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Abstract: The image quality generated by the traditional virtual try-on 
technique for non-heritage accessories is poor, to address this problem, this 
paper firstly designs a convolutional neural network that adaptively adjusts the 
feature extraction strategy, and adopts an improved generative adversarial 
network to generate a primary feature map. Then the background noise of the 
primary feature map is suppressed based on multi-scale attention, and an 
adaptive perceptual enhancement module is designed to weight the features at 
different locations in the feature map to strengthen the representation of 
important features. Finally, the primary feature maps are perspective corrected 
and downscaled using multi-scale weights to enable the network to generate 
high-quality images of non-heritage accessory try-on. Experimental results on 
UNESCO and VITON datasets show that the structural similarity (SSIM) of the 
suggested method improves 3.45–26.76% compared to benchmark methods, 
which can effectively improve the quality of image generation. 
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network; GAN; multiscale attention; adaptive perceptual enhancement. 
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1 Introduction 

Intangible cultural heritage, as a treasure of human civilisation, carries rich historical and 
cultural information and national wisdom. As an important carrier of non-heritage 
culture, non-heritage accessories attract more and more people’s attention with their 
unique shape, exquisite craftsmanship and profound cultural connotation (Cai et al., 
2024). However, due to the complexity and high cost of the production process of  
non-heritage accessories, as well as geographical restrictions and other factors, it is 
difficult for people to experience the effect of wearing them in person (Xu et al., 2021). 
In recent years, virtual try-on technology, as an emerging human-computer interaction 
technology, has provided new ideas for the digital display and experience of non-heritage 
accessories. However, traditional virtual try-on technology often suffers from a lack of 
realism and poor interaction experience, which makes it difficult to meet the user’s 
demand for authenticity and immersion in non-heritage accessories try-on (Zhang et al., 
2019). As the artificial intelligence explosively developing, 2D image-based virtual 
fitting methods have become mainstream. In contrast to the complex 3D modelling, the 
2D approach transforms virtual fitting into an image generation problem, and how to 
efficiently achieve the virtual fitting generation of accessories with the assistance of 
artificial intelligence is a challenging topic (Islam et al., 2024). 

As an important bridge connecting traditional culture and modern technology, the 
virtual fitting technology of non-legacy accessories has received extensive attention from 
scholars, and the current research in this field mainly focuses on the virtual fitting 
technology (Hauswiesner et al., 2013). Jiang et al. (2023) used the constraint relationship 
between curvature for feature point matching between the human body model and the 
accessory model to achieve the fitting of the human body and clothing, but the fit was not 
high. Dayik et al. (2016) proposed a virtual fitting method based on Kinect (Xie and Liao, 
2014), which solves the skeleton transformation matrix of Kinect to simulate the collision 
between clothing fabric and human body in real time, and combines somatosensory 
interaction and real-time rendering to enhance the virtual fitting experience. Sabina et al. 
(2014) provide methods to build 3D dress fitting with an interactive virtual store and 
create virtual models using standard sizing parameters, but in poor real-time.  
Three-dimensional virtual fitting can realise accurate physical simulation. However, it 
often requires expensive 3D scanning equipment, and a large amount of modelling work 
not adapted to the current real-time interactive application scenarios. 

With the explosive growth of deep learning technology, 2D virtual try-on technology 
has become a research hotspot. Image-based virtual fitting is addressed as an image 
generation problem, which greatly reduces human and material resources and improves 
the real-time nature of virtual fitting. Zhou et al. (2024) adjusted the diffusion model 
according to image information such as Canny edge map, depth map, and human body 
key point map to control the human body posture, edge features, and front/back position 
relationship of the generated image, which provided a new idea for realising fast virtual 
fitting. Wang et al. (2022) proposed a virtual fitting method based on generative 
adversarial networks (GAN), which synthesises the flat clothes twisted and deformed into 
the corresponding region of the model image to realise virtual fitting, but the quality of 
image generation is poor. Ishikawa and Ikenaga (2022) used a two-channel CNN to 
express the regularised masks for each accessory category as linear combinations of 
learnable mask templates to predict more accurate masks. Chou et al. (2024) proposed 
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contextual CNN to solve the human try-on parsing problem, and the framework captures 
cross-layer, global image-level and local hyperpixel semantic information well enough to 
enable pixel-level classification. 

