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Abstract: Traditional deep learning detectors often struggle to generalise when 
detecting diffusion-generated content. To address this, we propose DIRE, a 
generalised detector leveraging reconstruction error image representation. The 
framework standardises facial feature spaces through constrained feature 
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learning and introduces a gradient suppression algorithm to filter abnormal 
gradients, preventing shortcut learning and enhancing generalisable feature 
extraction. Experiments on hybrid datasets validate DIRE’s effectiveness in 
four cross-domain tasks (O&C&M→I, O&C&I→M, O&I&M→C, and 
I&C&M→O). Ablation studies confirm the synergy of feature standardisation 
and gradient suppression, reducing bias by 97.6% and parameters by 42%, 
while accelerating inference by 2.3×. DIRE achieves 98.2% and 96.7% 
accuracy on two tasks (O&C&I→M and O&M&I→C), outperforming  
state-of-the-art methods by 5.3% while maintaining computational efficiency. 
This study advances generative face detection through dual optimisation, 
offering a lightweight framework for financial identity verification and social 
media content moderation. 

Keywords: denoising diffusion probabilistic models; DDPMs; diffusion 
reconstruction error; DIRE; face anti-counterfeiting; disentanglement. 
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1 Introduction 

1.1 Background 

Facial recognition systems have gained widespread adoption in identity authentication 
due to the intrinsic stability of biometric features, non-contact acquisition convenience, 
and seamless integration with access control, payment systems, and digital account 
management. However, the proliferation of synthetic media generation technologies – 
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particularly Deepfake algorithms – poses escalating security threats by enabling 
malicious actors to bypass liveness detection, spoof facial verification protocols, and 
compromise authentication integrity. Current countermeasures predominantly focus on 
detecting GAN-generated forgeries, yet exhibit critical limitations in generalising to 
emerging diffusion-based synthesis frameworks characterised by photorealistic texture 
rendering and anatomical consistency. While existing detectors leverage spectral 
anomalies or local artifact analysis, their reliance on domain-specific patterns restricts 
cross-domain adaptability, often failing when deployed against hybrid datasets containing 
both authentic images and advanced synthetic outputs. This gap is further exacerbated by 
the tendency of conventional training paradigms to prioritise shortcut learning from 
superficial noise signatures rather than capturing invariant discriminative features. To 
address these challenges, this paper proposes DIRE, a generalised detection framework 
that bridges the generalisation deficit through dual innovations: 

1 reconstruction error image representation that amplifies diffusion-specific residual 
patterns by contrasting original and regenerated facial features 

2 a gradient suppression mechanism that eliminates domain-biased gradient signals 
during feature standardisation. 

By systematically decoupling identity-related attributes from synthesis artifacts, DIRE 
overcomes the overfitting limitations of prior methods while maintaining robustness 
across heterogeneous data domains. The proposed approach fills a critical research void 
in countering next-generation synthetic threats, offering theoretical advancements in 
feature disentanglement and practical implications for securing authentication systems 
against evolving adversarial capabilities. 

Figure 1 Deep fake face – ‘check no one’ (see online version for colours) 

  

Aiming to reduce the negative impact of deepfake facial technology, the detection and 
defense of deep forged face image has become one of the hot issues that governments, 
enterprises and even individuals pay attention to. In recent years, The introduction of The 
technique of denoising diffusion probabilistic models (DDPMs) (Ho et al., 2020;  
Sohl-Dickstein et al., 2015) has set a new benchmark for image creation, thanks to their 
impressive capacity for producing high-quality images. A significant number of studies 
(Dhariwal and Nichol, 2021; Liu et al., 2022; Nichol and Dhariwal, 2021; Rombach  
et al., 2021; Song et al., 2020) have discussed the improvement of network structure and 
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the acceleration of sampling speed. Because users enjoy the powerful generative power 
of diffusion models, there are potential privacy concerns. As an illustration, a diffusion 
model is capable of recalling distinct images from its training dataset and generating 
them throughout the creation phase (Carlini et al., 2023; Zhu et al., 2023). In addition, 
certain adversaries might create novel deepfake methods based on the diffusion model. 
Therefore, a diffusion-generated image detector is urgently needed. DIRE provides a 
reliable way to distinguish between genuine and diffusion-created images. By developing 
a basic binary classifier, images generated by diffusion can be easily detected. This 
adaptable and versatile algorithm can be used for analysing images generated by 
diffusion models that haven’t been previously seen during the inference stage. 

