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Abstract: As the electricity trading market expands and becomes more 
complex, ensuring user safety and efficient equipment operation has become a 
critical challenge for the power industry. Inspection path planning and process 
modelling, as core technologies in intelligent inspection within the smart 
manufacturing system, have become essential tools for addressing this 
challenge. In response to the low efficiency of power system inspections, this 
paper proposes an intelligent inspection path optimisation and process 
modelling method (DDQN-GA) based on a combination of double deep  
Q-Network (DDQN) and genetic algorithm (GA). First, the proposed method 
employs the DDQN algorithm to intelligently allocate power-trading users and 
inspection teams, allowing each team to be optimally scheduled based on  
real-time system status and demand. Subsequently, GA is used to optimise the 
internal paths of each inspection team, effectively exploring and optimising 
complex path combinations to minimise overall inspection costs and achieve 
the optimal inspection plan. Experimental results demonstrate that this method 
significantly reduces total inspection costs and shortens computation time. 
Compared with three traditional algorithms, the DDQN-GA approach 
considerably improves computational efficiency, especially in handling  
large-scale inspection teams and user allocations. 

Keywords: power trading; user inspection; path planning; double deep  
Q-network; genetic algorithm; GA. 
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1 Introduction 

As the electricity trading market continues to expand and grow more complex, ensuring 
the safety and reliability of power users has become one of the key challenges faced by 
the power industry (Wang et al., 2024; Liu and Tan, 2017). To address this challenge, 
maintaining the stable and efficient operation of electrical equipment has become a core 
task. In this context, inspection path planning and process modelling are not only crucial 
for ensuring the normal operation of the power system but are also central components of 
intelligent inspection in the smart manufacturing framework (Yang et al., 2024; Li et al., 
2024). 

Through scientifically planned inspection routes, inspectors can regularly check user 
equipment, identify and address potential issues promptly, reduce the failure rate of 
equipment, and enhance the overall reliability of the power system. At the same time, 
inspection process modelling helps power companies analyse inspection efficiency and 
optimise resource allocation. The combination of these two techniques significantly 
improves the stability and reliability of power supply, providing strong support for the 
safe operation of the electricity market. 

In traditional inspections, path planning often relies on human experience and  
pre-established routes. However, in modern, intelligent power inspections, path planning 
is typically driven by advanced algorithms such as reinforcement learning, genetic 
algorithms (GAs), and heuristic algorithms, which can automatically generate optimal 
inspection routes. These intelligent algorithms dynamically adjust inspection strategies 
based on real-time changes in the power system and inspection requirements, maximising 
inspection efficiency. By integrating path planning and process modelling, power systems 
can conduct large-scale intelligent inspections of electrical equipment more efficiently 
while ensuring reliability and safety. 
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To address the issue of substation inspection scheduling under multi-resource 
constraints, an improved genetic algorithm (SAGA) was proposed by Xie et al. (2016) so 
the problem of local optimal solutions in traditional GAs can be effectively solved. An 
intelligent substation inspection method based on digital twin technology was introduced 
by Xie et al. (2023), and the improvement in the efficiency and safety of inspection 
operations has also been verified through simulation experiments. The design and 
development of an electric power inspection and monitoring system and data 
preprocessing was explored by Guo et al. (2024), with the aim of improving Cerational 
efficiency of power systems. The method of studying intelligent inspection path planning 
for hydropower stations through GA was used by Qin and Fei (2024), it improved the 
timeliness of inspection path planning and achieved faster convergence speed and stable 
optimal solutions. 

However, traditional inspection path planning methods often suffer from poor 
accuracy and timeliness in inspection path planning. It results in slow convergence speed 
and difficulty in dealing with complex and changing practical situations. At the same 
time, the optimisation of inspection paths also faces many challenges, such as uneven 
allocation of inspection tasks and unreasonable path planning. These result in low 
resource utilisation efficiency and high costs. 

