and 
performance assessment protocols. Section 4 shows the study results while assessing how 
the framework advances performance alongside interpretability needs and computational 
resource usage. Section 5 explores general conclusions and future research needs for the 
research study. Finally, this section summarises the most important findings that 
contribute to advancing state-of-the-art predictive analytics practices. Section 6 concludes 
the whole research. 

2 Literature review 

This recent but important foundational statistical model has naturally emerged as a 
central standard approach due to its simple implementation, intuitive interpretation, and 
efficient algorithmic requirements. Predictive analytics relies on linear regression, which 
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has broadened its adoption in various fields such as healthcare and engineering. 
Traditional linear regression struggles to function effectively in modern applications due 
to nonlinear patterns, multicollinearity, and growing dataset complexity when applied to 
complex data. Recent research focuses on using machine learning approaches to boost 
linear regression models by developing solutions that resolve primary obstacles. 

2.1 Enhancements through regularisation 

The discipline of linear regression was initially advanced with the introduction of 
regularisation techniques, including Ridge regression with its Lasso counterpart (Hoerl, 
2020; Pillonetto et al., 2022; Nwosu et al., 2024). These approaches combat both 
situations through added penalty terms implemented in the objective function.  
Ridge regression (Mubasher et al., 2024) prevents excessive coefficient sizes in  
high-dimensional data, producing stabilised prediction results. Similarly, Lasso 
regression (Pak et al., 2025) reduces the model size by shrinking irrelevant coefficients to 
zero values. Exceptional in its feature selection and multicollinearity management is 
elastic net, which integrates implementation from ridge regression and lasso regression 
methods (Leow, 2023; Ahrens et al., 2020; Yang et al., 2024). These improvement 
techniques for model performance struggle with nonlinear data patterns and complex 
dataset structures. 

2.2 Nonlinear extensions 

Traditional regression methods reach their limits when fitting nonlinear patterns, which 
has led to the development of polynomial regression and kernel methods (Milton et al., 
2019). Polynomial regression transforms features to higher-degree terms, thus allowing 
the model to detect curvature patterns in data (Vyas et al., 2019). Support vector 
regression and similar kernel methods by Ukil and Ukil (2007), Kecman (2005), Basak  
et al. (2007) perform data mapping into higher dimensional areas to detect linear 
regressions. These data manipulation methods show effectiveness in specific domains but 
present two main limitations – they demand intensive human parameter adjustments and 
quickly produce overfitting problems in noisy datasets. 

2.3 Feature engineering and automation 

Input feature quality plays a principal role in regression model achievement because it 
directly determines predictive accuracy levels (Ahmed et al., 2019; Yuan et al., 2020; 
Tomasevic et al., 2020). Traditional approaches to feature engineering depend intensely 
on subject matter expertise yet require considerable time and subjective human  
decision-making (Dong and Liu, 2018). Modern automated feature engineering uses 
machine learning algorithms to simplify the development pipeline (Mumuni and 
Mumuni, 2024; Nikitin et al., 2022; Pradhan and Trehan, 2024). The practical feature 
selection and generation process is powered by tree-based algorithms like XGBoost 
(Demir and Sahin, 2023). Machine learning algorithms determine feature rankings 
according to their importance, limit redundancy, and create advanced features that detect 
intricate patterns (Cai et al., 2018; Sarker, 2021; Dhal and Azad, 2022). The automated 
process has proven effective in datasets containing many dimensions beyond human 
manual pre-processing capabilities. 
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2.4 Ensemble learning for enhanced performance 

Ensemble learning methods by combining multiple models for prediction have 
transformed regression analysis through performance enhancements of accuracy and 
robustness (Mienye and Sun, 2022). Two advanced ensemble algorithms understand 
complex interdependencies and noisy data: random forests and gradient-boosting 
machines, including XGBoost (Schmid, 2024; Iranzad, 2022; Shaikh et al., 2024). 
Stacking represents a meta-ensemble method identified by Zhang et al. (2022), which 
exploits diverse predictions from linear regression and supports vector machines. These 
solutions utilise model capabilities for optimum results across different types of datasets. 

2.5 Advanced optimisation techniques 

Gradient-based optimisation methods optimise regression model training more efficiently 
while solving convergence problems (Zhang, 2019). Methods such as SGD, RMSProp, 
and Adam also come with models that automatically adjust learning rates for faster 
convergence and prevent the models from falling into local minima (Al-Selwi et al., 
2024). These techniques show full potential when traditional methods do not work well in 
large datasets or problems with sparse data. 