1.2 Related Research 

Diffusion models set a new benchmark for image generation, producing images of 
unprecedented quality and resolution. Projects such as OpenAI’s DALLE series 
(Shiohara and Yamasaki, 2022; Sohl-Dickstein et al., 2015) and Google’s Imagen 
(Bharadwaj et al., 2013) demonstrate the ability to generate detailed and context-relevant 
images based on text descriptions, opening up new avenues for creative and commercial 
applications. Within the realm of audio synthesis, diffusion models have been used to 
generate high-fidelity music and speech recordings. The ability to model complex 
distributions makes them particularly effective for tasks that require nuance and depth, 
such as mimicking specific musical styles or sounds. Diffusion models are also exploring 
their potential in molecular and material design, where they can generate novel molecular 
structures by learning from large databases of existing compounds. The application could 
revolutionise drug discovery and materials science, providing a new toolset for designing 
substances with desired properties. In addition to creating images without conditions, 
numerous converting text into an image format generation projects utilise diffusion 
models (Chen et al., 2022; Ruiz et al., 2022; Saharia et al., 2022). One notable example is 
VQDiffusion (Wang et al., 2019a), Expanding upon VQ-VAE (Mo et al., 2018), this 
represents a hidden space characterised by conditional alterations of DDPM. Another 
significant contribution is LDM (Stehouwer et al., 2019), which applies a mechanism of 
cross-attention designed to limit the diffusion model to specific inputs and introduces a 
latent diffusion model by incorporating latent space (Esser et al., 2020). The extensively 
utilised Stable Diffusion v1 and v2 represent progress in LDM, significantly boosting the 
generation efficiency to remarkable heights. The detection of generated images has 
received significant attention in recent years. Initial studies primarily concentrated on 
identifying generated images through handcrafted features, including colour indicators 
(Xu et al., 2023), saturation indicators (Shaul et al., 2024), mixing artifacts (Huang et al., 
2022), and concurrency features (Song et al., 2023). Lu et al. (2022) examined various 
traditional deep CNN classifiers (Tashiro et al., 2021; Szegedy et al., 2015) to identify 
images produced by image conversion networks, but they did not tackle the 
generalisation ability for unencountered generation models. In a separate study, Wang  
et al. (2019b) acknowledged this issue, suggesting that a straightforward classifier trained 
on Images produced by GANs can effectively adapt to novel GAN outputs. However, 
their strong generalisation performance is contingent upon extensive training with 20 
different models, each targeting a distinct category of LSUN objects (Yu et al., 2015). 

Despite rapid advancements in diffusion models, there is still a need to create a 
precise and reliable detector specifically designed for image detection by these models. 
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While some recent studies have tackled the issue of detecting diffusion-generated images 
(Henzler et al., 2018; Ricker et al., 2022), our research distinguishes itself by 
concentrating on the development of a versatile detector applicable to a wide variety of 
diffusion models. 

1.3 Highlight 

Diffusion reconstruction error (DIRE) denotes the discrepancy between the original 
image and its reconstructed form, as determined by an already trained diffusion model. 
The data we’ve gathered suggests that these models are capable of efficiently 
reconstructing images produced by diffusion, whereas real images typically cannot. This 
distinction suggests that DIRE can serve as a useful tool for differentiating between 
generated and authentic images. It offers an effective approach for detecting images 
produced by a majority of diffusion models, remains adaptable for identifying outputs 
from unfamiliar diffusion models, and demonstrates resilience against various types of 
perturbations. Building on this insight, we propose a face image identification method 
tailored for AI-generated content (AIGC), ensuring the security of systems reliant on face 
recognition technology. Unlike existing methods that use domain labels for auxiliary 
supervision, DIRE eliminates domain-specific biases by combining channel and spatial 
dimension normalisation. Additionally, our training method suppresses abnormal 
gradients, promoting the learning of generalised features and enhancing the model’s 
robustness. These innovations position DIRE as a groundbreaking solution for combating 
synthetic media fraud and setting a new standard in face image detection. Based on this 
feature, this paper constructs an AIGC-oriented face image identification method to 
effectively ensure the security of various information systems based on face recognition 
technology. 

Contemporary techniques in face anti-counterfeiting aim to enhance the ability to 
generalise unfamiliar scenarios. Most of the existing methods use the domain label as a 
means of auxiliary supervision, yet overlook the intersecting patterns of data distribution 
across various fields, which leads to the use of the domain label will produce inaccuracy. 
To address this issue, the paper suggests a technique for broadening the scope of features 
by limiting them without employing the domain label. Firstly, a dual normalisation 
module combining channel dimension and space dimension is proposed, and the domain 
deviation is eliminated according to the statistical properties of the features to obtain the 
generalised features. In addition, because deep networks often prefer to learn individual 
prominent features that allow easy decisions to be made, rather than general 
generalisation features related to essential tasks, this further affects the model’s 
generalisation performance. Therefore, a training method based on abnormal gradient 
suppression is proposed, which adaptively removes the abnormal gradient parameters in 
the model optimisation stage to promote the network to learn more generalised features. 

2 Theoretical basis of AIGC image identification 

2.1 Generate adversarial theory 

The created adversarial network, rooted in a convolutional neural network, is composed 
of fundamental mathematical processes reliant on parameters, a mix of nonlinear 
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activation functions, and the correlation between input and output is formed through 
repeated stacking. Supported by extensive data and computational assets, the parameters 
are constantly updated through gradient descent and backpropagation algorithms. To 
achieve the prediction and imitation of real data within the actual world. Regarding the 
design of the model, Initially, the generative adversarial network (GAN) consists of a 
generator network in conjunction with a discriminator network. Generator realises the 
mapping of random noise to quasi-real data, and discriminator realises the mapping of 
real data or quasi-real data to ‘real’ or ‘false’. Regarding training goals, the generator’s 
goal is for generating data that matches the real distribution of data, whereas the 
discriminator endeavours to precisely distinguish between the generated and the actual 
data. In general, the GAN completes parameter learning through alternating training of 
the two. In continuous iteration, the artificial data generated by the generator network 
will increasingly resemble the authentic data until the discriminator network is unable to 
accurately differentiate between the generated data and the actual data. In this case, it is 
generally considered that the generator has the ability to generate imitation real data. 
Thus the GAN takes the ‘adversarial’ training of generator and discriminator as a means 
to obtain a generator that can correctly map noise to real data. 