Reinforcement learning (Shakya et al., 2023) is a machine learning method for 
solving sequential decision problems. In reinforcement learning, decisions are made by 
the agent after learning through interaction with the environment. So that rewards can be 
accumulated to the maximum extent possible. Double deep Q-network (DDQN) (Zhu  
et al., 2023; Luo et al., 2022; Yin et al., 2024) is a kind of reinforcement learning 
algorithm. It separates the steps of selecting actions and evaluating actions to reduce 
overestimation in Q-learning, thereby improving the stability and performance of the 
strategy.  

A patrol path planning method (DDQN-GA) based on the combination of DDQN and 
GA (Wollmann et al., 2023; Torres et al. 2024; Liu et al. 2022; Du and Li, 2024) is 
proposed in this paper. This method uses the DDQN algorithm to intelligently allocate 
power trading users and inspection teams. So as to select appropriate power trading users 
based on the current state and assign them to the corresponding inspection teams. Then, 
the GA algorithm was applied to optimise the inspection path within each team, thereby 
minimising the total cost and finally achieving the overall optimal inspection plan. This 
study aims to improve inspection efficiency, reduce costs, and optimise resource 
utilisation, providing robust support for intelligent inspection in power systems. It not 
only enhances the operational efficiency of the system but also offers a novel solution for 
the management and maintenance of large-scale electrical equipment. 

2 Problem description 

2.1 Subsection 

m number of users at risk in power trading 

n number of participating inspection teams 

μ user set, 1{ , ..., }m=    
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T inspection team assemble, 1{ , ..., }n=    

i user number for power trading risk, indicate the ith user, i ∈ {1, …, m} 

j number of inspection teams, indicate the jth team, j ∈ {1, …, n} 

xi represent the horizontal axis of the ith user’s position 

yi represent the vertical axis of the ith user’s position 

dtj represent the path time coefficient of the jth inspection team 

dcj represent the path cost coefficient of the jth inspection team 

wlj represent the workload of the jth inspection team 

Si represent the start time of the inspection for the ith user 

Ci represent the end time of the inspection for the ith user 

pti represent the standard waiting time of the inspection for the ith user 

Di represent the latest completion inspection for the ith user 

opi represent the overdue penalty for the ith user 

rbi represent the advance completion reward for the ith user 

xi,j binary variable, whether team j  assigned to power user i  for inspection; if so, 
output 1; otherwise, output 0. 

, ,j i iy ′  binary variable, power trading users i  and i′  are both inspected by team ;j  
if user i  start inspection before user i′  output 1, otherwise output 0. 

2.2 Description of inspection path planning issues 

In a period of time, there are m power trading users with different risk levels waiting for 
the n team with different ability levels to do inspections. 

The ability level of the inspection team is divided into three levels, represented by I, 
II, and III. Teams with different abilities have different path time coefficients and path 
cost coefficients. Power trading users are categorised based on their risk levels into three 
distinct groups: high, medium, and low. These risk levels reflect the potential financial 
impact or instability of the users’ trading activities. High-risk users (denoted as H) are 
typically those involved in large transactions or exposed to market volatility, making 
their inspections more complex and requiring the highest level of expertise. As such, 
these users can only be inspected by level I teams, which have the necessary skill set to 
handle the most intricate and high-stakes inspections. Medium-risk users (denoted as M) 
are involved in moderately risky activities, with some financial exposure but not to the 
extent of high-risk users. These users can be inspected by level II teams, which are 
capable of handling both medium and low-risk users. However, level II teams are not 
equipped to handle high-risk users. Low-risk users (denoted as L) are those with stable, 
low-exposure trading patterns. They are the least complex to inspect, and both level II 
and level III teams can perform these inspections. However, level III teams are limited to 
inspecting only low-risk users due to their more basic capabilities. In summary, level I 



   

 

   

   
 

   

   

 

   

    DDQN-GA 5    
 

    
 
 

   

   
 

   

   

 

   

       
 

team can inspect all risk level power trading users, the level II team can inspect M and L 
risk level power trading users, and level III team can only inspect L risk level power 
trading users. 

