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Abstract: With the growing complexity of electric-power telecommunication 
networks, alarm messages have surged, challenging operation and maintenance. 
Traditional methods overlook spatio-temporal characteristics, hindering root 
cause identification and fault propagation analysis. This paper proposes a 
spatio-temporal graph neural network-based alarm analysis method, extracting 
spatial and temporal features to construct a graph model and node alarm 
subtrees based on alarm propagation. Subtree features incorporate node 
relationships and alarm rules for accurate analysis. To reduce computational 
overhead from model parameters, a swarm intelligence optimisation-based 
lightweight technique is introduced, enhancing deployment efficiency  
in resource-constrained environments. Experiments demonstrate superior 
performance in alarm correlation accuracy, compression, and fault localisation 
compared to traditional methods. The approach effectively minimises 
redundant alarms, boosts maintenance efficiency, and supports intelligent 
network operation. 

Keywords: electric-power telecommunication network; spatio-temporal graph 
neural network; alarm subtree; particle swarm optimisation; PSO. 
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1 Introduction 

In modern power systems, electric-power telecommunication networks (EPTN) play a 
crucial role in ensuring real-time communication and control signal exchange between 
various devices. However, as power systems become increasingly complex, the scale and 
diversity of equipment in EPTN are rapidly growing, leading to a rise in the frequency 
and complexity of network faults. Fault diagnosis is a core component in ensuring the 
safe and stable operation of power systems. By timely and accurately identifying 
potential faults in the network, it can effectively avoid or mitigate the impact of 
accidents, improving system stability and reliability (Liao et al., 2021). Traditional fault 
diagnosis methods, typically based on rules and statistical analysis, rely on expert 
experience and struggle to handle the complex spatio-temporal characteristics of EPTN 
alarm events. Moreover, traditional methods perform poorly when dealing with  
large-scale data and nonlinear features, failing to meet the real-time and accuracy 
requirements for fault diagnosis in smart grids (Jiang et al., 2022). 

In recent years, with the rapid advancement of big data and artificial intelligence 
technologies, intelligent fault diagnosis methods have emerged as a prominent area of 
research. Specifically, deep learning-based approaches for fault diagnosis, by leveraging 
pattern recognition and feature extraction from alarm data in EPTN, have facilitated the 
intelligent prediction and diagnosis of fault events. The alarm information in EPTN 
reflects abnormal changes and trends in the network’s operating status, exhibiting strong 
temporal and spatial correlations (Rivas and Abrao, 2020). The analysis of alarm 
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information not only helps identify the current fault state but also predicts potential fault 
risks. Related studies have shown that alarm analysis based on spatio-temporal 
characteristics can improve the accuracy and efficiency of fault diagnosis. For example, 
spatio-temporal graph neural networks (STGNNs), by modelling on graph structures, can 
simultaneously capture the temporal evolution and spatial correlations of alarm events. 
This has become one of the cutting-edge research directions (Yang et al., 2024; 
Jamshidiha et al., 2024). However, the complexity of STGNNs is closely related to the 
network scale, and as the network size increases, the model becomes more bloated and 
complex, leading to a sharp increase in the required computational resources. 

Intelligent alarm analysis is a significant breakthrough in fault diagnosis for EPTN. 
Compared to traditional alarm filtering and threshold detection methods, deep  
learning-based alarm analysis methods can dynamically and automatically identify 
multiple alarm patterns, enabling real-time processing of large-scale alarm data. During 
the alarm analysis process, utilising graph neural networks (GNNs) to handle the graph 
structural characteristics of EPTN allows for the exploration of complex dependencies 
between nodes in the network (Hussain et al., 2019). By integrating long short-term 
memory (LSTM) networks or temporal convolutional networks (TCN), the temporal 
dynamics of alarm event sequences can be efficiently captured and analysed (Jiang and 
Bai, 2023). Fault diagnosis methods based on STGNNs not only improve the recognition 
and classification ability of alarm events but also enhance the accuracy of root cause 
analysis, providing new insights for the intelligent management and optimisation of 
EPTN (Wang et al., 2019). 

Based on the above, this paper proposes an intelligent fault diagnosis method based 
on STGNNs for alarm data analysis in electric-power telecommunication network fault 
diagnosis. First, statistical methods are used to extract the spatial and temporal features of 
the electric-power telecommunication network, and a spatio-temporal graph model is 
constructed using graph convolutional neural networks. Based on this model, alarm rules 
are integrated with alarm features and mapped into a fault tree. By utilising the spatial 
and temporal dependencies of alarm events, precise fault event localisation and prediction 
are achieved. Finally, to address the issue of excessive computational resource 
consumption during model training and optimisation, a model lightweight technique is 
proposed, which improves the efficiency of model deployment. 