Figure 2 Schematic diagram of generative adversarial network structure (see online version  
for colours) 
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Therefore, the GAN principle can be described in mathematical language as follows: The 
primary GAN consists of a generator network G and a discriminator network D, both of 
which update parameters through adversarial learning. Random noise z is fed into the 
generator G and the resultant image G(z) is output. Where z follows the standard normal 
distribution N(0, 1). G aims to replicate the actual data distribution pdata(x), enabling 
discriminator D to incorrectly assess the produced data G(z) as accurate. D represents 
either the input image x or the produced image G(z) to give the true and false 
classification. Therefore, as shown in formula 2-1 (Nichol et al., 2021), the optimisation 
process can be expressed as: 

[ ] ( )( )~ ( ) ~ ( )min max ( , ) log ( ) log 1 ( )
data zx p x z p zG D

V D G E D x E D G z = + −   (1) 

However, the original GANs can only take noise as input and are not adapted to the 
requirement that image translation accept images or other data types as conditions. 
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2.2 Disentanglement theory 

Following the advancement of deep learning, numerous neural network models (Liu and 
Deng, 2015) can autonomously learn such feature representations. Nevertheless, the 
features (attributes) learned automatically are frequently intertwined, thereby 
necessitating the undertaking of disentanglement research on these unsupervised models. 
Although the definitions of disentanglement here vary (Bengio et al., 2012; Locatello  
et al., 2018), it refers to independently controlling the attributes of interest without 
altering other attributes. Simultaneously, this mechanism of independent control needs to 
be identified in the posterior latent space, enabling the editing of objects. 

The two principal application types of unsupervised disentanglement on 
reconstruction networks are GANs and variational autoencoders (VAEs) (Goodfellow  
et al., 2014). In the objective functions of GANs and VAEs, they employ distinct distance 
metrics to gauge the gap between the model and the data. GANs train the model by 
minimising the Jensen-Shannon (JS) divergence, endeavouring to bring the model 
distribution and the true data distribution as proximate as possible to generate lifelike 
samples. Nevertheless, this approach might give rise to mode collapse of the model, and 
the generated samples might not suffice to cover the entire data manifold. By contrast, 
VAEs train the model by minimising the KL divergence, which can incentivise the model 
to distribute over the entire data manifold, yet this method might yield some ambiguous 
samples. 

Different from GAN networks, VAE takes the optimisation of total correlation as the 
theoretical basis, on which regularisation terms can be added to the loss function in 
literature (Chen et al., 2018), so as to encourage the independence of hidden variables in 
each dimension. VAE-based entanglement methods use various regularisation terms to 
disentangle models, while GAN-based model entanglement methods have been studied 
more extensively. For example, InfoGAN (Gulrajani et al., 2017) is a classical  
GAN-based deentanglement method, which splits the input noise vector into a pair of 
segments: the incompressible noise z and the implicit encoding c with meaning. The 
method uses information theoretic regularisation to control the disentanglement, i.e. 
maximising the mutual information between the generated image G(z, c) and the implicit 
encoding c. Its optimisation function is as follows: 

( )min max ( , ) ( , ) ; ( , )
G D

V G D V G D λI c G z c= −  (2) 

z input noise vector 

x generated image samples 

c latent encoding. 

Since it is difficult to solve mutual information directly using priors, InfoGAN introduces 
an auxiliary network to predict the implicit encoding of the sampled images. The loss 
function of GAN is optimised by calculating the lower bound of variational between 
implicit coding and generator generated images. 

2.3 Reconstruction diffusion theory of AIGC 

DDPMs utilise diffusion models in tasks that generate images without conditions (Bhatt 
et al., 2023). DDPMs are composed of a pair of Markov chains: the forward chain, 
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introducing noise into the data and converting any data distribution into a prior 
distribution (like a standard Gaussian distribution), and the reverse chain, which 
reconstructs the noisy data. The reverse chain achieves denoising by training a neural 
network for forecasting the added noise at every stage. Figure 3 visualises these two 
processes. During the sampling phase, a random vector is first drawn from the prior 
distribution, then denoised using the reverse Markov chain to produce new data samples. 

Figure 3 DDPMs forward diffusion and reverse diffusion process (see online version for colours) 
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For the forward diffusion process: take image creation as a case in point, designate q(x0) 
to represent the real distribution of image data, choose a sample image: x0 ~ q(x0), and 
formulate the probability transfer function for this procedure as: and generate a sequence 
of random value x1, x2,…, xT according to the function, that is, the outcome following a 
gradual increasing Gaussian Noise. The joint probability distribution with x0 as the 
condition can be denoted as: 

( ),...,1 2 0, .Tq x x x x  

and the formula is: 

( ) ( ),...,1 2 0 1
1

,
T

T t t
t

q x x x x q x x −
=

= ∏  (3) 

Typically, the diffusion process’s probability transfer function is characterised as an 
11 t tu x −= − β  Gaussian distribution, with the mean and variance 2

tσ = β  being: 

( ) ( )1 1Ν ; 1 ,t t t t t tq x x x x I− −= − β β  (4) 

With βt ∈ (0, 1) as the hyperparameter, the Gaussian Transition Kernel allows for the 
derivation of the transformation probability function q(xt | x0) at any specific time  
t∈{0, 1,…,T}. 

• Inverse diffusion process: The definition of the inverse Markov chain hinges on a 
prior distribution p(xT) = N(xT; 0, I) and an adaptable transition probability function 
pθ(xt–1 | xt). The symbol pθ(xt–1 | xt) represents: 
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( ) ( ) ( )( )1 1; , , ,θ t t t θ t tθ
p x x N x u x t x t− −=   (5) 

In this context, θ represents the model’s parameters, while uθ(xt, t) and the variance 
( , )tθ
x t  are acquired by the deep neural network. 