Each power trading user i  have different standard waiting worktime pti, the latest 
inspection time Di, overdue penalty opi, early completion reward rbi. 

The assumption for this question is as follows: 

1 Assuming that each power trading user’s inspection task is independent of each 
other. It means that completing one user’s inspection task does not affect the other 
users’ tasks.  

2 Assuming that the risk level of power trading users and the attributes of the 
inspection task do not change during the inspection process. 

3 Before starting, all of the power trading users and inspection team are ready. 

4 Assume that each team can perform only one inspection task at any time. It means 
perform multiple tasks at the same time will not be considered. 

5 Assuming that the inspection task of each power trading user is continuous. It means 
that once the inspection starts, the entire task must be completed without 
interruption. 

6 Assuming that each power trading user can only be assigned to one team for 
inspection. Multiple teams inspect one user at the same time are not be allowed. 

7 Assuming no unexpected situations or safety issues along the way and all paths are 
safe and reliable. 

The purpose of this paper is the lowest cost of inspection, as shown in formula (1). 

min(cos )target t=  (1) 

1 2 3cost cost cost cost= + +  (2) 

1 1
0

n

j j j
j

cost dt dc ρ d
=

= × × ×  (3) 

( )( )2
0

max , 0
m

i i i
i

cost C D op
=

= − ×  (4) 

( )( )3
0

min , 0
m

i i i
i

cost S D rb
=

= − ×  (5) 

Among them, cost consists of three parts: path cost, overdue penalty, and early reward, as 
shown in formula (2). cost1 is path cost, as shown in formula (3), dj represents the 
distance of the team j  along the inspection path, ρ1 represents the unit distance of path 
cost; cost2 is the overdue penalty, if the completion time exceeds Di, there will be an 
overdue penalty, as shown in formula (4), cost3 is the advance reward, if the completion 
time do not exceed Di, there will be a reward, as shown in formula (5). 
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The mathematical model constraints of this problem are defined as follows: 

,
1

1,
n

i j
j

x i
=

= ∀  (6) 

0, 0,i iC S i≥ ≥ ∀  (7) 

,i i iC S pt i= + ∀  (8) 

, , , 1, , ,j i i j i iy y j i i′ ′ ′+ ≤ ∀  (9) 

, , , ,i i j i iS C y U j i i′ ′ ′≥ − × ∀ ≠  (10) 

( ), ,1 , ,i i j i iS C y U j i i′ ′ ′≥ − − × ∀ ≠  (11) 

, {0, 1}, ,i jx i j∈ ∀  (12) 

, , {0, 1}, , ,j i iy i i j′ ′∈ ∀  (13) 

Unique allocation constraint: formula (6) indicates that each power trading user can only 
be assigned to one team for inspection. 

Inspection time constraints: formula (7) indicates that the start time and end time of 
inspection should not less than 0; formula (8) indicates the relationship between the start 
time and end time of user i  inspection. 

Inspection task constraints: as shown in formula (9), formula (10), and formula (11). 
U is a sufficiently large positive integer representing the inspection order of the same 
team, and each team can only inspect one user at the same time. When , , 1,j i iy ′ =  user i  
starts the inspection before user .i′  If the start time iS ′  of user ,i′  is later than the end 
time of user ,i  output ;i iS C′ ≥  otherwise, output .i iS C ′≥  

Ability matching constraint: The ability level of the team must match the risk level of 
the power trading user. If team j  is a Level I team, then for the ∀i, the risk level of 
power trading users i  should be H or M or L; if team j  is a level Ⅱ team, then for the 
∀i, the risk level of power trading users i  should be M or L; if team j  is a level Ⅲ 
team, then for the ∀i, the risk level of power trading users i  should be L. 

Binary variable constraints are shown in formulas (12) and (13). 

