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Abstract: Hybrid non-road mobile machines offer a solution to the low efficiency
of diesel-powered machines, but their energy management strategies depend
heavily on machine-specific duty cycles. This paper uses experimental data
from a 5.7-ton diesel wheel loader performing an industry-standard Y-cycle
to optimise and compare four control strategies for fuel savings. Dynamic
programming is first applied to determine the optimal power split between the
diesel generator and battery. The resulting optimal control sequence is then
used to tune thermostat control, power follower control, equivalent consumption
minimisation (ECMS), and adaptive equivalent consumption minimisation
(A-ECMS) strategies. Simulations in MATLAB Simulink, using both measured
Y-cycle data and an artificial half-load cycle, evaluate the performance of each
strategy. Results show that A-ECMS achieves fuel consumption within 0.37%
of the dynamic programming optimum, followed by thermostat and power
follower control. Additionally, different loading conditions influence the relative
effectiveness of the management strategies.
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1 Introduction

Climate change is pushing manufacturers towards new technologies to improve the
efficiency of energy consumers in non-road mobile machinery (NRMM). Several
approaches to meet the regulations have emerged over the past few decades to power NRMM
including battery electric, hybrid electric and hydrogen fuel cells. The latter face the most
challenges and are yet to be commercialised as opposed to battery and hybrid power due
to the lack of infrastructure to produce and store hydrogen, high production cost and safety
concerns. Battery electric are currently widespread in passenger cars and light commercial
vehicles to a great extent but when it comes NRMM less battery powered machines are
available due the power requirements of such machines, limitation in range and charging
infrastructure and weight of the batteries.

Hybrid power-trains provide a solution to these shortcomings where the energy is
produced through a diesel engine, no recharging is required, the range of machine operation
mainly depends on the fuel available, there are fewer safety concerns and they provide some
of the efficiency of battery power. However, this comes at the cost of higher initial cost and
more complexity of construction and control. The complexity arises due to the presence
of two energy sources which are chemical and electrical where in order to fully utilise the
hybrid power-train’s fuel saving potential its energy management strategy must be properly
designed and optimised.

The energy management strategies (EMS) of hybrid power-trains are diverse and were
reviewed and studied extensively for passenger cars (Tran et al., 2020; Salmasi, 2007; Pisu
and Rizzoni, 2007; Shabbir, 2015; Bayindir et al., 2011; Cao et al., 2023) and a little less
for NRMM (Zhang et al., 2019; Wang et al., 2016). For passenger cars they can be extended
and adapted easily to any type of vehicle due to the availability of standardised driving
cycles that facilitate the EMS optimisation and also since passenger cars’ sizes and mode
of operation is not as diverse as NRMM.

The driving cycles for passenger cars represent a recording of vehicle speed during its
phases of operation where the total load required from a vehicle can be calculated using the
kinematic relationships imposed by the drive-train. However, this abstraction is not viable
for NRMM due to their diversity in size, mode of operation and even functionality. For
example, wheel loaders’ load may originate from driving, using implement and auxiliaries
pumps where the use of these components is not restricted to driving as in passenger cars.
Also, the loading conditions vary immensely in terms of mean power and duration where
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loaders may work in shifts up to 4 h at a time unlike passenger cars where the driving cycles
are shorter. On the other hand, there are some properties that are specific to wheel loaders or
NRMM which is repeatability where a machine may perform the exact same task for several
hours. Another distinction is the abundance of heavy load transients during operations and
the extreme variations of load between minimum and maximum as well as positive and
negative.

The diversity of NRMM and their loading conditions pose a challenge for the adaptation
and optimisation of EMS where each machine must be separately configured and studied as
it utilises a unique operating cycle. There have been some studies to design EMS for different
NRMM, for example, Lin et al. (2003) uses dynamic programming (DP) to extract rules for
a rule based power management strategy of a parallel hybrid electric truck using the standard
UDDSHDV cycle, Wang et al. (2017) uses a rule based management strategy to recuperate
energy from an electric operated forklift device, Teodorescu et al. (2017) implements an
ECMS supervisory control on the power-train of a HEV forklift truck. For excavators,
Zhang et al. (2006) uses a constant work point to control a parallel hybrid system in an
excavator while Xiao et al. (2008); Lin et al. (2008) use a dynamic work point for a similar
construction excavator also Wang et al. (2011) uses fuzzy logic control for the power-train
of a hybrid excavator and fine tunes the parameters of membership functions using genetic
algorithm. Another NRMM and the main focus of this paper are series hybrid electric wheel
loaders (SHEWL) which have been studied previously, for example, Shafikhani and Aslund
(2021) proposes an analytical optimal solution for the EMS by using Pontryagin’s minimum
principle and the same author studies an MPC-based EMS considering battery life for a
series electric hybrid wheel loader (Shafikhani et al., 2021). Also, a systematic comparison
of four different control strategies but for a parallel hybrid loader is performed (Zeng et al.,
2014).