According to the above reverse Markov chain, a Gaussian distribution of noise  
xT ~ p(xT) can be sampled, and then samples of each step are iteratively sampled 
according to xt–1 ~ pθ(xt–1 | xt) until t = 1, generating a new sample. 

3 AIGC face image identification technology based on DIRE 

3.1 Overview of methods 

This paper introduces a novel method for representing DIRE aimed at detecting images 
produced by diffusion models. This technique entails assessing the variance between the 
initial image and its reassembled version produced by an already trained diffusion model. 
The results of our study suggest that this model is capable of reconstructing images 
generated by diffusion with enhanced precision over actual images. Based on this 
observation, the algorithm offers distinctive features that facilitate the differentiation 
between diffusion-generated and real images. The subsequent part of this section is 
structured in the following manner: the paper begins by providing a summary of DDPM, 
focusing on its inversion and reconstruction procedures (He and Qin, 2024). Next, we 
outline the specific algorithms employed to identify images created by diffusion. Finally, 
we present a new dataset, called diffusion forensics, designed for the evaluation of 
detectors for diffusion-generated images. 

3.2 Denoising diffusion model 

3.2.1 Probabilistic model 
Motivated by the concept of non-equilibrium thermodynamics, diffusion model was first 
proposed in reference (Xiong et al., 2024) and achieved good performance in image 
generation. A series of Markov diffusion processes were developed, gradually 
introducing Gaussian noise into the dataset and ultimately transforming it into a uniform 
Gaussian distribution (referred to as the forward process). Subsequently, the process of 
reverse diffusion was taught to them for creating samples from the noise (referred to as 
the reverse process). In the forward process, the Markov chain is characterised as: 

( )1 1
1 1

, , 1t t
t t t t

t t

a a
q x x N x x I

a a− −
− −

  = −     
 (6) 

In this context, xt symbolises the altered image at stage t, a1,…, aT denotes a 
predetermined schedule, and T represents the cumulative steps. A key feature of the 
Markov chain is its ability to directly deduce xt from x0 through: 

( ) ( )( )0 0, , 1t t t tq x x N x a x a I= −  (7) 
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The reverse procedure in reference (Mo et al., 2018) is likewise described as a Markov 
chain: 

( ) ( )( )1 1, , , ( , )θ t t t θ t tθ
p x x N x u x t x t− −=   (8) 

Within diffusion models, network pθ(xt–1 | xt) is utilised to correspond with the real 
distribution q(xt–1 | xt). Simplified optimisation primarily aims to achieve sampling and 
reduce noise, as elaborated later, 

( )
0

2

, , 0( ) 1 ,simple t x ε θ t tL θ E ε ε a x a ε t = − + −    (9) 

where ε ~ N(0, I). 

3.2.2 Implicit model 
Denoising diffusion implicit models (Song et al., 2020) proposes an innovative 
deterministic approach to speeding up the iterative process without relying on the Markov 
assumption. Here’s the newly introduced reverse procedure in DDIM, 

( ) ( )2
1 1

1 ,
1 ,t t θ t

t t t t θ t t t
t

x a ε x t
x a a σ ε x t σ ε

a− −

 − −
= + − − +  

 
 (10) 

When σt equals zero, the opposite method turns deterministic (reconstruction process), 
where one noise sample leads to the creation of a unique image. Moreover, when T 
reaches a sufficient size (for instance, T = 1000), equations (3) to (5) is interpretable as 
the application of Euler integration in the resolution of ordinary equations of differential 
nature: 

( )Δ

Δ

Δ 1 1 ,
Δ

t t t t t
θ t

t t tt t

x t x a a
ε x t

a aa t a
−

−

 − − −
= + −  −  

 (11) 

Suppose 1 ,σ a a x x a= − = , the related ordinary differential equations transform 
to: 

2

( )( ) , ( )
1

θ
x tdx t ε t dσ t
σ

 =  
+ 

 (12) 

Subsequently, the process of inversion (from xt to xt+1) might represent the reversal of the 
reconstruction procedure: 

( )1 1

11

1 1 ,t t t t
θ t

t tt t

x x a a
ε x t

a aa a
+ +

++

 − −
= + −  

 
 (13) 

The objective of this method is to acquire the related sample with noise xT for a specific 
image x0. Nonetheless, the process of inverting or sampling incrementally is quite slow. 
For hastening the sampling of the diffusion model, DDIM enables sampling a selection of 
S steps τ1,…,τS, thus transforming the adjacent xt and xt+1 into 

tτx  and 
1
,

tτx
+

 in that order, 
as per equations (3) to (8) and equations (3) to (5). 
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Table 1 The advantages of DIRE over existing diffusion model 

Comparison 
criteria DIRE method Existing detection techniques 

Detection 
principle 

Leverages reconstruction error image 
representation to capture inherent 
diffusion fingerprints by analysing 

residual differences between original 
and diffusion-reconstructed faces. 

Relies on local artifact analysis (e.g., 
inconsistent pupils, skin textures) or 
frequency-domain statistics, which 
are vulnerable to post-processing. 

Generalisation Dual optimisation (feature 
standardisation + gradient 

suppression) reduces 97.6% domain 
bias, achieving **>95% accuracy** 

on unseen diffusion models. 

Suffers significant performance drops 
(~31.2% average) in cross-domain 

detection due to overfitting to 
specific training data. 

Robustness Gradient suppression filters abnormal 
large-value gradients, reducing 

adversarial attack success rates to 
12.3% (64.7% lower than baselines). 

Highly sensitive to adversarial 
samples; gradient-based attacks 
achieve **>77% failure rates**. 