2 Spatio-temporal graph neural network model for EPTN 

Since traditional CNNs cannot handle data from non-Euclidean spaces, researchers have 
defined a neural network structure capable of processing graph-domain data: GNNs. The 
concept of GNNs was introduced in the 2005 literature (Gori et al., 2005), and in 2013, 
the concept of convolution was introduced into GNNs. A graph convolutional network 
model was proposed based on frequency-domain convolution, applying learnable 
convolution operations to graph-domain data (Bruna et al., 2013). 

2.1 Spatial feature extraction based on graph convolution 

The topology of the electric-power telecommunication network can be represented as a 
graph, where the normalised Laplacian matrix serves as a tool in the frequency domain to 
characterise the structural properties of the power system’s topology: 
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2 2sysL I D YD
 

   (1) 

where Y is used as the weighted adjacency matrix A of the electric-power 
telecommunication system, where weight can be selected as line admittance; I represents 
the identity matrix; and the meaning of D is the weighted degree matrix of the graph, 

with its elements ,ii ij
j

D A  where Aij represents the elements of the matrix A. 

Perform spectral decomposition of the Laplacian matrix to further extract features: 

1

T
sys

n

λ

L U U

λ

 
   
  

  (2) 

U = [u1, …, un] is a column vector and an orthogonal matrix of unit eigenvectors, 
satisfying UUT = I; n is the total number of eigenvalues; λi represents the eigenvalues of 
the matrix. 

Drawing a parallel with the conventional Fourier transform, the graph Fourier 
transform can be represented in matrix form as follows: 

ˆ T
g gX U X  (3) 

where ˆ
gX  represents the eigenvectors of the graph, and UTXg denotes the graph Fourier 

transform matrix. 
By drawing an analogy with traditional convolution operations, the graph convolution 

formula can be formulated as follows: 

      T T
g gG

X g U U g U X    (4) 

where   denotes the Hadamard product; * represents graph convolution; g is the 
convolution kernel and (Xg * g)G indicates the application of graph convolution on graph 
G. By defining gθ = UTg as a learnable convolution kernel, the graph convolution can be 
expressed as: 

  T
g θ gG

X g Ug U X   (5) 

The computation in the above formula is intensive, leading to slower processing speeds. 
Chebyshev polynomials can be used to approximate the convolution kernel (Defferrard  
et al., 2016) to reduce computational complexity: 

 1

0
(Λ) Λ

K
θ θ k k

k
g g θ T




    (6) 

where  represents the diagonal matrix composed of the eigenvalues of the matrix Lsys, 

maxΛ 2Λ / λ I   denotes the scaled eigenvector matrix, Tk is the kth order Chebyshev 
polynomial, θk corresponds to the Chebyshev coefficients, and K is the number of terms 
in the Chebyshev polynomial. 

Thus, the convolution formula can be expressed as follows: 

 1

0

K
θ k k

k
g x θ T L x




    (7) 
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where 2 / Λ .T
sysL L I U U     

2.2 Time feature extraction based on gated convolution 

Recurrent neural network (RNN)-based models have been extensively utilised in time 
series analysis tasks. However, RNNs and their derivatives, such as LSTM networks and 
BiLSTM networks, still suffer from issues like serial iteration time consumption and 
complex gating mechanisms. Inspired by the work in reference (Zhang et al., 2018), this 
paper utilises gated CNNs along the time axis to capture temporal dynamic features more 
quickly, and employs residual connections (He et al., 2016) to mitigate the overfitting 
problem. 

In addition, we employed strategies such as gradient clipping and adaptive learning 
rate to further enhance the stability of the training process. During training, dynamic 
batch normalisation was used to ensure that each layer of the network could effectively 
learn, preventing issues such as gradient explosion or vanishing gradients. 

The time convolution layer is structured to include a one-dimensional causal 
convolution, and the gated linear unit (GLU) is set to linear activation, allowing for 
effective feature extraction from time series data of varying lengths. In this layer, the 
input at each node consists of a sequence of length M with multiple input channels Ci, 
denoted as .iM CX R   Therefore, the time convolution layer can be defined as: 

 +1Γ ( ) t oM K CX P σ Q R      (8) 

where P and Q are the inputs to the gates in the GLU; Kt is the size of the time 
convolution kernel; Co represents the number of output channels; and σ(ꞏꞏꞏ) denotes the 
activation function, which, in this study, is the sigmoid activation function. 

To address the diversity of alarm responses across time scales in power 
communication networks, we introduced a multi-scale convolutional structure in the 
temporal convolution module. This structure aims to simultaneously capture the features 
of both short-term and long-term alarm sequences, in order to handle alarm responses 
ranging from millisecond-level reactions to cumulative effects that last for hours or even 
days. 