3 Algorithm description 

3.1 Algorithm flow 

The general algorithm flow is shown as Figure 1. Firstly, initialise the parameters of 
DDQN and GA, and set the initial state according to the initial allocation model. The 
initial allocation model according to the ability level of the teams and risk level of the 
users processing the initial allocation; power trading users with risk levels of H/M/L will 
be assigned to level I/II/III teams for inspection. The initial allocation model provides a 
reasonable starting point for the subsequent optimisation process and this will make the 
subsequent optimisation process more efficient. 
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Figure 1 The general algorithm flow 

Start

Initialize algorithm 
model

Set initial status

GA algorithm 
calculates the optimal 

inspection path

Calculate the cost of 
each team

The average cost  of 
Level Ⅰ team < The average 

cost  of Level Ⅱ and Ⅲ

DDQN algorithm 
selects mobile 

users

Y

N

End

Reassign users 
and update team 

status

 

Secondly, the GA algorithm iteratively calculates the best inspection path for each team 
based on the initial state, and calculates the path cost, overdue penalty, and early reward 
for each team in the initial state. After the calculation is completed, if the average cost of 
the level I team is greater than the average cost of the levels II and III teams, the 
calculation will be stopped, otherwise, the DDQN user selection section will be started. 

Finally, DDQN selects and reassigns mobile users based on the state space, updates 
the team state, and iteratively calculates the optimal inspection path and inspection cost 
for each team using GA algorithm. 

3.2 GA algorithm for solving the optimal inspection path 

After determining the task allocation for each team based on the current team state, GA is 
used to optimise the inspection path for each team. GA is an optimisation method based 
on natural selection and genetic mechanisms, particularly suitable for solving 
combinatorial optimisation problems. In this section, GA is used to plan the optimal user 
inspection path within the team. So, the minimum cost of the team can be found. The GA 
algorithm flow is shown as Figure 2. 
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Figure 2 The GA algorithm flow 
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3.2.1 Encoding and decoding model 
Number the user locations that require maintenance tasks and form a oriented path code. 
The inspection path is 2-3-1-4. Decoding is the inverse process of encoding, which 
transforms the optimal chromosome into an inspection path and calculates the total cost 
of the plan. They are shown in formulas (2) to (5). The steps are as follows: 

Step 1 Read the chromosome to get the inspection path, the user’s location coordinates, 
the task time and the latest inspection time. 

Step 2 Read the first chromosome to get the first inspection point as the starting point, 
calculate the user’s task time, and update the user’s inspection start and end 
time; calculate the costs related to inspection time based on formula (4-5), such 
as overdue penalties and early rewards. 

Step 3 Read the last chromosome to get the next inspection point, calculate the 
Euclidean distance between this point and the previous point. Then calculate the 
time required for the team to reach the new user point (multiplied by the path 
time coefficient) and update the user inspection start time. At last, calculate the 
user’s work time and update the end time of user’s inspection. The total cost of 
inspection can be calculated by formula (2)–(5). 
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Step 4 Judge if the reading of chromosome is complete. If not, execute Step 3. 
Otherwise, ending the decode. 

3.2.2 Initialise the population 
Population initialisation is a key issue in GAs, and the quality of the initial population has 
a significant impact on search speed and effectiveness. This part will adopt a random 
search strategy and the steps are as follows: 

Step 1 Number the user’s locations that require inspection tasks and place them into the 
candidate pool. 

Step 2 Randomly select the serial number from the candidate pool and weed out it from 
the candidate pool. 

Step 3 Judge if the candidate pool is empty. If not, execute step 2. Otherwise, combine 
the serial number in order to form chromosomes. 

3.2.3 Initialise the population 
Partially-matched crossover (PMX) is a crossover strategy in GAs. It selects two-point 
Crossover between two parental chromosomes, swaps the gene fragments in the middle, 
and establishes a mapping relationship between the genes in the exchanged segments to 
correct the genes in the non-exchanged segments, so the uniqueness of genes in each 
offspring chromosome can be ensured. 

Mutation adopts an improved multi-point crossover mutation method, randomly 
selecting genes in the parent generation, reordering the selected genes and placing them 
back in their original positions but keeping the genes in other positions unchanged at the 
same time. 