Computational 
efficiency 

Lightweight architecture reduces 
parameters by 42% and achieves 83 
FPS (2.3× faster than state-of-the-art 

methods). 

Heavy multi-scale feature fusion 
designs (>15M parameters) limit 
real-time performance (<35 FPS). 

Feature 
disentanglement 

Decouples identity attributes from 
synthetic artifacts (mutual information 

reduced by 89.2%). 

Strong coupling between identity and 
forgery features (>45% mutual 

information), limiting cross-identity 
generalisation 

3.3 AIGC face image identification model based on DIRE 

3.3.1 Diffusion reconstruction error 
Modern image detectors often show notable performance drops when handling images, 
this stems from the fundamental differences between diffusion models and earlier 
generative models such as GANs, Flow-based models, and VAEs. Addressing the 
possible improper use of diffusion models necessitates the immediate creation of a 
specialised detector for identifying images produced by diffusion. A straightforward 
method could entail educating a binary classifier using a dataset that includes authentic 
and diffusion-generated images. Nonetheless, this technique may encounter difficulties in 
effectively extending its application to diffusion models, an unknown situation. Our 
research recognises that diffusion model images primarily originate from the diffusion 
generation space [pg(x)] distribution, while real images originate from an alternate 
distribution [pτ(x)], they might be close to pg(x) but not precisely identical. The primary 
motivation for our method stems from the reality that samples from the diffusion 
generation space pg(x) are more prone to being reconstructed using a diffusion model that 
has been previously trained, in contrast to actual images which are not. 

Our study primarily aims to use the diffusion model to detect images generated 
through diffusion mechanisms. The findings indicate that a pre-trained diffusion model 
can more readily reconstruct images produced by diffusion models. In contrast, the 
intricate nature of real images makes it challenging for them to be accurately 
reconstructed. Given an input image x0, this paper aims to determine if it has been 
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generated by diffusion models. Utilise a pre-trained diffusion model εθ(xt, t). As shown in 
Figure 3. 

Figure 3 Depiction of how DIRE is computed based on an input image x0 (see online version  
for colours) 

  

In this figure, the DDIM inversion method is utilised to incrementally introduce Gaussian 
noise into x0, as per the equations (3) to (8). Following S steps, x0 transforms into point xT 
within the isotropic Gaussian noise distribution. Identifying the relevant point within the 
noise is a part of the inversion procedure. y space, followed by the creation of DDIM 
[equations (3) to (5)] is utilised to rebuild the input image, resulting in the creation of a 
restored version 0.x′  The differences between x0 and 0x′  assist in differentiating between 
actual and fabricated. Subsequently, the DIRE gets definedd as: 

( ) ( )( )0 0 0DIRE x x R I x= −  (14) 

where | · | signifies the calculation of the absolute value, and I(·) represents a sequence of 
the inversion procedure with equations (3) to (8) and R(·)represents a sequence in the 
reconstruction sequence as per equations (3) to (5). 

Following this, the DIRE representations for both real and diffusion-generated images 
are acquired, leading to the training of a binary classifier to distinguish their DIREs 
through a fundamental binary cross-entropy loss, outlined below, 

( ) ( ) ( ) ( )( )
1

, log 1 log 1
N

i i i i
i

L y y y y y y
=

′ ′ ′= − + − −  (15) 

where N is mini-batch size, y is the ground-truth label, and y′ is the corresponding 
prediction by the detector. During the inference phase, we initially use a diffusion model 
to reconstruct the image and obtain the DIRE. Next, this paper inputs the DIRE into a 
binary classifier that assesses whether the source image is authentic or produced. 

After effectively identifying images generated by diffusion models, we turn our 
attention to the learning of image features, particularly addressing the issue of feature 
entanglement. Following this, we introduce a feature unentanglement pre-training method 
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based on a multi-supervised strategy, which aims to enhance the interpretability and 
discriminative feature learning of models in the face of anti-counterfeiting tasks. 

3.3.2 Unentanglement pre-training based on multi-supervised strategy 
Within the framework of a two-dimensional image, the Hessian matrix manifests as a 
positive definite matrix in a two-dimensional space, assuming that there are two 
eigenvectors and their corresponding eigenvalues, and the eigenvalues symbolise the 
unevenness in the alteration of image pixel values along the path denoted by the 
eigenvector. This also means that the features in the image are often entangled with each 
other, specifically, the change of one feature in the image will affect the change of 
another feature to a certain extent, that is, when verifying the contribution of a feature to 
the target task, it is often interfered with by another feature, which is unfavourable to the 
learning of discriminable features in the face anti-counterfeiting task. At the same time, 
this problem also leads to a decline in the interpretability of models. In this section, the 
entangled features are decoupled by the properties of the two-dimensional image Hessian 
matrix. The Hessian matrix is a tool that describes the local structural characteristics of 
an image, and it reveals the correlations between features by calculating the second 
derivatives of each pixel in the feature map. In our method, we exploit the positive 
definiteness of the Hessian matrix to identify and separate features that are entangled 
together. Specifically, if the Hessian matrix of a feature map is positive definite, then the 
feature map can be decomposed into a series of independent features that are spatially 
uncorrelated. 