A large amount of background noise is often generated in virtual try-on images to 
interfere with the generation of high-quality images, so perceptual enhancement methods 
are needed to strengthen foreground information and weaken useless features to improve 
performance. The method mainly designs the spatial attention (SAM) module (Zhang  
et al., 2021), which filters the image background noise through the attention map of the 
accessory virtual try-on. Ye et al. (2024) combined diffusion model and attention 
mechanism to implement virtual fitting technique, and the attention mask generated by 
the attention scale branch to segment the accessory region and background, but the 
computational effort is large. Hu et al. (2022) used the proposed dual path SAM to 
generate the binary and preliminary density maps of segmented foregrounds for 
multiplication to reduce the effect of background noise on the results and synthesised the 
final fitting image using the U-Net generator (Siddique et al., 2021) to improve the 
generation results. 

Through the research and analysis of virtual wearing technology, it is known that the 
existing virtual trying on technology leads to insufficient user experience due to the poor 
quality of image generation. To address the above issues, in this paper, the virtual try-on 
technology of accessories based on adaptive perception enhancement with the assistance 
of artificial intelligence. The main innovations of this technology are summarised in the 
following four aspects. 

1 Adaptive null CNN is designed to adaptively adjust the feature extraction strategy 
according to different non-heritage accessories trying on scenarios, and a multi-task 
discriminator is designed on the basis of conditional GAN, which enables the 
network to capture different levels of the primary feature maps through the  
multi-scale strategy, so as to generate more realistic feature maps. 

2 The background noise rejection (BNR) module is designed based on efficient 
channel attention (ECA) and multi-scale fusion. The effective information of 
different scales of the primary feature map is extracted by BNR and the effective 
feature information is fully expressed for better noise suppression. 

3 Adaptive perceptual enhancement module is designed to weight the features at 
different locations in the feature map according to the weight information in the 
feature map to enhance the expression of important features. Multi-scale weights are 
utilised to perspective correct and downscale the primary feature maps, so that the 
network generates high-quality images of non-heritage accessories trying on. 

4 The experimental results on the public datasets UNESCO and VITON show that the 
SSIM of the proposed method is 0.809 and 0.916 respectively, which significantly 
improves the quality of the generation of the images of non-heritage accessories 
trying on, and provides an innovative path for the digital preservation and inheritance 
of non-heritage culture. 
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2 Relevant technologies 

2.1 Generative adversarial network 

GANs generate data that is virtually indistinguishable from real data through an 
adversarial process, and consist of a generator and a discriminator, which compete with 
each other during training to continuously improve performance (Creswell et al., 2018). 
The GAN training process is a two-player zero-sum game of min-max. The generator 
tries to maximise the probability that the discriminator will misclassify the generated 
data, while the discriminator tries to minimise this probability and accurately distinguish 
between true and false data, as shown below: 

( ) ( )min max ( , ) [log ( )] [log(1 ( ( )))]data zx p x z p zV D G E D x E D G z∼ ∼= + −  

where x is the real data, z is the input noise to the generator, D(x) is the probability that 
the discriminator evaluates the data as real, and G(z) is the fake data generated by the 
generator based on the noise. 

Conditional GAN (CGAN) is an extended form of GAN that controls specific 
attributes of the generated data by introducing additional conditional information (Douzas 
and Bacao, 2018) in the inputs of the generator and discriminator, so that the generated 
data is not only of high quality but also able to fulfil specific conditions or requirements. 
The objective function of CGAN is as follows, where y is the conditional information. 