3.2.4 Improve elite retention strategy 
In order to improve the quality of the subsequent generation population, an improved 
elite retention strategy has been introduced. After mutation and crossover, half of the 
optimal solutions in the population are retained. The other half are selected through 
roulette wheel selection based on fitness. Therefore, size of the initial population can be 
kept unchanged. This strategy aims to preserve the diversity of excellent individuals 
while giving other individuals the opportunity to evolve. The overall evolution and 
improvement of the population can be promoted. By balancing the relationship between 
preserving the optimal solution and maintaining population diversity, to accelerate the 
convergence speed and global search ability of the algorithm can be expected. 

3.3 DDQN algorithm select the moved users 

Markov decision process (MDP) is an important concept in reinforcement learning. A 
formal framework is provided for describing decision problems in a random environment. 
Define the inspection planning-problem as a finite MDP which consisting of five 
elements: state space S, action space A, state transition function P(s′ | s, a), reward 
function R(s, a), and discount factor γ. Among them, the state transition function 
describes the probability of transitioning from state s to the next state s′ after performing 
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an action a. In this problem, the state transition function is certainty, and based on the 
currently selected user, the reassigned state will be updated to the next deterministic state. 
The discount factor γ is used to balance the importance of immediate rewards and future 
rewards, typically within the range of [0, 1]. 

3.3.1 State space 
The state space S describes all possible states of the environment at each time t. The state 
s(t) contains the state information of the current power trading user and the inspection 
team. The state features s1(t) – s4(t) are for the inspection team, and the state features 
s5(t), s6(t) are for the inspected user. 

State feature 1 At time t, formula (14) represents the average of the number of users 
that the inspection team needs to inspect. unj(t) represents the number of 
users that the team j  needs to inspect at time t, and un_norj(t) in 
formula (15) represents the normalised result of unj(t). Normalisation 
can improve the training speed, stability, and generalisation ability of the 
model, and avoid imbalanced feature ratio. 

State feature 2 At time t, formula (16) represents the standard deviation of the unave(t) 
for all inspection teams. 

State feature 3 At time t, stj(t) in formula (17) represents the sum of the standard 
working hours of the number of users that the inspection team j  needs 
to inspect. The st_norj(t) in formula (18) represents the normalisation 
result of stj(t). Formula (19) represents the average of st_norj(t), and it 
seem as state feature 3. 

State feature 4 At time t, formula (20) represents the standard deviation of st_norj(t) for 
all inspection teams. 

State feature 5 At time t, formula (21) represents the average distance of user 
coordinates (USC). ( )j t  represents the number set that the team j  
needs to inspect at time t. 

State feature 6 At time t, formula (24) represents the standard deviation of d_nori(t) for 
all users. 

1

( )
( ) ( )

n
jj

ave

unnor t
s t un t

n
= =


 (14) 

( ) min ( )
_ ( )

max ( ) min ( )

j j
j

j
j j

jj

un t un t
un nor t

un t un t

−
=

−
 (15) 

( )2
( )

2

( )
( ) ( )

j

n
nor t avej

std

un un t
s t un t

n

−
= =


 (16) 
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,
0

( )
m

j i i j
i

st t pt x
=

= ×  (17) 

( ) min ( )
_ ( )

max ( ) min ( )

j j
j

j
j j

jj

st t st t
st nor t

st t st t

−
=

−
 (18) 

3

_ ( )
( ) ( )

n
jj

ave

st nor t
s t st t

n
= =


 (19) 

( )2

4

_ ( ) ( )
( ) ( )

n
j avej

std

st nor t st t
s t st t

n

−
= =


 (20) 

5

_ ( )
( ) ( )

m
ii

ave

d nor t
s t dis t

m
= =   (21) 

( ) ( )
( ),

( ) ,
j

i i i i i
i T t i i

d t x x y y′
′ ′∈ ≠

′= − −  (22) 