2.6 Interpretability in enhanced regression models 

Interpretability concerns must balance accuracy enhancements and greater complexity, 
essential to the healthcare and finance industries (Goriparthi, 2022; Albahri et al., 2023). 
SHAP and LIME offer techniques that break down model prediction explanations into 
two categories: local assessments for individual features and global views of overall 
contributions (Lundberg et al., 2020; Henninger and Strobl, 2024; Nieto Juscafresa, 
2022). Transparency tools open insight into predictions to take on authentication 
challenges and enable practical adoption of AI-powered regression analytics, and they 
can help build trust in AI-regression analytics. 

2.7 Applications in real-world domains 

Advanced techniques inspire new methods augmented for linear regression in multiple 
fields that produce promising outcomes. The finance industry has an application for stock 
price prediction with a parallel hybrid regression model applying portfolio optimisation 
and risk assessment. These technical advances have enabled healthcare professionals, 
coupled with upgraded regression methods, to achieve better precision in predictions 
based on temperature anomalies, precipitation patterns, and environmental changes in the 
pro-climate science industry. 

Research shows traditional linear regression works, but machine learning frameworks 
generate new opportunities for performance improvement. Advances in three key areas 
have improved regularised regression concerning limitations and made the model 
application tractable on more advanced datasets. In this earlier work, this research 
extends previous work to create an extensive predictive analytics solution framework that 
merges previously learned features of what has been learned from traditional linear 
regression models with accuracy and interpretability features. 
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Figure 1 Proposed methodology combines adaptive gradient optimisation with automated feature 
engineering techniques, model ensemble methods, suitable datasets, and evaluation 
metrics to build an AI-powered linear regression framework (see online version  
for colours) 

 

3 Methodology 

This section describes the research methodology that both created and tested an AI-based 
linear regression system that works around traditional regression issues, as shown in 
Figure 1. This framework unites sophisticated machine learning techniques that optimise 
predictive performance and computational efficiency across variable datasets. The 
subsequent sections demonstrate both the architecture structure of the proposed system 
and evaluation datasets, together with the metrics for performance assessment. A 
systematic approach has been implemented to integrate statistical modelling with 
contemporary machine learning methods. 

3.1 Model architecture 

The proposed system builds upon linear regression by combining sophisticated 
optimisation methods with automated feature modelling and learning ensemble strategies. 
These combined features resolve the problems introduced by complex high-dimensional 
datasets by dealing with nonlinearity, noise reduction, and feature redundancy. 

• Adaptive gradient optimisation: today, large, complicated datasets challenge 
traditional optimisation approaches like ordinary least squares and essential gradient 
descent, which suffer from slow convergence rates and performance issues with data 
noise. The solution to these problems in the framework is to use the adaptive 
moment estimation (Adam) and root mean square propagation (RMSProp) adaptive 
gradient optimisation strategies. In training, the methods modify parameter learning 
rates dynamically to converge the model more rapidly. Adam then implements 
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momentum-based gradient updates and adaptive learning rate scheduling to stabilise 
the non-stationary system. RMSProp scale updates for model parameters with a 
benefit for sparse data conditions. Combining these optimisers considerably 
improves the regression model’s overall performance and reliability. 

• Automated feature engineering: performance quality in regression analysis depends 
heavily on robust feature engineering because input feature quality fundamentally 
shapes model performance. Standard manual feature selectivity and engineering 
practice involve lengthy work that commonly leads to errors. Through extreme 
gradient boosting (XGBoost), the framework conducts an automated feature 
selection and generation step using its tree-based machine learning mechanism. 
XGBoost conducts importance ranking to discern key features that remove 
secondary or unwanted attributes to simplify data collection. Derived features 
resulting from this system show nonlinear interactions between variables while 
discovering which features are most influential. The automatic procedures minimise 
the pre-processing duties while ensuring the regression model maintains an 
optimised set of robust features. 

• Model ensembles: its easy interpretability and essential nature are the major 
strengths of linear regression models. However, these strengths are their weaknesses 
in situations involving patterns beyond linear connectives. The framework uses 
ensemble learning to address this constraint by inserting a mechanism that combines 
forecasts from different prediction models (models under M). The ensemble consists 
of: 
1 The model uses linear regression to create understandable linear connection 

patterns. 
2 The support vector machine technique enables the modelling of nonlinear 

separation boundaries. 
3 Neural networks excel at finding complex hierarchical interactions between 

features. 