A common observation for the cited NRMMs control studies is that each machine has
a different duty cycle with different power requirements, mean loading and overall varying
characteristics introducing the need to study each machine independently and optimise
the EMS according to real-world cycle measurements. It is challenging to apply regular
EMS of passenger cars in a NRMM application. NRMM demand more flexibility, higher
power output, and the ability to operate efficiently under widely varying conditions. These
machines experience transient and unpredictable loads unlike passenger cars where the
power demand is consistent. This variance in loading conditions degrades the efficiency
of simple EMS rendering them suboptimal (Vukovic et al., 2017). Additionally, NRMM
typically require much higher power output and for a longer duration of operation. For
instance, a wheel loader may need to produce higher torque to operate its hydraulic systems
while simultaneously maintaining motion. Adapting a passenger car EMS, which is designed
for smoother power demands, cannot meet the peak power and energy storage needs
in NRMMs. Other special challenges include idle time, NRMM frequently experience
extended idle periods, where the engine is running but not actively performing work
(Vukovic et al., 2018), followed by sudden transient loads. Traditional EMS strategies for
passenger cars focus on optimising fuel economy during more consistent driving cycles
and may not adequately handle these periods of low energy demand followed by high
consumption adding to the challenges of adapting the EMS. Since the differences above
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make it difficult to use duty cycles for passenger cars, experimental measurements from a
similar conventional wheel loader were chosen as the basis of calculating the desired load
(Allam et al., 2024) during operation of the SHEWL (Linjama et al., 2024).

In this work, a case study for a 5.7 ton SHEWL that is currently under construction
in Tampere University IHA Lab is presented, where the experimental measurements are
utilised to optimise and compare four different EMS for the SHEWL. This is done to study
their fuel saving ability using real world data and incorporating commercially available
components for the constructed machine. Firstly, a DP algorithm is used to define the
optimum trajectory of the battery’s state of charge (SOC) which in turn defines the power
split between the two energy sources and the minimum fuel consumption achievable using
the selected components. Then, results from DP are used to compare and optimise four
control strategies which are

1 thermostat control

2 power follower control

3 equivalent consumption minimisation

4 adaptive equivalent consumption minimisation.

Furthermore, the EMS are simulated in a MATLAB Simulink model using full load Y-cycle
and an artificial half load one representing lower mean load to evaluate their robustness.
Additionally, the behaviour of each EMS in terms of battery SOC, power and diesel generator
(DEGEN) performance are studied for both loads. Finally, fuel consumption results from
each is presented and compared to global optimum from DP algorithm.

The paper is organised as follows: Section 2 presents the SHEWL system architecture,
Section 3 demonstrates the modelling of the components while Section 4 illustrates the
simulation environment including the developed DP algorithm, details of the studied duty
cycle and model flow. Section 5 introduces the studied EMS and their optimisation. Section 6
shows the results of the simulation followed by a discussion in Section 7. Finally, Section 8
provides a conclusion.

2 System architecture

The machine of this study is a 5.7-ton SHEWL where the overall architecture shown in
Figure 1. The machine consists of a diesel engine powered electric permanent magnet
synchronous generator (PMSG) connected to a high power lithium-ion battery through
a DC-bus, the bus then supplies power to four electric motors for the front drive, rear
drive, working implements and auxiliaries respectively. The implements and auxiliaries are
both operated by fixed displacement pumps. The power flow between each of the electric
components is controlled through a central power distribution unit (PDU). The SHEWL will
be used as a research platform to study energy efficient hydraulics, thermal management
of batteries and electric motors as well as the development of autonomous systems. The
constructed machine is shown in Figure 2 and the main components specifications are
illustrated in Table 1.
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Figure 1 Series electric hybrid wheel loader system architecture (see online version for colours)

Figure 2 Hybrid wheel loader under construction (see online version for colours)

Source: Allam et al. (2024)

3 Component modelling

In this section the main components of the SHEWL simulation model are described
where the modelling of main parts needed for the EMS to work is simplified. The energy
management’s role is to compute the necessary input based on the load which was calculated
in detail previously (Allam et al., 2024) and the current battery’s SOC. The simulation model
used is an inverse approach where the load that is pre-calculated is followed precisely by
system. This guarantees that the results are consistent and are also comparable. The main
drawback of the inverse simulation is that it does not account for the limitations of the
system components which is taken into consideration in the controller design.
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Table 1 SHEWL components’ specifications

Component Value
Machine mass 5.7 ton
Diesel engine power 91 kW
Drive motors power 65 kW
Implement motor power 65 kW
Side motor power 13.9 kW
Generator power 25.3 kW
Battery power [–58.2 109.2] kW

3.1 Diesel engine

The diesel engine is simulated using an non-linear efficiency map where the efficiency is a
function of the engine’s rotational speed and torque:

ηd = f(Td, ωd) (1)

and the engine’s output mechanical power is defined by:

Pm = Tdωd (2)

while the fuel consumption is defined using the input power where:

Pin =
Pm

ηd
(3)

mf =

∫
Pin

Ql
(4)

and where mf is the fuel mass consumed in kg, Ql is the diesel fuel lower heating value.
The efficiency map used to calculate the fuel consumption is shown in Figure 3 which is
adapted from a previous research (Immonen, 2013) and fitted to the machine’s engine using
manufacturer data.

The diesel engine’s torque is limited using the maximum torque speed curve and is
subject to a one time constant to simulate the dynamics of the crankshaft.

3.2 Generator

The generator is a PMSG which is also simulated based on an efficiency map that is adapted
from the manufacturers data sheet. The efficiency is plotted against the torque and rotational
speed of the electric machine and is shown in Figure 4.

The efficiency is a function of the generator torque and speed represented by:

ηg = f(Tg, ωg) (5)

and the mechanical power is calculated from:

Pgm = Tgωg (6)
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while the electrical power from the generator to the battery is calculated through:

Pge = Pgmηg (7)

Finally, the generator’s torque is limited to the maximum torque available at the current
rotational speed according to the manufacturer’s data sheet.