The core idea of the multi-scale convolutional structure is to use convolutional 
kernels of different sizes to separately capture the temporal features of short-term 
(millisecond to second scale) and long-term (minute to hour scale) alarm sequences. Let 
the time-series data x(t) represent the alarm data at time t. In traditional convolution 
operations, the convolution is performed between the kernel wi and the input data: 

1

( ) ( )
k

i

i

y t w x t i


    

where k represents the size of the convolutional kernel, and wi denotes the weights of the 
kernel. By using kernels of different sizes, we can extract features at different scales in 
each layer. For instance, small-sized kernels can capture short-term changes, such as 
millisecond-level alarm responses, while larger kernels can effectively capture long-term 
variations, such as alarm accumulation effects over hours or days. The feature maps 
output by each convolutional kernel are processed by an activation function, followed by 
concatenation or weighted summation, to form a multi-scale fused feature representation. 
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2.3 Spatio-temporal feature extraction using spatio-temporal graph 
convolutional layers 

With the purpose to simultaneously capture spatial and temporal features, combining the 
spatial map convolution layer with the time gated convolution layer, the space-time map 
convolution block (ST Conv) is designed. The spatio-temporal graph convolutional layer 
is structured by placing a spatial layer between two temporal layers, enabling effective 
spatial information propagation across consecutive temporal convolutions (Yu et al., 
2017). The architecture of the spatio-temporal graph convolutional layer is depicted in 
Figure 1. 

Figure 1 Spatio-temporal convolutional layer architecture diagram (see online version  
for colours) 

 

In the spatio-temporal graph convolutional layer, the temporal layers receive the alarm 
information flow f as input, while the spatial layer is fed with the admittance matrix Y. 
The alarm information flow f first undergoes temporal convolution to capture temporal 
features. Subsequently, the temporal features are combined with the admittance matrix Y 
and passed through the spatial convolution layer to extract spatial features. After 
activation, the information flows through another temporal convolution layer, ultimately 
producing the extracted spatio-temporal features. 

Based on the graph convolution and temporal convolution layers, the information 

flow ( )
lM n Cf l R    entering the spatio-temporal graph convolution block l (where Cl is 

the number of channels in the spatio-temporal graph convolution block) can be computed 
as the output information flow f(l + 1) as follows: 

  ( ) ( ) ( )( +1) ( )
1 0Γ Θ Γl l ll l

Gf σ f     (9) 

In the equation: ( ) ( )
0 1Γ , Γl l  represents the temporal convolution kernels from the upper and 

lower layers within the spatio-temporal graph convolution block l. These features may 
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need further processing based on the specific application in order to produce the final 
results. 

3 Alarm correlation analysis based on PrefixSpan 

3.1 DBSCAN clustering for extracting alarm transaction sets 

When a network fault occurs, it triggers a series of alarms. These alarms exist as 
individual entities. In order to perform association rule mining to uncover the intrinsic 
relationships between alarms, it is necessary to aggregate all the alarm time series 
triggered by a particular fault into a single transaction set, ensuring their correlation as 
much as possible, as shown in the figure. The first step in correlation analysis is to 
transform the alarm data into an alarm transaction database. 

Figure 2 Alarm transaction sequence and alarm transaction set (see online version for colours) 

 

The DBSCAN clustering algorithm is primarily used for alarm transaction set extraction 
because the clusters formed by this algorithm represent the largest set of  
density-connected points (Ma et al., 2022). When clustering alarm event times, it 
maximises the temporal correlation by grouping events with the highest temporal 
correlation into the same cluster, thereby enhancing the temporal relevance of the alarm 
events. When using this algorithm, the final clustering result is mainly obtained by 
adjusting the parameters eps and MinPts. The combination of different values for these 
two parameters will have an impact on the clustering outcome, making it somewhat 
complex to determine the optimal clustering parameters. The basic clustering algorithm 
involves manually tuning the parameters eps and MinPts one by one, which makes the 
algorithm cumbersome and limits its efficiency. The application of a visual parameter 
tuning algorithm in this chapter helps avoid the repetitive manual adjustment of these two 
parameters. The key idea of this algorithm is to propose an optimal intermediate score 
and automatically cycle through a range of values for both parameters (Nguyen et al., 
2023). The algorithm then evaluates the clustering performance and compares it with the 
intermediate score to ultimately determine the optimal parameter combination that 
produces the best clustering result (Wang et al., 2019). The central idea of the visual 
parameter tuning algorithm is to jointly adjust the parameters eps and MinPts to 
determine the optimal combination of parameters that produces the best clustering result, 
as shown in the following algorithm: 
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Table 1 Visual parameter tuning algorithm 

Algorithm: 

Input: eps = [epss, epst]: the range of eps 

 MinPts = [mps, mpt]: the range of MinPts 

 Δi: The adjustment step size for eps and MinPts 

 best_core: Silhouette coefficient 

1: for eps epsi and MinPts mpj of all values in (eps, MinPts: Δi) 

 do 

2: timedis = d(ti, tj) 

3: score = score(epsi, mpj) 