( ) ( )min max ( , ) [log ( | )] [log(1 ( ( | )))]data zx p x x p zV G D E D x y E D G z y∼ ∼= + −  (2) 

2.2 Convolutional neural network 

The processing of images can be viewed as a large matrix operation, and the 
convolutional and pooling layers of CNNs are more suited to the operation on images 
than the full connectivity of feed-forward neural networks (Tripathi, 2021). CNN has 
become the most widely used deep learning network in the image field, which has greatly 
promoted the growth of computer vision. Non-legacy accessories contain rich and unique 
textures, patterns and other detailed features, CNN through the convolutional kernel in 
the convolutional layer, can be able to locally perceive the input non-legacy accessories 
image data, and automatically extract these complex and subtle features. 

Figure 1 Convolutional neural network architecture (see online version for colours) 
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As shown in Figure 1, CNN is mainly composed of input layer, convolutional layer, 
downsampling level, fully connected level, output level, and activation function. 
Assuming that the height and width of the feature map are H and W, respectively, the 
feature map output by CNN is as follows: 

2 1H
H

H P FOutput
s

+ − = +  
 (3) 

2 1W
w

W P FOutput
s

+ − = +  
 (4) 

where FH is the height of the convolution kernel, FW is the width of the convolution 
kernel, P is the padding, S is the step size, and ⌊ ⌋ is the downward rounding. The  
fully-connected layer uses matrix multiplication to transform the feature dimensions into 
one-dimensional feature vectors of fixed length, as shown below: 

( )f x W x b= × +  (5) 

where f(x) is the output, W is the weight, b is the bias, and x is the input feature. 

2.3 Spatial attention mechanism 

The SAM explicitly models the spatial relationship between pixels or regions (such as the 
relevance of adjacent pixels), which is suitable for structured data such as images and 
videos. In contrast, the ordinary attention mechanism indirectly introduces spatial 
information through position encoding. SAM dynamically adjusts the weights of different 
spatial locations in the feature map by learning the features of the input data, thus 
realising the enhancement of critical regions and the suppression of irrelevant regions, 
which is essentially a process of adaptive perceptual enhancement (Wang et al., 2024). 
Assuming that the input SAM feature map dimension is C × H × W, based on the channel 
dimension, we sequentially compute the maximum value max

sF  and the average value 
pooling ,s

aνgF  and concat the two channel dimension features to obtain the feature map of 
2 × H × W. Then it is downscaled to a feature map of 1 × H × W by a convolutional layer, 
and then the attention weights are obtained by a sigmoid activation function. Finally, this 
weight is dot-multiplied with the input feature map to obtain the feature map containing 
spatial location information, the equation is as follows: 

( )
( )( )

7 7

7 7
max

( ) ([ ( ); ( )])

           ;

s

s s
aνg

M F σ f AvgPool F MaxPool F

σ f F F

×

×

=

=   
 (6) 

where Ms(F) is the output of SAM, F is the input feature map, f7×7 is the convolution 
operation with 7 × 7 convolution kernel, and σ is the sigmoid operation. 
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3 Primary intangible cultural heritage accessory feature map generation 
based on generative adversarial network 

3.1 Adaptive null convolution-based feature extraction for non-legacy 
accessories 

To address the limitation of virtual try-on in dealing with complex texture representation 
and feature interaction of non-heritage accessories, a multi-task discriminator-based 
method for generating primary feature maps of non-heritage accessories try-on is 
proposed, which lays the foundation for generating high-quality virtual try-on results of 
non-heritage accessories. Adaptive cavity convolution (ACNN) module is firstly 
designed to adaptively adjust the feature extraction strategy according to the different 
input images, so as to better extract the effective features in different NRL accessory  
try-on scenarios. Then a multi-task discriminator was designed based on CGAN to 
generate feature maps for the rendering of NRM accessories. 

This paper designs an ACNN with dynamic convolutional kernel characteristics by 
combining the coordinate attention (CA) (Xuan et al., 2022) and the dynamic  
field-of-view module. The dynamic field of view module in ACNN is designed using 
five-layer dynamic cavity convolution. This structure can not only take advantage of 
dynamic convolution, but also adaptively adjust the feature extraction strategy according 
to the different input images, so as to better extract the effective features in different 
wearable scenarios. Firstly, the global average pooling is performed on the original NRL 
accessory image and the global average under each layer of convolution is calculated as 
follows: 

1 1

1 H W

k ijk
i j

z x
H W = =

=
×   (7) 

where xijk is the value of the original image at (i, j) and zk is the average pooling result. 
The dynamic field of view module is then utilised to achieve adaptive feature 

extraction, which relies on the dynamic updating of the dynamic convolutional weights 
and biases, as shown below: 

( )( ) ( )Ty g W z z b z= +   (8) 

where ( ),W z  ( )b z  are the weights and bias of the dynamic convolution kernel, 
respectively. 