Figure 3 Diesel engine efficiency versus torque and speed adapted from Immonen (2013)
(see online version for colours)

Figure 4 Electric generator efficiency versus torque and speed (see online version for colours)

3.3 Battery equivalent circuit model

The dynamics of the battery are described with an equivalent circuit model (ECM) (Plett,
2015) shown in Figure 5 where the model simulates the behaviour of the battery through
a series of resistances and resistance-capacitance circuits. The main resistor models the
instant dynamics of the battery while the RC circuits represents the slower dynamics of the
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diffusion process of lithium. The battery model parameters were estimated using MATLAB
parameter estimation tbox through a pulse discharge test (Jackey et al., 2013). The estimated
parameters are a function of the SOC and the relation between the open circuit voltage
(OCV) and SOC shown in Figure 6 was adapted from the manufacturer’s data sheet.

Figure 5 Lithium-ion battery equivalent circuit model (see online version for colours)

The SOC of the battery is calculated from:

SOC(t) = SOCo −
∫

i(τ)

3600.Q
dτ.

{
ηb i(τ) < 0

1 i(τ) > 0
(8)

whereSOCo is the initial SOC,Q is the battery’s capacity in Ah, ηb is the battery’s efficiency
and i(t) is the current of the battery calculated from:

i(t) =
Pb

Vt
(9)

where Vt is the battery’s terminal voltage calculated from the ECM model and Pb is the
battery power calculated using:

Pb = Pl − Pge (10)

where Pl is the load power and Pge is the generator’s electrical power. The estimation of
the battery’s parameters and the equations used for modelling are detailed in Plett (2015)
and Allam et al. (2024). It is worth noting that the model used in the DP algorithm is a
simplified Rint model (Plett, 2015) in order to reduce simulation time since the complexity
of the model directly affects the calculation time for DP (Sundstrom and Guzzella, 2009;
Brahma et al., 2000). Both models provide comparable results for the instant dynamics and
the OCV calculation and the main difference is in the slower dynamics of the cell which
does not affect the results noticeably (Salda na et al., 2019). The formula for calculating
the battery’s supply power in DP and A/ECMS is:

Ps = OCV
OCV −

√
OCV 2 − 4RintPb

2Rint
(11)



Optimisation of series electric hybrid wheel loader energy management strategies 9

where OCV is the OCV which is a function of the SOC calculated from (8) and Rint is
the internal resistance for the DP Rint model is a function of the current direction and SOC
where:

Rint =

{
Rch(SOC) i(τ) < 0

Rdis(SOC) i(τ) > 0
(12)

Figure 6 The relation between the OCV and SOC of the lithium-ion battery pack

4 Simulation environment

The following subsections present the methodology used in this study to compare the
different EMS and how DP is formulated. First, DP is introduced as a benchmark
optimisation tool, describing its implementation. This is followed by an explanation of the
duty cycle measurements and calculations that were used for performance evaluation, based
on realistic data from a wheel loader Y-cycle. Details are also provided to illustrate how
the fuel consumption is calculated in order to guarantee objectiveness. Finally, the specific
constraints imposed by the system components are described.

4.1 Dynamic programming

Dynamic programming (DP) is an optimisation algorithm based on Bellman’s principle of
optimality which states that each step taken at any time in a system has an effect on the
total cost of the problem (Bellman, 2010; Bertsekas, 2020). The DP algorithm requires
the evolution of the states to be discrete so that the solution space becomes finite. The
discretisation of the states directly affects the optimality of the solution where a finer step
will provide better results but at the cost of computation time. Since each step in the decisions
of the wheel loader powertrain affects the overall solution i.e., the fuel consumption, the
problem can be solved in a backward fashion using DP. However, this means that a duty cycle
must be known in advance to find a solution which is not applicable in reality. Therefore, DP
is only used as a benchmark in order to optimise and compare the different control strategies
investigated. The DP function used in this study is presented in detail in Sundstrom and
Guzzella (2009).

In order to reduce the computation time for DP a simpler model for the battery is used.
The model also implements the SOC as the one dynamic state variable since the computation
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time of DP increases exponentially with the number of states and the DEGEN power as the
control variable, where the model can be defined as:

SOC(t+ 1) = f(SOC(t), Pg, Pl) + SOC(t) (13)

and the optimisation problem is defined as minimising the fuel consumption of:

J =

N−1∑
k=0

∆mf (Pg, k).Ts (14)

where the input variables are subject to the following constraints:

SOC(tf ) = SOC(0) (15)

Pl(t) = Pb(t) + Pge(t) (16)

SOCl < SOC(t) < SOCh (17)

0 < Pg(t) < Pgmax
(18)

Pbmin < Pb(t) < Pbmax (19)

imin < i(τ) < imax (20)

ωdmin
< ωg < ωdmax

(21)

0 < Tg < Tgmax (22)

Since the future driving cycle is known, it is now possible to calculate the cost of each of
the possible candidates of the decision variable Pg in a backward fashion. Each grid point
from the final time step tf can be calculated and then stored in an array of costs, and after
all the time steps from the end to the beginning are calculated, it is possible to determine
the path with the optimal cost; this path will define the optimal power split between the
DEGEN and electric power from the battery. The first step is to discretise the decision
variable Pg and the state variable SOC. Therefore, SOC is discretised between 0.7 and 0.8
with a step of 0.01 and the DEGEN power is discretised between 0 and Pgmax

with a step
of 0.2 kW. The operating point of the DEGEN is selected by tabulating the power output
of the DEGEN with rotational speed through the optimum operating line (OOL) and the
torque is calculated from the power and rotational speed. The rotational speed versus the
output power are shown in Figure 7.