4: if score > best_score then 

5: best_core = core 

6: end if 

7: epsi = epsi + Δ1, mpj = mpj + Δ2 

8: end for 

In DBSCAN, the distance metric needs to be considered, and here the Manhattan distance 
is used, as shown in the following formula: 

 
1

,
n

i j i j
i

d a a t t


   (10) 

where ti and tj represent the times at which alarms ai and aj occur, respectively. 
The most common evaluation metric in clustering algorithms is the silhouette 

coefficient. The closer the result is to 1, the stronger the correlation of the clusters 
obtained from the alarm samples. For a sample, the silhouette coefficient is defined as 
follows: 

( ) ( )
( )

max( ( ), ( ))

SCb i SCa i
SC i

SCa i SCb i


  (11) 

In the data pre-processing stage, handling missing values and noisy features is crucial for 
improving the stability and performance of the model. If missing values and noisy data 
are not properly addressed, they can significantly impact subsequent analysis results, 
leading to a decline in model performance or instability. To this end, we propose 
effective methods for handling missing data and noisy features in this study, ensuring 
data integrity and quality, and thereby enhancing the model’s accuracy and reliability. 

1 Mean imputation 

To ensure data integrity and minimise the impact of missing data on the analysis 
process, we employ the mean imputation method to fill in missing values. Let the 
dataset be denoted as D = {(x1, y1), (x2, y2), ……, (xn, yn)}, where xi represents the 
feature values and yi represents the label values. If a feature value is missing 

(xj = NaN), the mean value of that feature 1x  is used for imputation: 

1

1 n
J ij

i
x x

n 
   (12) 
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2 Feature selection algorithm 

Noisy data is often a key factor in the instability of clustering algorithm 
performance, particularly in high-dimensional data, where noisy features can dilute 
effective signals, affecting the model’s convergence and accuracy. To mitigate the 
impact of noisy features, we use the Chi-square test as a feature selection method to 
filter the original feature set. To address the issue of redundant features, we 
performed a feature correlation analysis and applied principal component analysis 
(PCA) for dimensionality reduction. We removed highly correlated redundant 
features and then performed clustering on the reduced data, comparing the clustering 
results before and after dimensionality reduction. The results show that after 
removing redundant features, the clustering performance improved, and 
computational efficiency was also enhanced. 

Thus, this model can perform clustering analysis on the information flows extracted in 
the previous chapter. By inputting the actual dataset into the model, it is evident that, 
despite data pre-processing, the alarm data volume remains substantial. With such a large 
volume of data, the convergence time of the clustering algorithm is lengthy and  
time-consuming. DBSCAN (Nguyen et al., 2023) is a density-based clustering algorithm 
suitable for handling noisy data and irregularly shaped clusters, requiring multiple 
calculations of distances between points to determine the neighbourhood of a point. If the 
data volume is large or the dimensionality is high, directly calculating pairwise distances 
for all points significantly reduces algorithm efficiency. Therefore, we improved the 
DBSCAN clustering algorithm by incorporating a KD-Tree (Zhao et al., 2023) to reduce 
runtime. KD-Tree is an efficient spatial partitioning data structure that significantly 
optimises neighbourhood query speed. 

The algorithm is shown in Table 2. 

Table 2 KD_Tree construction algorithm 

KD_Tree Algorithm: 

Input: data: Alarm start time 

 f: Segmentation features 

 x: Partition point 

1: generate root node t 

2: for f ← f(Varmax) do /* Choose the feature with the highest variance */ 

3: x ← f(Med) /* Take the feature’s median as the segmentation point */ 

4: if x[cd] < t.data[cd] then 

5:  t.left = insert(x, t.left, (cd + 1)) /* Assign samples with feature values less than the 
median to the left subtree */ 

6: else 

7:  t.right = insert(x, t.right, (cd + 1)) 

8: end if 

9: KD_Tree ← t 

10: end for 
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3.2 Generate alarm rules with the PrefixSpan algorithm 

In the previous section, the DBSCAN clustering algorithm divides each cluster, based on 
alarm occurrence times, as a transaction. All the clusters form a transaction set database. 
After generating the transaction set database, the PrefixSpan algorithm can be used to 
mine the temporal and spatial correlations between alarm events, discovering the 
sequential relationships and the frequency of strong association rules between different 
alarm events (Liao et al., 2020). This provides a foundation for locating the root alarm 
position based on network element information. 

When performing PrefixSpan sequence pattern mining, the alarm sequence set from 
each cluster obtained by the DBSCAN clustering algorithm serves as the input for the 
PrefixSpan algorithm. By adjusting the support and confidence levels multiple times, the 
ratio of the number of frequent alarm sequences to the total number of alarms determines 
the final support and confidence values. Frequent sequence set mining is then carried out. 
The strong association rules and their occurrence frequencies mined by the PrefixSpan 
algorithm are organised into rules and converted into the format ([A  B], m), where  
[A  B] represents the mined strong association rule, and m is the frequency with which 
the rule occurs. 