In the method in this chapter, the feature generator G is a mapping function, the input 
image is I, the features obtained through the feature generator are denoted as F1–4, and 
then x1, x2, x3, x4 is obtained through global average pooling. Then the Hessian matrix of 
the output result 1y  about x is as follows: 

2
1

ij
i j

yH
x x
∂

=
∂ ∂


 (16) 

Hij in the Hessian matrix above can be interpreted as the second derivative of the output 
result 1y  with respect to xi and xj. In the first stage, the features obtained by the feature 
generator are also classified as true and false. In the method proposed in this section, a 
fully connected layer is used for classification and a binary cross entropy loss is used for 
supervision. The deentanglement pre-training process based on multi-supervision strategy 
proposed in this section is as follows: 
Algorithm 1 Unentanglement pre-training based on multi-supervised strategy 

Input: Face image I; 
Output: Disentanglement feature F; 
1: Through the output result tildeyi, the separated feature graph F (including real feature and 

attack feature) is obtained. 
2: The feature graph F is passed through the fully connected layer to obtain feature z; 
3: Computes the Hessian matrix of the feature generator G with respect to feature x; 
4: Input feature x into the fully connected layer for binary classification; 
5: In the other branch, the real features and attack features in the feature graph F are input 
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respectively to generate adversarial network branches for adversarial training: 
6: Based on classified losses, Hessian penalises losses and generates counter-supervised loss 

back-passes, updating network parameters. 

DIRE is effective in identifying images generated by diffusion models because diffusion 
models leave specific patterns in the alteration of pixel values when generating images. 
These patterns manifest as specific distributions of eigenvalues in the second derivatives 
of the Hessian matrix. By comparing the eigenvalues of the Hessian matrices of 
generated images and real images, DIRE can detect these discrepancies, thus 
distinguishing between images generated by diffusion models and real images. 

3.3.3 Multiple classification stages based on DIRE features 
Fine-grained classification often requires certain basic conditions, that is, it needs to have 
distinguishing features to ensure the accuracy and reliability of the model. Pre-training 
can provide good initial characteristics. The second stage of the two-stage coarse-to-fine 
multi-classification face anti-counterfeiting method proposed in this chapter requires the 
first stage to provide pre-trained feature generators to obtain the initial deentangled 
features for multi-classification. Furthermore, to emphasise the features of various types 
of attacks, this section strengthens the attack characteristics by multiplying an 
amplification factor λ, for the purpose of increasing the significance of the attack 
indicators in the artificially created facial samples. The enhancement of attack clues can 
further help the network to conduct multi-classification. Specifically, when a forged face 
I is input, the feature generator G trained in the first stage can get DIRE feature F1–4 to a 
certain extent. 

1 4 ( )F G I− =  (17) 

After the input face image passes through the feature generator, it is classified through 
softmax employing a completely integrated layer, and the output model predicts the 
probability of a certain category. The general classification task is to use the one with the 
highest probability as the prediction category and supervise the classification cross 
entropy loss. In fine-grained classification, such a design focuses only on the maximum 
probability and ignores the probability difference between the different categories, that is, 
the model does not care about the nuances of the learned features, which can lead to 
overfitting and poor generalisation performance. At the same time, in the multi-stage 
strategy, if only the maximum probability is concerned, the model can not reflect the 
optimisation of feature extraction ability. 

The idea of Ranking loss is to compare the relative differences between two samples 
in order to learn the small differences between the samples. In this section, the 
supervision of Ranking loss can be understood as that in the second stage, the model’s 
confidence in the prediction of true and false samples is higher than that in the first stage, 
so as to reflect the optimisation effect of the feature generator in the second stage. 
Specifically, when a forged face sample is input, suppose that the probability of the 
classification prediction as the real sample in the first stage is p, and the probability of the 
classification prediction as the real sample in the second stage is p p< , which needs to 
be met, which means that the probability of the model in the second stage predicting the 
forged face sample as the real face should be smaller, as shown in the following formula. 
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( )max ,0RankL p p= −  (18) 

Finally, as in the first stage, Hessian punishment is added in the second stage to supervise 
and ensure that the learned features are de-entangled. 
Algorithm 2 Multiple classification stages based on DIRE features 

Input: The first stage extracts the disentanglement feature F: 
Output: Sample feature classification results; 

The attack features in F are strengthened. 
2: The forged face image / with enhanced attack clues is reconstructed by reconstructing 

network R; 
Input / to the feature generator G to get F; 

4: The real feature of F is extracted and the consistency constraint is applied to the first stage; 
Input F into the multi-classification classifier,based on the multi-classification loss, Hessian 
penalises the loss and Ranking the loss backpass, and updates the network parameters. 

Figure 4 The influence of salient features on model learning (see online version for colours) 
Prominent attack mode

Visible reflection Moire pattern Sharp edge

Train Prefer to learn individual 
salient features

Test Recognition failure

 

3.3.4 Abnormal gradient suppression algorithm 
In the training, the model is only tested on the image data that obey the independent same 
distribution. But this type of testing often results in models with poor generalisation. In 
the face anti-counterfeiting task, this problem also needs to be considered, the domain 
deviation of the face anti-counterfeiting data set will also affect the learning of the 
network, different data domains will have special features, such as in some specific data 
domains, video replay attack data due to excessive superimposed reflection factors appear 
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strong highlights, There are also some data due to equipment factors appear obvious 
moire, photo printing attack processing should not appear obvious paper edge and so on. 
These features are prominent features that appear in a particular domain, but are not 
obvious in other domains. If unconstrained, the convolutional neural network will tend to 
focus on these prominent features in the training process, instead of learning general 
generalisation features, that is, falling into shortcut learning, which will cause the 
algorithm to fail when testing the universal attack pattern sample. As shown in Figure 4. 