The cost calculated is the fuel consumption from the diesel engine efficiency map as
detailed in the modelling section. At each point in time where a power split is selected
the value of SOC is calculated according to the governing equations. This determines the
trajectory of the machine’s battery SOC.
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Figure 7 Rotational speed of the DEGEN versus output power (optimum operating curve)

In order to fully illustrate the logic for DP algorithm utilised here Figure 8 shows steps of
evaluation.

Figure 8 Flow chart of the applied DP algorithm (see online version for colours)



12 M. Allam and M. Linjama

Figure 9 DP algorithm optimisation process: (a) state and decision variables discretisation, art cost
and terminal cost representation of the implemented DP algorithm and (b) optimal
decision variable at each time step, minimum cost-to-go and the optimal control sequence
for DP

time

Terminal 

Node

Arc Cost

(a)

time

(b)

First, the decision and state vectors are defined and discretised then at the final time step tf
all admissible values of the decision variable Pg are used to calculate the terminal cost mfN

where the inadmissible values of the decision variable are set to infinity. In the next steps,
as the time goes backwards and at each time step all admissible candidates of the decision
variable are then used to calculate the arc cost mfN (SOCN , PgN ) and stored. The stored
values contain the costs of moving from each admissible node at a time step N to the all the
admissible values at the next time step N + 1. The stored values can be then used to obtain
the optimal cost-to-go which is done by selecting the decision variable Pg at each time
step which minimises the cost function (fuel consumption). Then, the decision variables
which yield the optimum cost are stored in array which represents the optimal progression
of decision or in this instance the DEGEN power. Using the optimal progression of the
decision variable in a forward manner it is possible to calculate the optimal state sequence
SOC.
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Figure 9(a) provides an illustration of how the decision variablePg and the state variable
SOC are discretised where each node in the graph represent a state value while the lines
connecting the nodes represent the decision variable. Each line is assigned with an arc cost
representing the fuel consumption required to move from one node to another (one state to
another) and the end point represent the terminal state which is constrained selecting the
decision variable that obtains the required final state SOCf . On the other hand, Figure 9(b)
shows the cost-to-go after selecting the minimum cost between each time steps, the thicker
black lines have the minimum values for fuel consumption and their corresponding decision
variables represent the optimum control at that point, going backwards from the terminal
point to the start shows how the optimal control sequence for all the time steps in the control
problem.

4.2 Duty cycle

For the purpose of objectively comparing the performance of each controller a realistic
driving cycle must be present. The cycle used in this work is the wheel loader Y-cycle
(Dadhich et al., 2016) shown in Figure 10. The data of the cycle used was measured
experimentally from a conventional diesel powered machine during a Y-cycle loading and
unloading gravel where the details of the measurements and calculations are provided in
Linjama et al. (2024) and Heikkilä et al. (2018).

Figure 10 The wheel loader short loading cycle used for the simulation (see online version
for colours)

Source: Image from Allam et al. (2024)

The Y-cycle was chosen for this study due to the availability of experimental measurements
and since it represents the operating conditions of the studied machine quite well. Since the
measurements are from a conventional machine they are simulated using a model of the
SHEWL in Allam et al. (2024) to calculate the requested load power using the electrical
machines and fixed displacement pumps instead of the hydro-static transmission (HST) and
variable displacement pumps. The required power from the electric motors of the drive,
implements and auxiliaries are shown in Figure 11.

Figure 11(a)–(c) respectively and are used for the calculations in order to gain realistic
load information where the total power load profile calculated is presented in Figure 11(d).
The negative values represent the machine’s capability to recuperate energy through
regenerative braking which is equivalent to braking using the HST. It is worth noting that
the fluctuation and high power peaks contained in the wheel loader’s load differ to a great
extent from the passenger cars driving cycles like the WLTP, US06 or NYCC where in these
cycles the load may remain steady for longer periods of time and the braking events may
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also be longer unlike the wheel loader where during braking there might be a load generated
from the implements contributing to a positive overall load. A duration of these cycles is
plotted for a conventional passenger car of 1.5 ton in Figure 12 against the Y-Cycle of the
wheel loader to highlight the differences.

Figure 11 Y-Cycle data used in the simulation: (a), (b), (c) power required from drive, implements
and auxiliaries electric motors respectively and (d) Total power requested by electrical
motors calculated in Allam et al. (2024)

Figure 12 Power requested for: (a) the WLTP, FTP72, NYCC and (b) the Y-Cycle of the wheel
loader (see online version for colours)

These can affect the optimisation of control strategies, it can also favour one strategy over
the other and limit some of the characteristics of some of other control strategies.
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In order to evaluate the robustness of the controllers the same load cycle with a lower
mean value is simulated which may resemble the same operation but while lifting lighter
material instead of gravel. This is done due to the lack of available standardised duty cycles
for heavy machinery since they are quite diverse and require the measurement of several
phenomenon at the same time and not just the speed of the machine as in passenger cars
which was not available to the authors.

4.3 Simulation model

The simulation model is a backward facing one where input from the drive cycle in terms
of Pl ;calculated from different consumers; and SOC feedback from the battery are used
as input signals to the controller. Each controller then outputs the selected operating points
as the DEGEN speed and torque. The diesel engine model is used to calculate the input
power required as well as the fuel consumption while the generator model outputs the
electrical power Pge using the efficiency map, the electric power from the generator is used
in recharging the battery or equalising the load. The DC link calculates the current required
from the battery and finally the battery model is used to calculate the terminal voltage and
the SOC which is fed back to the controller’s. The overall flow of the simulation model is
illustrated in Figure 13.