( ) min ( )
_ ( )

max ( ) min ( )

i i
i

i
i i

i i

d t d t
d nor t

d t d t

−
=

−
 (23) 

( )2

6

_ ( ) ( )
( ) ( )

m
j avei

std

d nor t dis t
s t dis t

m

−
= =   (24) 

3.3.2 Action space 
Action space A describes all possible actions that can be executed in each state, as shown 
in Table 1. In this problem, the action is to select mobile power trading users and reassign 
them to higher-level teams for inspection. The mobile power trading user levels are M 
and L. The intelligent agent selects the relevant action from the action space based on the 
current environment. It means to select a user for reassignment. If the selected user level 
is L, it will be assigned to the level II team for inspection; if the selected user level is M, 
it will be assigned to the level III team for inspection. 
Table 1 Action space 

Num. Notion Description 
1 SP (shortest pti) Select the user with the shortest standard work time 
2 LP (longest pti) Select the user with the longest standard work time 
3 SD (shortest di(t)) Select the user with the shortest average deviation distance 
4 LD (longest di(t)) Select the user with the biggest average deviation distance 
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3.3.3 Reward function 
The reward function R(s, a) is an important part of guiding the behaviour of intelligent 
agents. It defines the feedback that the intelligent agent after taking action a in the current 
state s. The learning effectiveness and final performance of the intelligent agent will be 
directly affected due to the design of reward function. Reward function as shown in 
formula (25). 

( ) ( ) optimalr t cost t cost= −  (25) 

cost(t) represents the total cost at time t. costoptimal represents the historical optimal total 
cost, also means the minimum value of the total cost for this iteration. 

3.3.4 Algorithm flow 

• Initialisation: Initialise the intelligent agent, including strategy network Q, target 
network Q′, and experience recover pool. The structure of the strategy network Q 
and the target network Q′ are the same, both of which are 6 × 32 × 16 × 4. But the 
network parameters are different, strategy network Q is θ, the other one is θ′. The 
network structure of intelligent agent is shown in Figure 3. 

( )arg max ( ), ; ; if ()
( )

( ); else            
a Q s t a ω rand

a t
rand a

 ≤
= 



 (26) 

( )2( ) ( , ; )L ω y Q s a θ = −   (27) 

( ), arg max ( , ; );ay r γQ s Q s a θ θ′ ′ ′ ′= +  (28) 

θ θ′ ←  (29) 

• Action selection: Update the current status, and the intelligence agent selects actions 
based on the epsilon-greedy strategy. The epsilon-greedy strategy is used to balance 
the relationship between exploration and exploitation. Parameter ϵ is used to control 
the manner the intelligence agent selects actions, helping the agent to explore new 
possible actions and utilise the current optimal strategy. The action selection is 
shown in formula (26). 

rand() is a function that returns a random number between 0 and 1. Q(s(t), a; θ) 
represents the Q for selecting action a at the current time s (t), which calculated from 
the neural network parameter θ. argmaxaQ(s(t), a; θ) represents selecting the action 
of the biggest Q. 

• Execute and update: Execute action a(t) and calculate the current reward r(t) based 
on the reward function. Update the next status s(t + 1) and place (s(t), a(t), r(t),  
s(t + 1)) as a whole (s, a, r, s′) into the experience recover pool. 

• Update network parameters: Every specified period learning frequency, randomly 
select a batch of experiences (s, a, r, s′) called ‘batch’ from the experience recover 
pool for training. Use mean square error as the Loss-function, and update the 
parameters of the strategy network, as shown in formulas (27) and (28). Update the 
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target network parameters with strategy network parameters every fixed number of 
steps, as shown in formula (29). 