Statistical analysis of the mined rules and their frequencies reveals that the number of 
mined alarm strong association rules is still vast (Wu et al., 2023). Since the goal is to 
explore the correlations between multiple alarm events, 1-alarm strong association rules 
are excluded from the study. Although the removal of 1-alarm frequent sequences 
alleviates the pressure on subsequent research of alarm strong association rules, the 
number of alarm strong association rules remains large. Upon observing the frequencies 
of these rules, it was found that some strong association rules occur in alarm events 
several hundred times, while others appear only a few dozen times or even less. To 
further solidify the strong correlations between alarm events, a threshold is set based on 
rule frequencies. The frequencies of all strong association rules are statistically analysed, 
and the average frequency is calculated. Strong association rules with frequencies greater 
than the average are selected for further study. This reduction in the number of strong 
association rules accelerates the process of root alarm localisation. 

3.3 Root alarm localisation based on fault tree 

The fault tree systematically presents the causal relationships and logical dependencies 
between components in a complex system. By decomposing possible faults into multiple 
layers and connecting them with logic gates (such as AND, OR, etc.) (Janu et al., 2022), 
the fault tree can clearly describe the propagation paths and dependencies between 
alarms. When certain leaf nodes trigger alarms, the fault tree can quickly trace the 
potential root alarm location based on its structure, avoiding interference from irrelevant 
alarms. At the same time, the fault tree leverages expert knowledge and historical data for 
modelling, allowing it to cover common fault scenarios and dynamically adapt to system 
changes, thus efficiently and accurately locating the root cause of problems in complex 
environments. 

To address the issue of overlapping root cause analysis caused by multiple 
intersecting propagation paths, we introduced an alarm weight allocation method based 
on the influence of propagation paths in the model. In this approach, the weight of each 
propagation path is adjusted according to its contribution to the final alarm result, taking 
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into account factors such as the path’s propagation time, frequency, and overall impact on 
the system. We also designed merging rules to ensure that when different propagation 
paths intersect, the information can be integrated in a reasonable manner, thereby 
avoiding conflicts in root cause analysis. 

First, an influence metric is calculated for each alarm propagation path. This metric 
combines the path’s propagation time, (i.e., the time delay for an alarm to travel from the 
source node to the current node), the frequency of alarm events, (i.e., the occurrence 
frequency of alarms along the path), and the path’s impact on the overall system (i.e., the 
importance of the path within the system). These factors can be quantified through a 
weighted summation, resulting in the weight of each path. Let the influence of path P(i) 
be denoted as WP(i), then the following formula applies: 

       + +i i i iW P T P F P γ I P      

where T(Pi) is the propagation time of the path, F(Pi) is the frequency of alarm events 
along the path, and I(Pi) is the metric representing the path’s overall impact on the 
system. Through this weight allocation method, alarm propagation paths with greater 
influence will be assigned higher weights, while paths with less influence will receive 
lower weights. 

Assuming that multiple propagation paths P1, P2, …, Pn intersect at the same node, 
we can perform a weighted fusion of the alarm information from each path based on their 
respective weights, resulting in the merged alarm severity S: 

 

 
1

1

n
i i

i
n

i
i

W P S
S

W P










 

With this weighted merging strategy, we ensure that the information from multiple 
propagation paths is effectively integrated, while minimising the root cause analysis 
conflicts caused by path intersections. 

First, extract three features from the alarm data – alarm impact on business, alarm 
impact on equipment, and alarm severity level – to represent the alarm influence in the 
fault tree. The strong association rules mined by the sequence pattern mining algorithm in 
the previous section can form branch paths, thereby generating the fault tree. The alarm 
severity level is determined based on the alarm impact and priority. For example, when 
calculating the two rules [11, 12, 14] and [11, 13], where 11, 12, 13, and 14 represent the 
alarm IDs, the feature information contained in the alarm data is as shown in the table. 

Table 3 Feature information table 

Alarm 
ID 

Alarm location information Impact of alarm 
on business 

Impact of alarm 
on equipment 

Alarm severity 
level 

11 36-211-JCDASJF-HW-PTN1 3 2 4 

12 36-2-JYLWHJJF-HW-PTN-1 2 2 3 

13 36-34-SFXJJF-HW-PTN1 2 1 3 

14 22-89-DPJF-HW-PTN1 1 2 2 

When generating the fault tree, the nodes are set as A: B, where A represents the alarm 
node and B represents the primary impact of the alarm. The branches of the fault tree 
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correspond to the strong association rules. For example, the branch path of Rule 1 [11, 
12, 14] is (11 → 12 → 14), and the branch path of Rule 2 [11, 13] is (11 → 13). The 
branch paths are mapped to the alarm node impacts and are used to construct the tree 
structure. The fault tree constructed by these two rules is shown in the figure. 