Figure 13 Flow of the simulation model
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4.4 Fuel economy evaluation

Electric hybrid architectures pose challenges in terms of fuel consumption evaluation since
the system contains two types of energy sources that contribute to the operation of the
machine. Namely, the internal combustion engine and the battery where the machine usually
depletes the electrical storage device at different stages of the duty cycle making it inaccurate
to include only ICE consumption. Therefore, in order to compare different strategies this
must be taken into consideration where several approaches are available. One approach is
to only consider the consumption of the diesel engine under the assumption that all of the
energy eventually comes from the fuel. Nonetheless, under certain operating conditions
such as short loading cycles it is possible to power the entire machine using purely electrical
energy which would yield zero fuel consumption and the results would be meaningless. To
avoid this, it is possible to simulate hours of iterations of the cycle which would render the
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SOC variation negligible and fuel consumption result would be meaningful. However, this
would require much longer computation time. Another method is to define a correlation
between the chemical and electrical energies where the consumed electrical energy is
converted to fuel consumption (Sciarretta et al., 2004; Katrašnik, 2010). Unfortunately, The
equivalency factor heavily depends on duty cycle which may be easy to calculate in case of
passenger cars where the cycles are well studied and defined, that is not the case with heavy
duty equipment and at the same time fuel consumption correction depends on the type of
controller itself also making the results unreliable. One final example and the one used here,
is to enforce a charge sustaining (CS) constraint where the initial and final SOC are equal
meaning that all the energy consumed is from the ICE and zero charge is consumed from
the electrical source (Delprat et al., 2004; Musardo et al., 2005; Steinmauer and Del Re,
2001). Hence, the fuel consumption can be measured and compared. It is worth noting that
applying this constraint poses some challenges for the optimisation of the control strategies
but this is discussed in each controller’s section.

4.5 Components specifications

Another challenge in optimisation of different controllers is posed by the component sizing
of the constructed machine. For example, the power of the generator is limited compared
to the diesel engine which forces the diesel engine to operate in a less favourable region
in terms of efficiency. Also, the battery power is higher than the power deliverable by the
DEGEN which affects the design and optimisation of the thermostat control strategy where
the DEGEN should be able to assist the battery during an extreme loading condition but is
unable to do so due to smaller power available.

The constraints above limit the search space of available operating points for the DEGEN
where Figure 14 shows the efficiency map of the diesel engine with the optimum efficiency
line plotted in red as well as the constraint of the generator torque where the area in grey is
the feasible operating area. The OOL represents the torque and speed operating points that
achieve the highest possible efficiency at a constant power level. The OOL extends to the
maximum efficiency point but this is not the case here due to the component limitation.

Figure 14 Optimal operating curve plotted in red, feasible operating area in grey plotted over the
diesel engine efficiency map (see online version for colours)
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5 Controllers

The controllers implemented are presented in this section where the goal is to output the
operating point of the DEGEN in terms of torque and rotational speed, minimise fuel
consumption, respect the machine’s physical constraints and achieve a CS strategy. The
latter is done by keeping the final SOC as close to the initial SOC as possible in order to
properly compare fuel consumption between the different controllers. For each controller,
the logic of the operation is presented as well as how their parameters were optimised or
selected, how the drawbacks of the CS constraint is mitigated and how the components
limitations affect them.

5.1 Thermostat control strategy (TCS)

The thermostat control strategy (TCS) operates as a rule based strategy where the DEGEN
mode is selected based on a set of predefined rules (Anderson and Pettit, 1995; Hochgraf
et al., 1996; Jalil et al., 1997). The rules depend on the loading condition and the SOC of
the battery. Due to the fact that the DEGEN is decoupled from load fluctuations in a series
hybrid machine it is possible to operate It freely where the operation point can be selected
to be at the most efficient region of the set. The TCS in this work operates according to the
following equation:

Pg =


0 SOC(t) > SOCh

Po SOC(t) < SOCl

P−
g SOCl < SOC(t) < SOCh

(23)

where SOCh,l are the upper and lower thresholds for mode switching, Po is a selected
DEGEN operation power reference and P−

g means the generator stays at the previous state
of operation until the conditions change. TCS relies mainly on the SOC feedback where
the DEGEN is switched on If the SOC is lower than the lower SOC threshold and is left to
operate at Po until the SOC has reached the upper threshold where It is then switched off. In
contrary to previous work in passenger vehicles where the DEGEN can when the requested
load is more than the battery’s power, in this work the battery acts as a power equaliser
according to equation (10) and the DEGEN is mostly used for lower power operation as
well as recharging as It has limited power when compared to the load request which can
reach higher values.

The OOL is used to choose the operating rotational speed and torque which defines Po.
The maximum efficiency of the DEGEN is at 1000 RPM. However, this is not enough to
provide a CS system at the end of the studied cycle. Therefore, the wheel loader is simulated
at different speeds and the best consumption is at 1600 RPM. To ensure that the selected
operating point achieves the least possible consumption given the constraints, results from
each simulation run is compared to the global minimum achieved from DP.