Different in stacking, combining different models, and the meta-model trains over the 
output of individual models. It strengthens universal performance across multiple datasets 
and, at the same time, minimises the problems of model overfitting while enhancing 
system stability. 

3.2 Datasets 

The performance of the AI-enhanced linear regression framework was validated using 
three real-world datasets, chosen for their diversity and relevance to predictive analytics: 

• Financial forecasting: the stock market data includes historical pricing data, trading 
volume and market index measure, interest rate, and financial news analysis. Market 
uncertainty and the nonlinear nature of those outside factors affecting market 
movement make stock price movement prediction more challenging. The predictive 
framework was tested on short-term market price movements and the corresponding 
intrinsic market volatility. 
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• Healthcare analytics: the dataset analysed patient readmission rates while featuring a 
combination of demographic markers (age and gender) and clinical documentation 
(such as test results and pre-existing conditions) along with operational elements 
(hospital duration and treatment compliance). The dataset analysis faced three 
primary obstacles: missing data points, mismatched class distributions, and multiple 
variables interweaving predictors. The established analytical framework looked for 
essential risk elements leading to readmission while estimating readmission 
probability over an established time. 

• Climate modelling: researchers used temperature anomaly prediction to evaluate 
climatic factors incorporating CO2 concentration measurements, precipitation 
records, wind speed observations, and ocean oscillation index data. Long-term trends 
accompany climate data, containing high-dimensional attributes and noisy 
observation points. The framework conducted an analysis that tracked immediate and 
extended fluctuations to show seasonal changes in climate patterns. 

Each dataset underwent rigorous pre-processing: 

• Outlier removal: a z-score threshold system removed extreme outlier data points. 

• Handling missing values: data imputation involved two techniques that utilised  
K-nearest neighbours (KNN) alongside median imputation. 

• Normalisation and standardisation: the normalisation of features was done for two 
essential reasons: establishing standard scales and eliminating optimisation bias 
effects. 

A fair evaluation process using a training-validation-test split at the 80-10-10 ratio was 
implemented to prevent overfitting. 

3.3 Evaluation metrics 

The effectiveness of the AI-enhanced linear regression framework was assessed using a 
combination of performance and computational metrics, providing a holistic evaluation 
of its capabilities: 

• Mean squared error (MSE): predictive accuracy strengthens as MSE calculates the 
mean of squared differences between forecasted and measured outcomes. Given its 
ability to detect significant prediction deviations appropriately, the MSE is suitable 
for regression model assessment, particularly when precise actual value coverage is 
needed. 

• R-Squared values: the model-specific R-squared shows the percentage of dependent 
variable variability explained by the fitted framework. An improved R-squared value 
signifies a stronger model connection because it describes how much the model 
reproduces the natural data relationships. The metric proved essential for evaluating 
the newly developed framework relative to conventional linear regression 
performance. 

• Computational efficiency (time complexity): time analysis for training and inference 
operations was performed because advanced optimisation, feature engineering, and 
ensemble learning methods result in higher computational resource requirements 
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across all datasets. Parallel processing using GPU accelerators and early stop 
techniques improved computational performance while maintaining prediction 
accuracy standards. 

• Model robustness: model performance was assessed by subjecting the model to 
cross-validation to estimate how well its estimate of reality generalises to a different 
dataset. Model consistency was evaluated across three data groups using mean-
squared error and R-squared metrics that tracked predictive accuracy. 

• Scalability and resource utilisation: tests were performed across varying dataset 
dimensions and complexity levels to validate framework scalability, resulting in 
performance sustainability and computational resource characterisation. 

Beyond that, the study proposed a compound evaluation framework to determine the  
AI-leaderboard linear regression framework’s capability compared with regular ones and 
its meaningfulness regarding diversified situations. 

4 Results and analysis 

The evaluation results for different datasets and performance indicators demonstrate that 
AI-based linear regression orientation outperforms classic linear regression vertical 
alignment. Finally, this part illustrates how the framework elevates accuracy, 
interpretability, and computational speed gains while accounting for complexities 
introduced by other framework intricacies. 