The abnormal gradient suppression training method in this section is designed to 
eliminate the influence of some prominent features in the optimisation process. This 
method belongs to an optimisation training method, which interferes during the 
convolutional neural network backpropagation to update parameters, calculates the 
backpropagation gradient during the first backpropagation, selects the network 
parameters corresponding to the abnormal gradient to cover up, and then updates the 
network parameters through the second forward propagation and back propagation. The 
aim is to improve the model’s capacity to identify and apply various characteristics, avoid 
the model to overfit a few prominent features, and thus enhance the generalisation. 

Figure 5 Diagram of updating vector z suppressed by anomaly gradient (see online version  
for colours) 

…

MinimumQ1Q2Q3ThresholdMaximum

…

Update

z

z
 

Specifically, the input image gets domain independent feature X after the double 
normalisation module, and then gets a 512-dimensional feature vector z through the full 
connection layer. At the same time, a feature vector m of the same size is defined as a 
mask, which is used to cover up the abnormal network parameters selected later. The 
gradient of the loss with respect to z can then be obtained by formulas (3) to (14). 

( , : )
z

L z y θg
z

∂=
∂

 (19) 

where y is the second-class label of the face image, θ is the parameter of the network, and 
L is the objective function. In this instance, the training employs second-class differential 
entropy loss as the target function, as demonstrated in formula (3) to (15). 
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( ) ( ) ( )
1

1 log 1 log 1
N

i i
i i

n

L y p y p
N =

 = − + − −   (20) 

In this section, a threshold is derived from adaptive calculation based on the quartile 
distance of the gradient data for filtering abnormal gradients. For this task, among all the 
outliers, the part that is too small has a slight effect on the update of network parameters, 
while the part that is too large has a greater impact on the update of network parameters. 
Consequently, focusing solely on the unusually high gradient value is essential. The 
process can be described as follows: Firstly, the gradient value of the loss with respect to 
z is calculated through formulas (3) to (14), and then the batch of gradient values are 
sorted, as shown in Figure 5. 

The box plot is used to show an example of this batch of gradient distributions, where 
Q3, Q2, and Q1 represent the upper, middle, and lower quartiles, i.e., 75%, 50%, and 
25% of the values corresponding to the gradient ordering. Then a threshold is calculated 
adaptively according to the gradient distribution, as shown in formulas (3) to (16). 

( )3 3 1Threshold Q η Q Q= + −  (21) 

where η is a non-negative weight parameter that adjusts the range of normal gradient 
values. Then the values with abnormally large gradients in the eigenvector z are covered. 
Firstly, the feature vector m is updated. For the part whose gradient is greater than the 
threshold value, the position i corresponding to the vector m is updated to 0, as shown in 
formulas (3) to (17). 

0, ( )
( )

1,
zg i Threshold

m i
Other

>
= 


 (22) 

Then, the feature vector z and m are multiplied to get the updated vector ,z  thus 
achieving the purpose of concealing the prominent features. 

z z m=   (23) 

where   represents dot multiplication, the position of 0 in feature vector m is the value 
corresponding to abnormally large gradient, and the value at the same position of feature 
vector z needs to be covered. The parameters are not updated during the first 
backpropagation, but only used to update vector z. The updated ones will go through 
forward propagation again, and the network parameters will be updated during the second 
backpropagation. In addition, when all gradients are less than or equal to the threshold, 
that is, there is no abnormal gradient, and the vector z does not need to be updated. In 
other words, the abnormal gradient suppression proposed in this paper only works on 
prominent features. 

4 Experimental analysis 

4.1 Data preprocessing and evaluation methods 

In this section, the efficiency of the algorithm is assessed using four datasets accessible to 
the public in the realm of facial anti-counterfeiting,including OULU-NPU (denoted O), 
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CASIA FASD (denoted C), Idiap Replay-Attack (denoted I), and MSU-MFSD (denoted 
M). When conducting a single set of experiments, one data set is chosen for the target 
domain, while other data sets are designated as the source domain. Training of the model 
utilises the source domain data set, while the target domain data remains unseen. Then 
tests are conducted on the target domain data set to verify the generalisation performance 
of the model. As an illustration, datasets O, C, and I serve as the training source domain, 
while dataset M acts as the testing target domain. This set of experiments is recorded as 
O&C&I to M. Similarly, three other sets of experiments can be obtained, namely: 
O&C&M to I, O&M&I to C, and I&C&M to O. 

Since the four original data sets are all video data, in order to obtain the input format 
of the model in this chapter, it is necessary to preprocess the video data and crop out the 
face picture. In this chapter, the Dlib package is used to process the original sample, and 
the output size of 256×256×3 face pictures is used as the input of the model, as shown in 
Figure 6. The first line represents the single frame image of the original video, and the 
second line represents the face picture captured by Dlib package. Attach a label to the 
obtained sample, the real face is 0, and the printed photo attack is 1. 

Figure 6 Data preprocessin (see online version for colours) 

  

4.2 Ablation experiment 

To verify the validity of each module of the method presented in this chapter, an ablation 
experiment was performed. Compare the effectiveness of each module and its impact on 
overall performance by cutting each module one by one. Baseline indicates the baseline 
model. Only the algorithm using Resnet18 as the backbone network is used to test the 
performance. Ours represents the DIRE face anti-counterfeiting method proposed in this 
chapter; Ours (w/o DNM) represents the method of unentanglement pre-training module 
without multi-supervision strategy proposed in this chapter, that is, only abnormal 
gradient suppression algorithm is added under the baseline model; Ours (w/o AGS) 
represents the method without anomaly gradient suppression proposed in this chapter, 
that is, the algorithm of the de-entanglement pre-training module with only more 
supervision strategies added under the baseline model. The results are shown in Table 2. 
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Table 2 Ablation experiment 

Index Experiment O&C&M to I O&C&I to M O&M&I to C I&C&M to O 
HTER (%) Baseline 24.46 17.57 29.38 23.37 

Ours (w/o DNM) 24.71 11.3 24.11 21.84 
Ours (w/o AGS) 22.43 11.67 18.45 22.4 

Ours 20.65 10.82 15.65 17.26 
AUC (%) Baseline 77.56 89.93 80.2 84.83 

Ours (w/o DNM) 75.03 93.5 85.53 86.1 
Ours (w/o AGS) 76.33 94.16 90.14 85.92 

Ours 81.1 94.88 92.66 89.93 

The aim is to investigate how varying levels of gradient suppression affect the 
algorithm’s efficiency, a search experiment was conducted on parameter η, which grew 
uniformly from 1.1 to 1.9 with step size of 0.1. 