The difference with static convolution is that dynamic convolution kernel can realise 
dynamic adjustment of convolution kernel weight and bias according to the different 
input features in the network, thus improving the expressive ability of the network, which 
is shown in equation (9). 

0 0

( ) ( ) , ( ) ( )
K K

k k k k
k k

W z π z W b z π z b
= =

= =     (9) 

where πk is the kth attentional weight, 0 ≤ πk(z) ≤ 1, 
0

( ) 1,
K

kk
π z

=
=  which is 

dynamically adjusted by the mechanism as the input feature x varies. 
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According to the method of assigning weights to weights ( )kW z  and bias ( )kb z  and 
aggregating them according to πk respectively, DCNN achieves the ability of dynamic 
feature extraction for random intangible cultural heritage accessories. 

3.2 Multi-task discriminator-based feature map generation for primary  
non-religious accessories 

A multi-task discriminator is used in the feature map generation network to enhance the 
global and local scale evaluation of the rendering of intangible cultural heritage 
accessories. The multiscale strategy enables the network to capture different levels of the 
primary intangible cultural heritage accessory wearable feature maps, so as to evaluate 
their authenticity in a more comprehensive way. The structure of the multi-task 
discriminator is shown in Figure 2. 

Figure 2 The structure of the multi-task discriminator (see online version for colours) 
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The multi-task discriminator consists of three key components: D1, D2 and D3, of which 
D1 and D2 constitute the multi-scale discriminator, which consists of multiple base 
discriminator units that can analyse and generate feature maps at different scales. In 
addition, the D3 discriminator adopts the design concept of Markov discriminator (Silva 
and Narayanan, 2006), which fully considers the local region of the image and can 
evaluate the local realism of the image in a more detailed way. 

The generator consists of a series of residual blocks with upsampled layers, and the 
multitask discriminator design uses two multiscale discriminators for conditional 
adversarial loss, a Markov discriminator for two-dimensional cross-entropy loss, and 
spectral normalisation applied to all convolutional levels. To train the image generator, 
the total loss function incorporates the conditional adversarial loss, perceptual loss, 
feature matching loss and 2D cross entropy loss. The expression of the total loss function 
is as follows: 
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all cGAN FM pL L λ L λ L= + +β α  (10) 

where λα and λβ are different loss weights, LcGAN is the conditional adversarial loss 
function, LFM is the feature matching loss, Lp and is the two-dimensional cross-entropy 
loss function. 

The multiscale discriminator implementation of conditional adversarial loss uses the 
hinge loss function (Xu et al., 2017). Hinge loss evaluates model performance by 
measuring the interval between the model’s response to real and generated samples. This 
loss encourages the discriminator to better distinguish between real and generated 
samples, which usually leads to more stable training and higher quality generated images. 
The conditional adversarial loss is calculated as follows: 

1

1 min(0, 1 ( ))R

N

D
i

L D x
N =

= − −  (11) 

1

1 min(0, 1 ( ))F

N

D
i

L D x
N =

= − +  (12) 

cGAN D DR FR FL λ L λ L= +  (13) 

where RDL  is the sum of the loss functions of the real image, FDL  is the sum of the loss 
functions of the generated image, N is the number of samples, x is the input localised 
image region, D(x) is the output of the discriminator, and λR and λF are the different loss 
weights. 