4.1 Performance comparison 

All studied datasets were analysed better using the AI-enhanced framework than linear 
regression. MSE and R-squared values proved successful as performance metrics when 
used to predict. Table 1 shows the performance metrics for each evaluated dataset. 

The MSE value for the original regression, 0.320, was reduced by 18% to 0.262 using 
the traditional AI-enhanced forecasting system. The main reason behind performance 
elevation stemmed from automated feature engineering that revealed nonlinear data 
correlations between trading volumes and outside economic measures. The two 
approaches are compared in Figure 2 through MSE value evaluation. The lower bars for 
the AI-enhanced framework highlight its superior accuracy. 

Healthcare analytics applications benefited from the framework, which elevated  
R-squared metrics from 0.78 to 0.95 through its implementation. The model demonstrates 
enhanced performance by explaining more significant readmission variance in patient 
data and effectively selecting essential predictors that include comorbidities and 
medication compliance. The graphical comparison in Figure 3 shows a substantial  
R-squared separation between the two approaches. 

AI enhancements in climate modelling produced a better performance with noisy 
inputs, reducing MSE from 0.450 to 0.385 (a 14% improvement). The model succeeded 
at merging ensemble methods with adaptive optimisation to enable the detection of  
long-term patterns along with seasonal fluctuations that regression models typically fail 
to detect. 
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Table 2 Compares the performance of traditional regression methods with the AI-enhanced 
framework across three domains 

Dataset Metric Traditional 
regression 

AI-enhanced 
framework 

Improvement 
(%) 

Financial forecasting MSE 0.32 0.26 18 
Healthcare analytics R-squared 0.78 0.9 22 
Climate modelling MSE 0.45 0.38 14 

Notes: Financial forecasting, healthcare analytics, and climate modelling. Three 
performance metrics serve this study: mean squared error for financial forecasting 
and climate modelling and R-squared for healthcare analytics. Since their 
implementation, new performance metrics from the AI-enhanced framework have 
shown dramatic gains in prediction capabilities and model understanding. 

Figure 2 Compares the MSE values for traditional regression and the AI-enhanced framework 
across financial forecasting and climate modelling (see online version for colours) 

 

Notes: The AI-enhanced framework demonstrates better prediction accuracy by 
generating recurrently lower MSE values. 

4.2 Interpretability vs. complexity 

Advanced machine learning techniques encounter difficulties because research must 
balance model complexity and interpretability. An AI-enhanced framework incorporated 
ensemble learning and adaptive optimisation but maintained interpretability features 
using Shapley additive explanations (SHAP) values. 

SHAP values generated essential information about features’ impact during 
healthcare analytics dataset analysis. For example: 

• Feature importance: research on SHAP discovered that patient readmission depends 
most heavily on medication adherence, comorbidity conditions, and past hospital 
visit frequency. 
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Figure 3 A graphical representation presents R-squared statistics between traditional regression 
and AI-assisted analytical frameworks in healthcare analytics (see online version  
for colours) 

 

Notes: the framework supported by AI technology achieves superior levels of explanation 
for healthcare analytics data. 

Figure 4 The plot highlights SHAP values to display feature importance alongside prediction 
impact, illustrating the patient readmission factors that matter most (see online version 
for colours) 

 

• Local explanations: SHAP revealed the individual feature values that specifically 
affected readmission risks, including medication non-compliance and patient age 
progression. 
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A healthcare SHAP summary plot shown in Figure 4 enabled visualisation of feature 
importance and their respective impacts on predictive outcomes. Forward-facing 
organisations use SHAP’s interpretability capabilities to disclose prediction causes 
because understanding why results happen remains fundamental in healthcare and finance 
operations. 

4.3 Computational trade-offs 

Implementing advanced optimisation techniques, automated feature engineering, and 
ensemble learning methods required increased computational resources during execution. 
The AI-enhanced framework needed 2–3 additional training periods beyond the typical 
method durations. Training times between traditional and AI-enhanced methods appear in 
Table 2 and Figure 5, which includes full details for all datasets. 

Training times for the financial forecasting dataset grew from traditional regression’s 
5-second base period to 15 seconds with the implementation of enhanced AI technology. 
According to available data, healthcare analytics saw training times rise from 8 seconds 
to 22 seconds. Additional resource utilisation guarantees accuracy and robustness at the 
expense of potential real-time hardships. 