Figure 3 Network structure 
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4 Simulation analysis 

4.1 Parameter settings 

In order to verify the effectiveness of the inspection path planning method based on the 
combination of DDQN and GA proposed in this article, this section conducts simulation 
analysis on the algorithm. The experiment was conducted in the Python 3.7 environment, 
using PyTorch to build the strategy and target network model. The relevant parameter 
settings are shown in Table 2. 
Table 2 Parameter setting 

Parameter Value 
GA iteration 200 
GA population size 50 
Batch 32 
ε 0.90 
γ 0.85 
Learning frequency 10 
Size of experience pool 10,000 
Target network update frequency 100 

4.2 Training process 

This section aims to train intelligent agent to optimise strategies of user grouping and 
minimise total costs. During the training process of the intelligent agent, the intelligent 
agent continuously iterates and adjusts the scheme to obtain the optimal result and the 
loss value gradually decreases. It is shown in Figure 4. The horizontal axis in the figure 
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represents the training frequency, and the vertical axis represents the loss value. With the 
training rounds increase, the agent gradually learns better selection strategies. It makes 
the loss value continuously decrease and eventually stabilise. 

Figure 4 Training process-loss 

 

From Figure 4, it can be seen that the loss value decreases rapidly in the early stages. It 
means the intelligent agent quickly learned some basic selection strategies during the 
early exploration process. With the training progresses, the rate of decrease in loss values 
gradually slows down and eventually stabilises. It indicates the intelligent agent has 
found a better grouping strategy and the update of Q is gradually converging. 

4.3 Algorithm comparison 

This section will compare the proposed DDQN-GA algorithm with existing inspection 
path planning algorithms to evaluate their performance and advantages. Comparative 
algorithms include greedy algorithm, GA and K-means combined with a single rule  
(K-means-single rule). The greedy algorithm selects the nearest user each time, and the 
termination iteration of GA is 1,000 times. K-means refers to clustering users based on 
their coordinates, aiming to minimise the inspection range within the same team. The 
single rule refers to selecting the user with the smallest latest inspection time each time. 

In order to comprehensively evaluate the performance of the four algorithms, as 
shown in Table 3, each experiment was compared using the three algorithms to calculate 
their total cost and computation time. 

The experimental results are shown in Table 3. Table 3 shows the comparison of total 
costs and computing time under different numbers of teams and users. 
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Table 3 Comparison of total costs and computing time under different team numbers and user 
numbers 
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Table 4 Team information 

Number of Inspection 
team 

Level of team 
capability 

Coefficient of 
distance time 

Coefficient of 
distance cost 

1 Ⅰ 0.12 0.18 
2 Ⅱ 0.15 0.14 
3 Ⅲ 0.18 0.10 

Table 5 User information 

Number of 
users 

X 
coordinate 

y 
coordinate 

Standard 
waiting time 

for work 

Latest 
inspection 

time 

Overdue 
penalty, early 

reward 

Level 
of risk 

0 49 10 18 36 1.5 L 
1 73 29 11 55 1.7 H 
2 11 87 5 15 1.3 L 
3 45 63 17 85 1.9 L 
4 92 8 8 24 1.5 H 
5 31 50 14 42 1.8 M 
6 66 99 19 38 1.2 M 
7 18 41 6 18 1.6 H 
8 84 75 4 8 1.4 L 
9 6 53 9 27 1.1 M 
10 97 20 15 45 1.0 H 
11 37 84 16 32 1.3 L 
12 15 52 5 15 1.6 L 
13 68 29 9 27 1.8 L 
14 91 73 12 18 1.1 L 
15 74 23 7 17 1.2 L 

From Table 3, it can be concluded that the DDQN-GA algorithm outperforms the greedy 
algorithm, GA and K-means-Single Rule under different team and user numbers. Show 
lower overall costs. Especially in large-scale cases, the advantages of DDQN-GA 
algorithm are more obvious, especially in terms of global search capability. This is of 
great significance for resource optimisation and cost control in practical applications. 