The feature matching loss technique helps the generator to focus on multiple levels of 
learning in addition to the final discriminator output, thus obtaining richer and more 
diverse gradient information. Such a training method usually produces more consistent 
and higher quality results, as calculated by the following equation: 

( ) ( ) ( )( )( )( ) ( )
( ) 1

1

1, ,x

T
i i

FM k s x G xk k
ii

L G D E D s D G s G s
N=

 
= − 

  
  (14) 

where G is the generator, Dk is the kth intermediate level of the discriminator, ( )xsE  is 
averaged over all samples sx, Ni is the number of features in the ith intermediate level, 

( ) ( )i
xkD s  is the feature obtained by sx through the ith intermediate level in Dk, and  

G(sG, G(sx)) is the result of the transformation of G to sx. 
The Markov discriminator uses a two-dimensional cross-entropy loss, which allows 

the model to focus on each localised region of the image, as shown in equation (15). 

( )
1 1

1 log
N C

p ij ij
i j

L y p
N = =

= −   (15) 

where N is the total number of pixels in the image, C is the total number of categories, yij 
is whether pixel i belongs to category j, and pij is the probability that the model predicts 
that pixel i belongs to category j. 
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4 Adaptive perception enhancement-based virtual try-on technology for 
non-heritage accessories 

4.1 Background noise suppression of primary feature maps based on  
multi-scale feature cascades 

Aiming at the issue that the current non-heritage accessories virtual fitting technology is 
affected by background noise, which leads to poor quality of the generated images, this 
paper enhances the filtering ability of image background noise by constructing a 
background noise suppression module, and designs an adaptive perceptual enhancement 
network structure to reduce the interference caused by the perspective distortion of the 
images, so as to accurately realise the virtual fitting of non-heritage accessories. As 
shown in Figure 3, the proposed method consists of two parts: BNR as well as adaptive 
perception enhancement network. 

Figure 3 Adaptive perceptual enhancement-based virtual try-on model for non-religious 
accessories (see online version for colours) 
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Figure 4 The structure of ECA (see online version for colours) 
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Through the previous section, this paper obtains the primary intangible cultural heritage 
accessories try on feature map FGAN, but the feature map has a lot of background noise, 
which leads to poor image quality, for this reason, this paper designs the BNR module, 
which is used to suppress the background noise and generate the neural network module 
for accurate primary intangible cultural heritage accessories try on feature map, as shown 
in Figure 4. The BNR adopts a design based on ECA modules and multilevel information 
fusion, aiming to enhance the noise suppression capability of spatial attention maps. Matt 
determines the accuracy of FGAN. To improve the noise suppression of FGAN, BNR takes 
advantage of the different information of the low-level feature map and the high-level 
feature map. 

ECA is an attentional mechanism used to enhance the expressiveness of CNN 
features, as implied in Figure 4. It extracts the interaction information between channels 
from the feature map by using one-dimensional convolution, calculates the weights of 
different channels, and applies these weights to the feature map. In BNR, ECA utilises 
local channel attention to enhance the effective information in different features as shown 
below: 

( )( )( )k GAN GANy sigmoid Conv GAP F F= ⊗  (16) 

where FGAN is the primary feature map; y is the output; sigmoid denotes the activation 
function; and GAP is global average pooling. 

To better highlight the difference between the human try-on parts and the irrelevant 
background in Matt, BNR uses 1 × 1 convolutional dimensionality reduction before using 
the sigmoid function to map the pixels of Matt between (0, 1), thus generating Matt that 
effectively distinguishes the human try-on parts from the irrelevant parts, as shown 
below: 

( )att attM sigmoid W F b= ∗ +  (17) 

where Matt is the final generated spatial attention map; Fatt is the intermediate feature map 
after 3 ECA optimisations; * is the convolution operation; W and b are the weight and 
bias of the 1D convolution, respectively. 

4.2 Adaptive perceptual enhancement-based virtual try-on result generation for 
non-religious accessories 

To enhance the expression of contextual information and reduce the effect of perspective 
distortion on the image, this paper designs an adaptive perception enhancement (APE) 
module, further improves the network structure, and proposes an APE-CAN network, as 
shown in Figure 5. 