Figure 3 Fault tree diagram 

 

By calculating the alarm impact based on alarm features, the primary impact of alarms 
11, 12, 13, and 14 is the sum of the three alarm features, which are 9, 7, 6, and 5, 
respectively. Since alarm 11 triggers the occurrence of alarms 12, 13, and 14, the impact 
of alarm 11 is recorded as 27. As alarm 11 causes alarms 12, 13, and 14 to occur, the 
final impact of alarm 11 is the sum of the impacts of its child nodes, that is 

1

n
i

i
W w


  (13) 

It can be concluded that the final impact of alarms 11, 12, 13, and 14 are 27, 12, 6, and 5, 
respectively. In identifying the alarm severity level, the priority of the depth of the fault 
tree is higher than that of the alarm impact. First, all alarms at depth 1 of the fault tree are 
sorted in descending order of their final impact. Then, all alarms at depth 2 of the fault 
tree are sorted in descending order of their final impact, and so on, until completion. The 
four alarms are ranked by alarm severity as follows: 11, 12, 13, and 14. Based on the tree 
structure, alarms that are closer to the root node of the fault tree, i.e., those with a smaller 
fault tree depth and higher impact are closer to the source of the network anomaly. 
Network administrators process alarms based on priority and use a scoring mechanism to 
identify the root alarm node. After calculating the scores of all alarms, the most 
influential alarm is detected as the highest-scoring alarm. 

4 Research on model lightweighting based on swarm intelligence 

In the scenario of fault diagnosis in EPTN, models based on spatiotemporal GNNs 
typically have high complexity. To improve model deployment efficiency and adapt to 
resource-constrained environments (such as embedded devices or edge computing 
nodes), this paper combines techniques like particle swarm optimisation (PSO) to achieve 
model lightweighting. The optimisation directions are mainly as follows: selecting 
important graph nodes or edges, (e.g., redundant alarm association edges) for pruning, 
and dynamically optimising the quantisation bit-widths of different layers. 
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4.1 PSO algorithm 

PSO (Qian et al., 2023) is an evolutionary-based intelligence algorithm that operates on a 
population of particles, each of which explores the solution space to identify the global 
optimum. Throughout the search process, every particle updates its velocity based on 
both its own previous experience and the information shared by other particles, leading to 
the collective convergence of all particles towards the optimal solution. 

Let the solution space be represented as a D-dimensional space. Denote Xi = [xi1, xi2, 
…, xiD] as the position vector of the ith particle, Vi = [vi1, vi2, …, viD] as its velocity vector, 
Pi = [pi1, pi2, …, piD] as the best historical position encountered by the iiith particle, and 
Pgd as the global best position discovered by the entire swarm. The position and velocity 
of each particle in the swarm are then updated according to the following equations: 

( +1) + ( +1)id id idx t x v t  (14) 

   1 1( +1) ( ) + () + ()id id id id gd idv t w v t C rand P x C rand P x         (15) 

In the equation, w denotes the inertia weight, while C1 and C2 are acceleration 
coefficients, and rand() represents a random value between 0 and 1. As indicated by 
equation (14), the particle’s position at the next time step is influenced by its current 
position and velocity. The future velocity is primarily governed by three components: the 
current velocity, the difference between the current position and the particle’s personal 
best position, and the difference between the current position and the global best position 
of the swarm. 

4.2 Redundancy pruning for model optimisation 

The optimisation objective of this model is to maximise the accuracy of the alarm fault 
diagnosis model while minimising the model’s computational complexity and parameter 
count (Koca and Avci, 2024). In the algorithm, the position of the particle represents 
whether a node or edge in the graph is retained. A particle value of 0 indicates that the 
iiith node or edge is deleted, while a value of 1 indicates that it is retained. 

The fitness function measures the quality of the pruning scheme, and can be designed 
by combining model accuracy and pruning rate as follows: 

( ) ( ) _ ( )f X Accuracy X Pruning Rate X      (16) 

where Accuracy(X) represents the accuracy of the pruned model on the validation set, 
Pruning_Rate(X) represents the reduction ratio of parameters after pruning, and  and  
are the weights for accuracy and pruning rate, respectively, used to balance the 
relationship between the two. 

To assess the real-time inference performance of the proposed model in practical 
applications, we conducted a detailed analysis of the latency and spatio-temporal 
complexity for each inference path. By comparing the performance of the model before 
and after pruning, we found that an appropriate pruning strategy can significantly reduce 
inference time. Let the latency of an inference path in the network be τi, and the latency 
of the path after pruning be τi′. We measure the impact of the pruning strategy by 
calculating the following formula: 

Δ i i iτ τ τ    
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In addition to inference latency, we also performed a quantitative analysis of the model’s 
spatio-temporal complexity. By calculating the changes in memory usage, we can 
effectively assess the impact of pruning on memory consumption, while comparing the 
model’s inference time helps us evaluate the impact of pruning on time complexity. 