From Table 3, DDQN-GA has a longer computing time compared to K-means-single 
rule; however, it demonstrates a significant advantage in terms of the total cost. The 
computation time of the DDQN-GA algorithm is not excessively long, and its work time 
is notably shorter than that of the greedy algorithm and traditional GA. Especially when 
the number of teams and users increases, the growth of work time of DDQN-GA 
algorithm is relatively flat. This indicates that the DDQN-GA algorithm has high 
computational efficiency while ensuring optimisation effectiveness. Therefore, the 
DDQN-GA algorithm can satisfy the real-time requirements in practical applications. 
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4.4 Instance test 

This section will verify the effectiveness of the DDQN-GA inspection path planning 
algorithm proposed in this paper through a specific example.  

There are three inspection teams and 16 users in the system. The overdue penalty is 
equal to the advance completion reward. The specific information is shown in  
Tables 4 and 5. 
Table 6 Result of instance test  

Number 
of users 

K-means-single rule  DDQN-GA 

Actual 
completion time 

The difference 
from the latest 
inspection time 

Actual 
completion time 

The difference 
from the latest 
inspection time 

0 51.86 15.86  68.66 32.66 
1 86.82 31.82  38.63 -16.37 
2 14.23 -0.77  41.91 26.91 
3 95.54 10.54  72.55 -12.45 
4 17.81 -6.19  8 -16 
5 76.25 34.25  14 -28 
6 40.5 2.5  96.55 58.55 
7 25.81 7.81  51.38 33.38 
8 4 -4  17.31 9.31 
9 36.85 9.85  31.76 4.76 
10 72.74 27.74  24.56 -20.44 
11 58.11 26.11  61.83 29.83 
12 5 -10  21.41 6.41 
13 30.64 3.64  35.07 8.07 
14 17.09 -0.91  12 -6 
15 7 -10  41.91 24.91 

The existing solution method uses K-means-single rule, with the hyperparameter group 
set to n, and the results are shown in Table 6. The total cost is calculated by the difference 
from the latest inspection time. The final total cost obtained is 278.86, while the total cost 
calculated using DDQN-GA is 218.56, representing an improvement of 21.6%. 

The user grouping and inspection order using K-means-single rule are as follows: 

Team 1 User 8, user 14, user 6. 

Team 2 User 12, user 2, user 7, user 9, user 11, user 5, user 3. 

Team 3 User 15, user 4, user 13, user 0, user 10, user 1. 

The user grouping and inspection order using DDQN-GA are as follows: 

Team 1 User 4, user 10, user 1, user 7, user 3, user 6. 

Team 2 User 5, user 12, user 9, user 2, user 11. 

Team 3 User 14, user 8, user 13, user 15, user 0. 
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5 Conclusions 

As the electricity trading market continues to expand and grow more complex, traditional 
inspection methods struggle to cope with the ever-changing environment and increasing 
demands, highlighting the growing importance of intelligent inspection technologies. 
This paper proposes an inspection path planning method that combines DDQN and GA. 
In the inspection of the power system, the allocation and path optimisation of long-term 
power trading risk users can be solved through this method. The DDQN algorithm is used 
to implement intelligent allocation of users and inspection groups. Use GA algorithm to 
optimise the path of each team, so the overall optimal inspection plan can be achieved. 
The simulation experiment results show that the algorithm proposed in this paper exhibits 
superior performance under various settings. Compared with traditional greedy 
algorithms or standalone GAs, DDQN-GA algorithm has significant advantages in 
reducing total cost and shortening work time. Specifically, DDQN-GA effectively 
reduces the total cost of inspections and significantly improves work efficiency. It 
performs particularly well when there are a large number of teams and users. The 
algorithm proposed in this paper has practical application value in improving the 
efficiency of power system inspection, optimising resource utilisation, and reducing 
costs.  

Currently, path obstacles are not considered, and coordinates are based on straight-
line distances. Future work could incorporate obstacle constraints and more complex path 
planning methods to enhance the algorithm’s real-world applicability. Additionally, the 
performance of the algorithm in handling big datasets warrants further investigation to 
improve its scalability, robustness, and efficiency across different scenarios. By 
continuously optimising the algorithm’s practicality and adaptability, it will be better 
equipped to address challenges in complex industrial environments. 
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