Several strategies were implemented to optimise computational efficiency: 

• Parallel processing: GPU acceleration processed algorithms XGBoost and neural 
networks faster by speeding up their training steps. 

• Early stopping: validation loss peaked during training, so the process was 
automatically terminated to prevent superfluous algorithm processing. 

• Dimensionality reduction: high-dimensional data pre-processing with principal 
component analysis (PCA) diminished the number of features while preserving vital 
information. 

Table 2 Compares the training times of traditional regression and the AI-enhanced framework 
across three datasets: financial forecasting, healthcare analytics, and climate 
modelling 

Dataset Metric Traditional 
regression 

AI-enhanced 
framework 

Relative 
increase 

Financial forecasting Training time (sec) 5 15 3x 
Healthcare analytics Training time (sec) 8 22 2.75x 
Climate modelling Training time (sec) 10 28 2.8x 

Notes: Training time for the AI-enhanced framework is 2.75 to 3 times longer than 
traditional regression because of sophisticated optimisation methods and 
automatic feature engineering. 

The linear regression framework, aided by AI, provided better performance and excellent 
stability over various testing conditions. The method offered superior value for precision, 
given the significant processing constraints, against tasks that require the most reliable 
outcomes. SHAP values provided by the framework help people understand why some 
features are substantial, and interpretability is preserved in such applications where 
transparent analytic results are needed. New methods must be evaluated through research 
that decreases operational costs by optimising the generation of ensembles and advances 
in hardware implementation. The framework has been developed to facilitate real-time 
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forecasting and data analytics over large volumes for specialised applications;  
domain-specific adaptations will be helpful here. 

Figure 5 Indicates that we need longer training durations for the AI-enhanced framework than 
standard regression methods for all datasets, as shown here (see online version  
for colours) 

 

Notes: It shows the cost-benefit relationship to system performance capabilities using the 
required training time. 

5 Discussion 

In this study, analysis shows that applying AI-based linear regression outperformed 
traditional regression on various datasets by achieving better precision and resistivity and 
improved scalability. This discussion section delves into the key findings, their 
implications, and the broader relevance of the framework in various domains. By 
examining the research trade-offs, application limitations, and future research directions, 
this section discusses the research. 

5.1 Key findings and implications 

The AI-enhanced linear regression framework’s prediction accuracy and explanatory 
capability were consistently better than traditional analytical techniques. We show the 
critical importance of these results by combining adaptive gradient optimisation with 
automatic feature engineering and ensemble learning. Considering financial forecasting, 
predictive results improved by 18% by decreasing MSE, and for healthcare analytics 
predictions, R-squared enhanced to 22%. The results of this research clearly show why 
the proposed framework works on complex datasets where the relationships are  
nonlinear, there are multiple dimensions, and there is background noise. 

Automated feature engineering in the framework uncovered hidden variable 
connections between trading volumes and external economic indicators, which traditional 
regression algorithms would bypass. Through this, the framework effectively isolated 
significant predictors on healthcare analytics, such as medication adherence and 
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comorbidities, and helped to give more accurate patient readmission prediction. These 
fields improve Sporadical decision makers’ capabilities to make informed decisions. 

The framework’s resilience in managing noisy seasonal climate modelling data 
demonstrates a 14% MSE reduction. The framework’s capacity to handle wildly differing 
data patterns is essential to applications of short-term data inconsistencies alongside long-
term trends, such as climate science, economics, or epidemiology. 

5.2 Balancing complexity and interpretability 

By using ensemble learning, adaptive optimisation, and SHAP values, the framework 
allows these complex components to be added without diminishing the results’ 
interpretability. Understanding underlying predictor mechanics is required for domains 
such as healthcare and finance, which rely upon equal parts prediction understanding and 
predictive outputs. 

SHAP values provide highly detailed explanations because they could show variable 
contributions to exact prediction results. The dataset showed poor medication uptake and 
elderly patient status were the major drivers of readmission recurrence in healthcare data 
when investigated through SHAP values. SHAP values’ role in helping practitioners use 
the data to make decisions and be accountable is vital information. 

The framework strikes a perfect balance between the complexity of the processing 
tasks and the user interpretation capabilities for deployment in real-world applications, 
which calls for transparency. However, the methodology combines traditional, 
straightforward methods with state-of-the-art machine learning techniques. 