4.3 Layer-wise quantisation bit-width optimisation model 

The purpose of applying the PSO algorithm to deep learning models is primarily to 
maximise the performance of the quantised model and minimise hardware overhead 
(Janu et al., 2022). Therefore, the position of each particle represents the quantisation  
bit-width configuration for each layer, and the fitness function can be designed as 
follows: 

( ) ( ) _ ( )f X Accuracy X Hardware Cost X      (17) 

where Accuracy(X) represents the accuracy of the pruned model on the validation set, 
Hardware_Cost(X) represents the hardware overhead, such as model size or inference 
time, and  and  are the weight factors. 

5 Simulation experiments and analysis 

5.1 Spatiotemporal graph neural network model case study for EPTN 

To validate the effectiveness of the graph neural network model proposed in this paper, a 
case study is conducted on a 10-machine, 39-bus system, which includes ten generators, 
39 buses, and 46 lines. 

The model is trained using the RMSprop optimiser (Chen et al., 2022), with an initial 
learning rate set to 0.001. In GNNs, RMSprop generally performs better in handling 
gradient updates, and an initial learning rate of 0.001 is a common choice that often 
yields good results across multiple experiments. The dropout probability is set to 0.1, 
where a lower dropout rate (0.1) is typically used to avoid overfitting while retaining 
most of the information. In complex network structures like GNNs, moderate dropout can 
improve the model’s generalisation ability. 

The batch size is set to 32, and the number of training epochs is set to 30. The 
learning rate decays at a rate of 0.7 every 5 epochs, which helps improve training 
stability. Especially after quick convergence in the initial stages, gradually reducing the 
learning rate helps avoid skipping local optima and leads to a better final model. 

The model’s performance is assessed using BCELoss to compute the loss function, 
while accuracy, precision, recall, and the F1 score are employed as key evaluation 
metrics to measure the algorithm’s effectiveness. 

To further evaluate the performance of the proposed STGCN model, a comparison 
will be made between the second-order pooling-based STGCN model and models based 
on conventional pooling that only consider temporal features, including CNN, LSTM, 
multi-layer perceptron (MLP), and gated CNN (Koca and Avci, 2024; Qian et al., 2023; 
Li et al., 2021). The choice of CNN, LSTM, MLP, and Gated CNN for spatiotemporal 
modelling is based on their respective strengths in handling spatial features, temporal 
features, and spatiotemporal correlations. CNN is proficient at extracting local features 
from spatial data; LSTM is capable of capturing long-term dependencies in time series, 
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while gated-CNN enhances feature extraction capabilities and improves spatiotemporal 
modelling through gating mechanisms. 

Multiple training sets are constructed to train the models and test their performance. 
The average results of the five models across various metrics are shown in Figure 4. 

Figure 4 Comparison of model performance (see online version for colours) 

 

As shown in Figure 4, the STGCN model proposed in this paper outperforms the CNN, 
LSTM, MLP, and gated CNN models in terms of accuracy, precision, recall, and F1 
score. 

Next, we compare the impact of sample size on model performance. The number of 
training samples is set to 2,560, 5,120, 7,680, and 10,240, with 33,600 testing samples. 
The STGCN, CNN, LSTM, MLP, and gated CNN models are trained, and the accuracy 
evaluation results on the test set are shown in the figure. 

Figure 5 Training sample number and accuracy (see online version for colours) 

 



   

 

   

   
 

   

   

 

   

   16 Y. Pang et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

As shown in Figure 5, except when the training set has 2,560 samples, where the 
accuracy of the STGCN model is slightly lower than that of the CNN model, the accuracy 
of the STGCN model is higher than that of the other models for all other training sample 
sizes. Moreover, for the same test accuracy, the STGCN model requires the fewest 
samples among the five models. 