APE extracts multi-scale features of FGAN and enhances the expression of its effective 
information. Firstly, the average pooling of FGAN is carried out, and a 1 × 1 convolution 
and two 3 × 3 convolution are used to extract multi-scale information of FGAN with 
different receptor fields. The extracted head features are cascaded and dimensionality 
reduced after pooling, which is denoted as FA. The ECA is subsequently utilised to 
enhance the effective multi-scale information representation in FGAN to generate features 
with significant information, denoted as FS. Finally, a multiplication operation is 
performed on FA and Fs to generate a multi-scale non-legacy accessory try-on feature 
map Fm, as shown below: 
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( )m A SF W F F b= ∗ ⊗ +  (18) 

Combined with APE to improve the context-aware network (CAN) (Kong et al., 2021), 
APE-CAN is able to extract more detailed spatial and global information in the features 
and enhance the network’s ability to adaptively optimise the perception of multi-level 
context information. APE-CAN first performs multi-scale feature extraction on FGAN 
using four average pooling layers with different kernel sizes to generate four different 
sized receptive fields to perceive the contextual feature Sj with scales of 1, 2, 3, and 6. 
Secondly, Sj is subtracted from Fm so as to extract the feature difference Cj between the 
target feature and the neighbouring features to realise the feature difference extraction, as 
shown in equation (19). Then, APE-CAN inputs Cj into the weight computation network 
and computes the scale weights ωj of different scales in the input feature map using 1D 
convolution as shown in equation (20). Finally, perspective correction and dimensionality 
reduction of FGAN using scale weights wj enables the network to generate a high quality 
predicted non-legacy accessory virtual try-on image F, as shown in equation (21). 

j j mC S F= −  (19) 

( )j jω sigmoid W C b= ∗ +  (20) 

( )
4

1
4

1

j j

GAN
j

jj
ω

ω S
F W F b=

=

 ⊗ 
= ∗ + 

 
 




 (21) 

where (·|·)is a cascade operation. 

Figure 5 The structure of APE-CAN (see online version for colours) 
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5 Experimental results and analyses 

All the experiments in this paper are performed on a computer (PC) with NVIDIA 
GeForce RTX 1080ti dual graphics cards (12 gigabytes of video memory), and are 
implemented using PyTorch programming. During training, the Adam optimiser is used, 
supplemented by learning rate decay. The initial learning rate was set to 0.000 1 and 
decayed by multiplying the learning rate by 0.98 after every 50th round, for a total of  
100 rounds of training. Due to the small number of non-legacy accessory datasets, this 
paper adopts the UNESCO non-legacy accessory dataset and the VITON virtual fitting 
dataset as the experimental dataset. UNESCO contains 6,566 pairs of image groups, 
categorised into target accessories, character images, and before and after depth maps, 
with a resolution of 512 × 320. The VITON dataset consists of 14,221 sets of matching 
training images with a resolution of 256 pixels × 192 pixels and 2,032 sets of matching 
test images with the corresponding resolution. Each set of matching images consists of 
the foreground half-body image of the human body to be tried on and the corresponding 
target garment image. 

Figure 6 Comparison of original and APE-enhanced image quality on UNESCO dataset, (a) 
greyscale histogram of original intangible heritage accessory image (b) adaptive 
perception enhanced image grey level histogram 
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Figure 6(a) shows the grey level histogram of the original NRM accessory image on 
UNESCO dataset, and Figure 6(b) shows the grey level histogram of the adaptive 
perceptual enhancement image on UNESCO dataset by the suggested method APE-CAN. 
The greyscale of the original non-heritage accessories image is mainly concentrated in 
relatively dark and light areas, using background noise suppression and context-adaptive 
perceptual enhancement methods to enhance the original image, the greyscale is 
uniformly distributed, which can effectively improve the effect of non-heritage 
accessories image enhancement. 