It is worth noting that due to the generator limitations the selection of Po now relies
strongly on the properties of the duty cycle as a lower mean power cycle would dictate that
the optimum point would be closer to the best operating point to save fuel but at the same
time If the machine operates in a demanding cycle the battery may reach dangerous SOC
levels.
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5.2 Power follower control strategy (PFCS)

Power follower control strategy (PFCS) operates in a similar fashion to the TCS in terms
of defining the operation using a set of rules (Gao et al., 2009; Wang et al., 2007; He et al.,
2008). Generally,in PFCS the DEGEN follows the required load profile at all times except
for when SOC is higher than the upper threshold or during regeneration. However, in this
work the DEGEN follows the required load profile only up to its maximum deliverable
power and the rest is supplied by the battery. Here, the battery also acts as an equaliser and
PFCS operates according to:

Pgen =


Pidle SOC(t) > SOCh or Pf < 0

Pf SOCl < SOC(t) < SOCh

Pgmax
SOC(t) < SOCl or Pf > Pth

(24)

Pf = Pl + Pc(SOCref − SOC(t)) (25)

where Pidle is the idling power required to keep the DEGEN running, Pf is the power
required to follow the load by the DEGEN, Pgmax

is the maximum power of the DEGEN,
Pc is a CS factor for the strategy which can be tuned, SOCref is the reference SOC which
is set to the same value as the initial SOC to keep the strategy as CS and Pth is another
unable parameter that triggers the DEGEN maximum mode.

Figure 15 SOC of the SHEWL battery using different values of the charge factor Pch plotted with
the global optimum from DP (see online version for colours)

The operation of PFCS depends on the load and SOC as inputs where when the SOC is
between the upper and lower thresholds the DEGEN will be load following. The DEGEN
will idle during regeneration or when the SOC is higher than the higher SOC threshold.
Finally, The DEGEN enters maximum mode when the load is more than the predefined
load threshold or when the SOC is lower than the lower SOC threshold. The selected Pf is
then transformed to operating points in terms of torque and rotational speed using the OOL
defined previously.

In order to select Pch and SOCref the model was simulated for different values of
the coefficients and the fuel consumption was compared for all while maintaining a CS
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operation in all simulations. Coefficients that yield the best fuel economy are selected.
Results from the chosen coefficients are then used to run the simulation and their results
are compared to the global optimum produced through DP. Figure 15 shows the SOC of the
battery using different values of Pch = [2− 5] kW where it can be seen that values around
2.6 kW and 3.2 kW yield the closest behaviour when compared to the global optimum.

5.3 Adaptive/Equivalent consumption minimisation strategy (A/ECMS)

The ECMS is a strategy that minimises the fuel consumed by the DEGEN under the
assumption that energy sourced from the battery at any point must be replenished either by
the engine or through means of regeneration (Onori et al., 2016). The key idea behind ECMS
is to define an equivalent fuel consumption formula that includes the fuel consumed by the
diesel engine as well as the equivalent fuel needed to replenish the battery. The summation
of both yields the instantaneous equivalent fuel consumption that requires minimisation,
this defines an optimisation problem which is solved instantaneously at each time step
using arguments from the energy flow through the power-train. The flow of the ECMS is
shown in Figure 16 where for each time step, Pg is used to define a vector of admissible
candidate values of the DEGEN power that satisfy the system constraints. These values are
then used to calculate the equivalent fuel consumption for each candidate using the diesel
engine efficiency map, battery power, CS function and the equivalency factor. The control
combination satisfying the conditions and minimising the fuel consumption is selected for
that time step as Pref . Finally, the speed and torque of the DEGEN are selected using the
optimum operating curve. The equivalent fuel consumption ṁfeq can be calculated from:

ṁfeq = ṁf +
s(t)

Ql
Ps(t)p(SOC) (26)

where the cost function is defined as:

J =

∫ tf

t0

ṁfeq (Pref ) + ϵ ∗ I(Td, ωd, SOC,Pb, Tg) (27)

where the model used to calculate Ps(t) and the constraints are similar to those used in
DP, s(t) is the equivalency factor that must be defined and optimised in prior, p(SOC) is a
penalty function used for CS and is defined as:

p(SOC) = 1−
(
SOC(t)− SOCref

(SOCh − SOCl)/2

)a

(28)

where a is a factor that defines the aggressiveness of the constraint, I is the in-feasibility
matrix calculated from the constraints and ϵ is a weighing factor.

A key element to the success of the ECMS is the proper definition of the equivalence
factor s(t) where the selection of a high factor may lead to lower use of electrical energy
and a too low factor would risk the CS of the strategy. It is noticeable that this definition
also relies on the properties of the studied cycle where under different conditions where the
load profile is different, an ECMS with a properly tuned equivalency factor may perform
worse or lose its CS properties. To mitigate this effect, the equivalency factor may updated
each time step according the difference between the current SOC and the reference SOC or
as more known as AECMS. The update at each time step is achieved using a PI controller
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where the initial equivalency factor is the optimised equivalence factor used in the ECMS.
The optimised equivalency factor is selected using the results of the DP algorithm along
with a bisection method and a constraint of CS where the adaptive equivalency factor is
defined as:

s(t) = sopt(t) + kp∆(SOC) + ki

∫ tf

t0

∆(SOC)dτ (29)

where sopt is the optimised equivalence factor and kp and ki are the proportional and integral
gains of the PI controller which were also tuned to find the lowest consumption. To find
Sopt, the simulation model was run using different values of Sopt in the range [1:0.1:5], and
the resulting fuel consumption was plotted against the equivalency factor in Figure 17.