Table 4 Alarm information table 

Region Alarm title Network element name 
Impact of alarm on 

equipment 

XD SETUP_FAILURE A2_XHGPGS Potential local failure 

XHL BD_STATUS 20_104_SLXXJF_HW_PTN1 No Impact 

TY OTN_UAS 36_211_JCDASJF Potential full 
equipment set failure 

WBL MUT_LOS 36-2-JYLWHJJF-HW-PTN-1 Potential local failure 

GJ COMMUN_FAIL 36-34-SFXJJF-HW-PTN1 No impact 

XHL BUS_ERR 22-89-DPJF-HW-PTN1 Equipment 
performance decline 

Alarm level Impact of alarm on 
business 

Alarm occurrence time Alarm clearance time 

Level 3 alarm Decline in business 
quality 

2018/6/1 13:00:01 2018/6/1 17:23:41 

Level 2 alarm Partial disruption of 
business operations 

2018/6/1 15:33:30 2018/6/1 15:33:35 

Level 1 alarm No impact 2018/6/1 17:04:17 2018/6/1 17:06:48 

Level 4 alarm Potential impact on 
business 

2018/6/1 17:58:26 2018/6/1 18:00:02 

Level 3 alarm Potential complete 
business blockage 

2018/6/1 18:59:59 2018/6/1 19:06:37 

Level 4 alarm No impact 2018/6/1 20:04:18 2018/6/1 20:07:19 

5.2 Alarm correlation 

This experiment primarily uses alarm data recorded by the NMS for a week in July 2018. 
The table lists the detailed feature information of some alarm data from the pre-processed 
alarm dataset used in this experiment. In the fault source localisation of alarm data, 
during the pre-processing feature extraction phase, this experiment extracted eight 
attributes to represent an alarm instance: county, alarm title, network element name, 
impact on the device, alarm level, impact on the business, alarm occurrence time, and 
alarm clearance time. 

Since the relationship between alarm severity and business interruption may not be a 
simple linear one, we introduced a more flexible weighting strategy and threshold setting 
in the model, taking into account the varying impact of different types of alarms on 
business operations. We use a data-driven threshold selection method (K-means 
clustering) to more accurately define the severity of different alarms. In terms of the 
weighting strategy, we employ different weight factors to adjust the final severity score 
based on the impact of alarms on different business units and devices. These weight 
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factors consider not only the frequency and duration of alarms but also integrate their 
potential impact on business operations and equipment. 

First, compare the changes in silhouette coefficient when adjusting eps and MinPts: 

Figure 6 EPS and silhouette score (see online version for colours) 

 

From Figure 6, it can be observed that when eps is fixed, the score is higher with  
MinPts = 2. Therefore, MinPts is fixed first. As eps increases, the clustering score 
gradually increases until eps = 40, after which it starts to decrease. By adjusting the 
parameters (eps, MinPts) and observing the changes in the silhouette coefficient, the final 
clustering parameters are determined to be (40, 2). 

Next, compare the clustering runtime of DBSCAN with and without KD-Tree 
optimisation across ten regions: 

It can be observed that as the alarm data volume increases, the runtime of the 
optimised DBSCAN is significantly shorter than that of the original DBSCAN. During 
the alarm transaction set generation phase using the DBSCAN clustering algorithm, the 
creation of the KD-Tree saves runtime. 

In the PrefixSpan experiment, different support thresholds were set to obtain various 
frequent sequences, and confidence thresholds were further applied to derive association 
rules. However, the number of rules mined remained large. To reduce the number of rules 
and lighten the burden for further localisation, only high-frequency alarm rules are 
considered. A parameter experiment was conducted on the minimum confidence value, 
varying it between 0.1 and 0.6, while the minimum support was set to vary between 
0.040 and 0.060. 

From Figure 8, it can be observed that as the support increases, the number of rules 
decreases gradually in both methods. This is because a higher support threshold limits 
low-frequency patterns, resulting in fewer sequence patterns that meet the criteria. The 
number of rules mined by the standard method decreases more slowly, while the number 
of rules after threshold filtering decreases more rapidly. By setting a high confidence 
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threshold, only patterns with high confidence are retained, significantly reducing the 
number of rules and alleviating the burden of subsequent analysis caused by the large 
number of rules. Additionally, it can be seen that when the support is low, the number of 
mined results is large, and even after confidence filtering, the number of rules remains 
high. However, when the support is high, the number of rules decreases significantly, 
regardless of whether confidence filtering is applied, but some potentially important 
patterns may be lost. 

Figure 7 Regions and time consumption (see online version for colours) 

 

Figure 8 Support and number of strong association rules (see online version for colours) 
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6 Conclusions and outlook 

With the development of communication networks of power grid, the network structure is 
gradually presenting complex and ever-changing new characteristics, and the  
electric-power telecommunication system faces more fault risks. Efficient and precise 
fault location in EPTN is essential to ensure the reliable and stable operation of power 
systems. In recent years, the advancement of deep learning has significantly contributed 
to progress in pattern recognition and data mining, offering valuable applications in fault 
location methodologies. 

This paper proposes an intelligent fault diagnosis method based on spatiotemporal 
graph neural networks (STGCN) for alarm data analysis in electric-power 
telecommunication network fault diagnosis. By utilising the spatial and temporal 
dependencies of alarm events, this method achieves accurate fault event localisation and 
prediction. 

Currently, the proposed STGCN model mainly targets offline and online analysis 
scenarios based on simulation analysis. The method has high accuracy and effectively 
shortens simulation time, improving analysis efficiency. In future research, we will focus 
on the challenges of network topology maintenance and limited high-resolution 
measurement data in some online analysis scenarios. Further adaptability design and 
modifications of the STGCN model will be conducted to enhance its applicability in 
various online analysis scenarios. 
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