5.3 Computational trade-offs and resource optimisation 

Though standard methods outperform it, a study has found that the AI-enhanced method 
requires far more computational resources and duplicates many of the assumptions of 
standard regression processes. The advanced optimisation and ensemble learning 
techniques enabled extended training periods of 2.5–3 of their original duration for 
multiple datasets. About 5 seconds of training was necessary for financial forecasting 
using traditional regression, while this took 15 seconds using the frame with AI 
augmentation. In demanding real-time and constrained environments, these trade-offs 
impose operational hardship. However, they are essential for precision-centric 
applications. 

To mitigate these trade-offs, the framework employed several optimisation strategies: 

• Parallel processing: using GPU acceleration, the training speeds of XGBoost and 
neural networks improved dramatically. 

• Early stopping: as its validation loss reached stable levels, research halted training to 
stop paying for resources without cutting capacities for performance. 

• Dimensionality reduction: PCA is a method that simplifies feature spaces without 
losing essential data components and attributes, so the principle PCA will improve 
performance. 

The implemented strategies make the framework computationally feasible for large-scale 
applications, making deployment possible in financial sectors, healthcare systems, and 
environmental modelling. 
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5.4 Limitations and future directions 

While the AI-enhanced framework demonstrated significant advantages, several 
limitations warrant consideration: 

• Scalability to extremely large datasets: the framework demonstrates successful 
operation with medium datasets yet shows potential challenges when processing 
massive datasets since its computational load tends to escalate proportionally. The 
resolution of this computing challenge requires future researchers to evaluate 
distributed processing technologies alongside optimised algorithms. 

• Domain-specific adaptations: a performance boost can be achieved from future 
modifications that adapt framework elements to specific fields. Potential future work 
should add domain knowledge into feature engineering processes and ensemble 
model design decisions to enhance performance even better. 

• Real-time applications: higher training time constraints reduce the practical usability 
of this framework for real-time applications. The framework’s scalability could be 
improved by examining different lightweight implementations or simulation 
approaches for operating ensemble methods. 

Considerably, more research should be explored regarding integrating more intricate 
explainability systems to enhance interpretability for complex model types that need 
understanding. The possibilities for new applications in natural language processing and 
computer vision would be opened by evaluating the framework’s performance on natural 
text-based and image-based unstructured data. 

5.5 Broader implications 

Modern and traditional statistical analysis techniques have been integrated with machine 
learning with linear regression models that receive machine learning updates through AI. 
This system is an enhanced precision creator with maintainable interpretability properties 
for diverse real-world applications. Built with robust capabilities for forecasting, risk 
assessment, and resource planning, the framework supports many fields, such as finance 
or environmental science. 

The research also demonstrates how hybrid models based on traditional statistical and 
machine learning techniques represent increasing promise for modern analysis – 
combining these two sets of frameworks with integrated methods integrating statistical 
design elements from both frameworks to provide a particular equilibrium of simple 
methods with exact reproductions and straightforward interpretation. 

6 Conclusions 

High accuracy, better robustness levels, and scalability can be augmented with 
sophisticated machine learning methods added to linear regression models. In this paper, 
we also propose a framework using adaptive gradient optimisation, automatic feature 
engineering, and ensemble learning to solve the drawbacks of traditional methods when 
working with nonlinear data, handling complex high-dimensional data, and noisy inputs. 
The proposed framework provides versatile financial forecasting, healthcare analytics, 
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and climate modelling results using substantial improvements in mean-squared error and 
R-squared metrics. The framework is complex; however, the significant advantage is that 
it preserves clear interpretability. As the brokerage and healthcare sectors are looking for 
interpretability from the framework, the SHAP interpretation method satisfied the 
requirements for transparent explanation capabilities about their factors and weights. 
These recent advances create computations that slow training time and require more 
resources. Parallel processing and early forming of the optimisation challenges are 
addressed. However, future research is needed to gain more efficient computational 
capabilities for applications using massive datasets in real-time. The results of this 
research are also applied beyond the current datasets to propose an approach to enhance 
machine learning to traditional statistical procedures. This combination of traditional and 
contemporary techniques boosts efficiency, which is why the model can be used for 
economic studies, medical investigations, and ecological assessments. The AI-enhanced 
linear regression framework illustrates a foundation for making meaningful data-driven 
decisions across complex real-world applications by applying a novel methodology that 
integrates machine learning predictive ability with traditional model interpretability. 
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