Figure 16 A/ECMS Simulink implementation (see online version for colours)

Figure 17 SHEWL fuel consumption versus different equivalency factors using the equivalent
consumption minimisation strategy (see online version for colours)

Results show that minimum fuel consumption occurs at around Sopt = 3.3 ∼ 3.5.
However, Its important to note that variations in the equivalency factor can lead to different
final SOC, which may affect fuel consumption. For lower equivalency factors that yield
lower final SOC, the DEGEN is operated at a point that maintains charge sustenance under
load until the initial SOC is reached. On the other hand, with higher equivalency factors, fuel
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consumption increases because the DEGEN operates at lower efficiency, which prevents
achieving further reduction in consumption.

ECMS using the optimised equivalence factor (sopt = 3.5) for a one full load cycle is
plotted against the optimum SOC trajectory generated using DP in Figure 18. It can be seen
how an optimised factor can match the global minimum where the fuel consumption of both
is almost equal which will be discussed below.

Figure 18 Optimal SOC trajectory using DP against the ECMS with optimised equivalency factor
(see online version for colours)

6 Results

All controllers where simulated using the mentioned cycle repeated for 1 h to resemble
one shift of productivity. This is not strictly enforced in order to achieve charge sustenance
meaning that the simulation is stopped when the final SOC is equal to the initial SOC with a
buffer in simulation time. The small variation in productivity is taken into consideration by
measuring the specific fuel consumption relative to the amount of work done in (g/kW-hr)
instead of total fuel consumed in kg. Each controller was simulated using the optimised
variables for the regular and half load Y-cycle. The parameters for the simulations are
illustrated in Table 2.

Table 2 Parameters for the simulation

Simulation
Parameter Full load Half load Unit
Step time 0.002 s
s(t) 3.5 2.55 ul
a 3 ul
SOCh 80 %
SOCl 60 %
SOCref 80 %
kp 3 ul
ki 0.1 ul
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6.1 Full load

The SOC variation of each controller when full load is used is shown in Figure 19 while
the power distribution between the DEGEN and battery when the loader is in full load is
shown in Figure 20.

Figure 19 SOC variation for different controllers using the full load cycle (see online version
for colours)

Figure 20 Power distribution between battery and DEGEN for a full load using: (a) DP; (b)
AECMS; (c) TCS and (d) PFCS (see online version for colours)

The final SOC of each of the controllers has same value of the initial SOC given the CS
constraint with some variations in productivity time. It can be seen that AECMS and ECMS
follow the DP trajectory closely for most of the time while PFCS tends to follow the reference
SOC rather than the optimum trajectory which means that it is using the DEGEN more
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contributing to more fuel consumption. These three strategies restore the battery’s SOC
to its initial value with small variation from the reference SOC avoiding lower efficiency
zones and also maintaining the battery energy level high enough to keep up with the load
requirement. On the other hand, TCS behaves as expected where it switches the DEGEN
on and off twice during the 1 h operation of the wheel loader reaching the lower threshold
during that time.

For the power distribution, AECMS shows similar behaviour to DP algorithm where
it uses a constant value for the DEGEN power of 21.17 kW which is the highest possible
efficiency achievable while sustaining the charge at the end of the cycle, this value is slightly
higher than the mean value of the load studied. Both AECMS and DP use the loader’s rest
period to recharge the battery while the other strategies follow their respected rules. TCS
and PFCS show different characteristics to AECMS where TCS uses the set point of 1600
RPM corresponding to 22.7 kW which is higher than the value used by DP contributing to
more fuel consumption and it switches off for the duration where the SOC has reached the
higher threshold between t1 and t2 where it can be seen that the battery is delivering all
the required power, TCS switches the DEGEN on again when the SOC reaches the lower
threshold by the end of the shown duration of the cycle. On the other hand, PFCS attempts
to follow the load while at the same time keeping the SOC at the reference value, it is noted
that PFCS in the beginning of the shown duration of the cycle is in power-follow mode
before t1 while during no load or rest phase between t1 and t2 seconds it is in idle mode
and after t2 it switches to power-follow mode again, this time it switches several times to
maximum power mode since the SOC is lower than the reference value.

6.2 Half load

The SHEWL is simulated at a half load cycle to test different operating conditions for the
controllers, where each controller’s tuning parameters were optimised in similar fashion to
the full load cycle. The wheel loader’s SOC variation for the half load case using different
controllers is shown in Figure 21 while the output power is illustrated in Figure 22.

Figure 21 SOC variation for different controllers using the half load cycle (see online version
for colours)

It can be seen that the TCS and PFCS show similar behaviour to the full load case where
the TCS switches off when the SOC is at SOCh and switches on when it is at SOCl, the
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switching is more frequently when compared to the full cycle behaviour since the required
load is lower and the selected operating point is of higher power. Similarly, PFCS is following
the SOCref with a slightly more aggressive approach due to the lower required load.
Conversely, AECMS shows different behaviour compared to the full load cycle case where
it deviates from the optimum SOC trajectory produced from DP, this may be attributed to
the selection of the a factor or the tuning of p(SOC) parameters. Additionally, the deviation
contributes to slightly more fuel consumption when compared to full load operation which
will be discussed later. Moreover, ECMS with a properly tuned equivalency factor shows
similar behaviour to DP where it follows the closest the optimum SOC trajectory generated
by DP. The final SOC for all the controllers is the same as the initial one meaning that the
fuel consumption results could be compared.