To objectively evaluate the generation of virtual fitting images for accessories, this 
paper uses inception score (IS), SSIM and learned perceptual image patch similarity 
(LPIPS), peak signal-to-noise ratio (PSNR) for quantitative evaluation of APE-CAN, 
VGAN (Wang et al., 2022), CAN (Ye et al., 2024), ASNet (Chou et al., 2024) and 
USAM (Hu et al., 2022) are quantitatively evaluated as shown in Table 1. The IS score is 
positively correlated with image quality; the higher the score, the clearer and more varied 
the image. On the UNESCO and VITON datasets, the IS values of APE-CAN are 1.393 
and 3.098, respectively, which are at least 1.75% and 3.92% higher compared to the 
baseline model, respectively. The higher the score of SSIM, the higher the quality of 
image generation. On the two datasets, the SSIM of PE-CAN was improved by  
3.45%–26.76% compared with the other five models. PE-CAN designed a multi-scale 
discriminator to generate feature maps with multi-scale for virtual try-on of non-heritage 
accessories, and realised the suppression of background noise of feature maps by SAM, 
which greatly improved the image generation. The LPIPS score is negatively correlated 
with the image quality, the lower the score, the higher the similarity between the two 
images. On both datasets, PE-CAN has the lowest LPIPS score, so PE-CAN is the most 
effective in generating non-heritage accessory fitting images. 
Table 1 Quantitative comparison with mainstream methods 

Method 
UNESCO dataset  VITON dataset 

IS SSIM LPIPS  IS SSIM LPIPS 
VGAN 1.255 0.686 0.439  1.315 0.791 0.583 
CAN 1.321 0.727 0.453  2.498 0.813 0.612 
ASNet 1.332 0.741 0.509  2.706 0.854 0.674 
USAM 1.369 0.782 0.526  2.981 0.872 0.715 
APE-CAN 1.393 0.809 0.575  3.098 0.916 0.739 

Figure 7 implies the comparison of PSNR of different methods on both the datasets, 
higher value of PSNR indicates better image quality with less distortion. After  
60 iterations, the PSNR of APE-CAN on UNESCO and VITON datasets reached  
37.2 dB and 39.8 dB, respectively, which increased 40.38% and 53.67% compared with 
VGAN and 27.84% and 34.46% compared with CAN, respectively. Compared with 
ASNet, the increase was 14.11% and 26.75%, and compared with USAM, the increase 
was 7.2% and 15.36%. VGAN generates the NRM accessory images only by traditional 
GAN, but no noise suppression process is applied to the generated images. CAN achieves 
adaptive semantic perception of images through contextual CNNs, but does not augment 
the generated images. Although ASNet considers multi-scale feature enhancement, the 
quality of the pre-generated images of non-heritage accessories is average. USAM 
performs adaptive perceptual enhancement of the generated images by two-path SAM, 
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but it does not consider the multi-scale features of the generated images, so the quality of 
image generation is not as good as APE-CAN. From the above analysis, it can be seen 
that APE-CAN can generate high-quality virtual try-on images of non-heritage 
accessories with good performance. 

Figure 7 Comparison of PSNR metrics on the two datasets (see online version for colours) 
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6 Conclusions 

Non-legacy accessories carry deep historical and cultural connotations, yet their 
inheritance and promotion face many challenges, such as the limitations of physical 
display and the lack of audience experience. In this paper, to address the issue that the 
existing virtual try-on technology for non-fragrant accessories has insufficient user 
experience due to the poor quality of image generation, a convolutional neural network 
that can adaptively adjust the feature extraction strategy according to the non-fragrant 
accessories try-on scenario is firstly designed, and a multi-task discriminative generative 
adversarial network is used to generate the primary feature maps to enhance the global 
and local scale evaluation of the rendering of the accessories. The background noise of 
the primary feature map is then suppressed based on ECA and multilevel information 
fusion to remove the noise from the primary feature map. Then feature weight 
enhancement is introduced to improve the context-aware network, and an adaptive 
perceptual enhancement module is designed to weight the features at different locations 
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in the feature map according to the weight information in the feature map to enhance  
the representation of important features. Finally, the primary feature maps are  
perspective-corrected and downscaled using scale weights to enable the network to 
generate high-quality images of non-heritage accessory try-on. Experimental results on 
real datasets show that the proposed method improves SSIM by at least 3.45% and IS by 
at least 1.75% compared to the baseline method, with better virtual fitting results. 
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