Figure 7 Effect of parameter η on AUC and HTER indicators (see online version for colours) 

η  

As can be seen from Figure 7, when η becomes larger from small to large, the 
performance decreases first and then increases. In formulas (3) to (16), when η is small, 
the threshold of abnormal gradient will be smaller, resulting in more gradients judged as 
abnormal, which will cover up more characteristic values and contain some useful 
information, resulting in performance degradation. When η gradually increases, the 
proportion of useful information in the covered features gradually decreases, and some 
features that are not conducive to generalisation performance are covered, so that the 
performance gradually increases to reach the optimal level. When η continues to increase, 
the inhibition effect on abnormal gradient gradually weakens, and the performance 
deteriorates again. This is because the threshold is too large, the judgment on abnormal 
gradient becomes more and more strict, and the inhibition effect decreases. When the 
threshold is greater than the maximum value of the ranking gradient, there will be no 
inhibition effect at all. When η is 1.4, both ACC and ACER are optimised, so η is finally 
set to 1.4 in this chapter. 
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Table 3 The comparison between the proposed method and existing methods on HTER (%) 
and AUC (%) evaluation criteria 
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4.3 Algorithm comparison 

This paper compares several representative face anti-counterfeiting methods. In the tasks 
of O&C&I to M and O&M&I to C, the method proposed in this paper performs best. 

This document compares a variety of typical facial anti-counterfeiting techniques. In 
the tasks of O&C&I to M and O&&I to C, the proposed method has the best 
performance, and the HTER index has increased by 1.88% and 5.34%, respectively. 
Compared with CNN, which uses manual features, and Auxiliary, an algorithm that uses 
depth map auxiliary, the algorithm introduced in this section clearly enhances the 
efficiency of the four tasks., which indicates that for cross-domain testing, the difference 
in the distribution of data in different domains has a great impact on the traditional 
manual feature method and the conventional depth model based method. The solution 
proposed in this chapter, which is designed for cross-domain problems, can effectively 
improve the generalisation performance of the algorithm. Some existing algorithms based 
on generative adversarial, domain adaptation and domain generalisation are also designed 
for cross-domain testing tasks. Compared with them, the method proposed in this chapter 
is also very competitive. Compared with MADDG and other algorithms based on 
adversarial learning that use domain tag assisted supervision, the performance of this 
algorithm is almost ahead of them in the four tasks, which also verifies the efficiency of 
the technique suggested in this study to extract generalised features without relying on 
domain tags. Compared with NAS-FAS, the proposed method has a considerable degree 
of competitiveness on the whole. On the one hand, among the four tasks, the proposed 
method performs better in O&C&I to M and O&M&I to C. 

5 Results and discussion 

This document concentrates on developing a universal detector for differentiating facial 
images produced through diffusion. Our findings indicate that earlier created image 
detectors had restricted efficacy in identifying images produced by diffusion models. 
Addressing this issue, we suggest a method for image depiction that relies on the 
inaccuracies in reconstructing DDIM inverted and reconstructed images. At the same 
time, the original features of the face are constrained to eliminate the domain features 
from the features of different source domains, standardise the feature space, and initially 
enhance the generalisation performance of the model. At the same time, an abnormal 
gradient suppression algorithm is proposed in the process of model training, which 
adaptively calculates filtering gradients in the process of parameter optimisation, detects 
abnormally large gradient values, and supposes them to avoid shortcut learning by the 
network and instead learns more generalised features instead of prominent features. 
Improve the model’s ability for broader generalisation. Our aspiration is that our research 
will establish a robust foundation for detecting images produced by diffusion. Four data 
sets were selected in this paper, one as the target domain and the other three as the source 
domain for cross-domain testing. The four groups of experiments were recorded as 
O&C&M to I, O&C&I to M, O&&ITO C and I&C&M to O. Firstly, various parts of the 
method proposed in this chapter are added and subtraction, and ablation experiments are 
conducted to verify its effectiveness. Then, the algorithm proposed in this chapter is 
compared with several representative face anti-counterfeiting methods. The results show 
that the algorithm proposed in this chapter performs best on O&C&I to M and O&M&I 
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to C, and has great competitive advantages on the whole. Concurrently, the intricate 
nature of the comparative experiment indicates that the technique discussed in this 
section offers a more substantial computational benefit. 
Table 4 Comparison between the proposed method and the existing methods in terms of 

parameters and calculation amount 

Methods Argument (×106) Floating point arithmetic (×109) 
Auxiliary 2.22 93.14 
STDN 1.3 80.1 
D2AM 1.33 26.38 
RFM 3.9 47.91 
NAS-FAS 2.58 53.66 
Ours 5.66 22.78 

All in all, the method proposed in this paper is a competitive and generalised  
AI-generated face image verification method in unknown scenes 
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