Figure 22 Power distribution between battery and DEGEN for a half load using: (a) DP;
(b) AECMS; (c) TCS and (d) PFCS (see online version for colours)

DP outputs mostly a constant value during the shown portion of the cycle and turns off
the DEGEN in regions where the load is very low or during regeneration where the load is
negative. AECMS is similar to the DP in terms of the value of output power of the DEGEN
where it also uses an equal value for power but with slightly less frequency of idling since
switching off the DEGEN is not permitted in the AECMS controller. Additionally, during
the period of rest between t1 and t2 both DP and AECMS show the same behaviour by using
minimum power of the DEGEN. TCS and PFCS again show expected behaviour where
TCS switches off once during the shown portion of the cycle as the threshold is reached
only once after t2 and the PFCS is in load following mode for all the selected part except
between t1 and t2 where it is idling since the load is small and the SOC is close to the
SOCref .
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7 Discussion

The fuel consumption of the wheel loader using each of the strategies during full and half
loads is illustrated in Table 3. The relative consumption is calculated in comparison to DP.
For full load, It can be seen that ECMS achieves the best results followed by the AECMS,
TCS and then PFCS. AECMS and ECMS both have close to optimum fuel consumption
(+0.16 – 0.37%) as they operate in an identical fashion to DP following the optimal SOC
trajectory closely. On the contrary, TCS and PFCS both adhere to their respected rules where
TCS operates at the selected DEGEN point which contributes to more fuel consumption
(+3.74%) while PFCS switches the DEGEN to maximum operating mode more frequently
which contributes to the highest fuel consumption (+7.03%). An interesting observation
during the half load cycle is that the consumption for the strategies is shuffled. Both AECMS
and ECMS achieve the best results when compared to DP since they follow the optimal
trajectory the closest but at the same time their overall consumption is higher when compared
to full cycle results at (+1.5 – 2%). Similarly, TCS shows higher fuel consumption (+5.15%)
since its operating point is selected to achieve CS at all times. On the other hand, PFCS
showed improved performance in terms of fuel consumption (+2.45%) as it no longer
operates in maximum mode where the results are quite close to the performance of AECMS.

Table 3 Fuel consumption of SHEWL using full load and half load using different strategies

Relative fuel Relative fuel
Full load consumption Half load consumption

Strategy kg g/kW-hr % kg g/kW-hr %
DP 4.891 255.49 – 2.331 243.59 –
AECMS 4.860 256.44 0.37 2.290 248.41 1.98
ECMS 4.854 255.9 0.16 2.345 247.35 1.54
TCS 5.026 265.06 3.74 2.514 256.15 5.15
PFCS 5.051 273.47 7.03 2.367 249.56 2.45

The special operating conditions of NRMMs posed different challenges when configuring
each EMS. Commercial components are rarely designed for NRMMs operating conditions
which limited the potential of some of the considered EMSs. For example, TCS was not
used to its full potential since the generator torque was limited and hence the strategy was
not utilised to equalise higher power demands. Also, the tuning of different parameters of
PFCS was challenging since the EMS performance varied noticeably with the high variation
in the mean load. Similarly, in AECMS, it was difficult to choose a singular equivalency
factor that would result in optimal performance in full and half loads. Additionally, this
immense variation in loading conditions makes it difficult to have different parameters for
various operating cycles since they are not fully standardised or well documented. NRMMs
can also operate inconsistently where for times the machine is simply idling and in the next
step a transient load needs to be managed which poses a challenge for tuning the AECMS
parameters such as the PID gains and the aggressiveness factor a. The parameters could
be tuned for half load or full load in the studied case, but in general, they are difficult to
tune to a highly different load. For example, in a case where the loader idles more, having
parameters that are tuned for higher load could mean that the EMS would try to keep the
CS operating the DEGEN more when, in reality, no work is being performed charging
the battery needlessly. Finally, the extreme transients abundant in wheel loader’s cycles
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could mean higher consumption when using PFCS since the diesel engine consumes more
fuel when the speed or load are changed more dynamically (Lindgren and Hansson, 2004;
Hansson et al., 2003) which is the case when the EMS is attempting to follow the load. In
summary, the application of common EMS presents unique challenges when implemented
in NRMMs due to their distinct operational characteristics and requirements.

8 Conclusion

This work focused on the study, optimisation and comparison of four distinct EMS for a
5.7 ton SHEWL currently under construction in University IHA lab. The research aimed
to evaluate the fuel saving ability of these EMS under realistic loading conditions through
the measurement of cycle data of a conventional wheel loader. The measurements included
all of the consumers such as the drive, implements and auxiliaries providing accurate
representation of the loader operation performing a Y-cycle. The measurements were used in
a DP algorithm to define the optimal SOC trajectory, minimum fuel consumption and power
split between the two energy sources. DP results were used to optimise the studied EMS,
study their behaviour and compare their respected consumption where a 1 h work shift was
used to simulate the a typical work shift of the SHEWL. The results showed that AECMS
was the most efficient and applicable strategy in all conditions with an average consumption
of (+1.2%) more than DP. TCS and PFCS demonstrated similar average consumption (+4.5
and +4.7%) for both loading conditions but higher overall consumption when compared
to optimal solution or AECMS. Additionally, the studied strategies performed differently
in half load compared to full load. For example, AECMS and TCS showed an increase
in fuel consumption while PFCS showed improved performance. In summary, the results
highlighted that tailored strategies are essential for varying load conditions and emphasised
the need for adaptability in real-world operational scenarios. This study lays the groundwork
for further advancements in optimising EMSs for NRMM ;specifically wheel loaders;
addressing the adaptations needed for diverse operating conditions which are a key feature
for these machines. It also opens the discussion of the issue of component availability
for hybrid machine construction commercially, where the components used in the study
machine were not tailored specifically for mobile machines but rather selected from a
different array of applications which led components to not operate efficiently.
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