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Abstract: In order to improve the effect of intelligent motor fault diagnosis, 
this paper proposes a motor fault diagnosis method based on deep transfer 
learning. The parameter identification module and deep neural network were 
used to solve the problem of accuracy reduction or non-identification of motor 
fault diagnosis methods based on deep learning neural network caused by 
motor dynamic parameters such as motor parameter drift and motor aging 
encountered in actual engineering. According to the experimental results, to a 
certain extent, it can solve the problem of neural network fault recognition 
accuracy decline caused by the problem of variable parameters of traditional 
neural network motor. It can be seen that the method proposed in this paper has 
certain effects, provides a large amount of engineering measured data for the 
problem of insufficient samples faced by complex machinery such as motors, 
and lays a good foundation for subsequent research. 
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1 Introduction 

In recent years, with the improvement of scientific and technological level, motors have 
been widely used in coal, metallurgy, petroleum, chemical and other industrial fields, and 
are indispensable mechanical devices in modern industrial production. As an important 
power equipment in the industrial field, the stability and safety of motor operation have a 
direct impact on the safe and stable operation of various mechanical equipment. With the 
progress of motor manufacturing technology, there are many kinds of modern motors, 
and they are increasingly developing in the direction of high precision, automation and 
intelligence (Almounajjed et al., 2022). 

In industrial production, the working conditions of motors are relatively complicated. 
Due to long-term high-load operation, high-intensity operation, foreign particles entering 
the motor, parts wear and tear, and untimely daily maintenance, it often leaves potential 
safety hazards for the stable operation of motors. Once the motor fails, it will not only 
affect the smooth operation of the equipment, but also cause certain economic losses to 
the enterprise, and even threaten the personal safety of on-site workers (AlShorman et al., 
2020). As one of the important technologies in the field of fault diagnosis, intelligent 
diagnosis technology is an important means to realise the stable operation and efficient 
work of equipment. Therefore, in order to ensure the safe and stable operation of the 
motor and prevent major accidents, it is of great practical significance to study intelligent 
diagnosis methods for motor diagnosis (Cheng et al., 2021). Traditional signal processing 
methods usually collect signals reflecting the running state of the motor, extract the 
features containing fault information in the signals, and diagnose them through pattern 
recognition. This process often requires relevant personnel to have rich professional 
knowledge and experience in fault diagnosis, but for some signals with a lot of 
interference noise and insignificant fault information, specific diagnosis methods are 
needed and the effect is not good, and the diagnosis process is often affected by external 
environmental factors and its own factors (Gundewar and Kane, 2021). 

With the development of computer technology, intelligent diagnosis technology based 
on machine learning has promoted the development of intelligent diagnosis field. As one 
of the hottest fields in machine learning, deep learning is widely used in machine 
translation, natural language processing, speech recognition, image recognition and other 
fields. Deep learning simulates the human brain’s multi-layer analysis and learning 
ability, establishes a multi-layer perceptual neural network, directly analyses and judges 
the target, automatically extracts the features contained in the information, avoids 
information loss caused by human factors, simplifies the diagnosis process, and greatly 
improves the accuracy of fault diagnosis. Therefore, as one of the popular technologies in 
the field of intelligent diagnosis, deep learning has promoted the intelligent development 
of diagnostic technology. 

In order to improve the effect of intelligent motor fault diagnosis, this paper proposes 
a motor fault diagnosis method based on deep transfer learning, and uses the parameter 
identification module (PIM) and deep neural network to solve the problem of accuracy 
reduction or non-identification of motor fault diagnosis methods based on deep learning 
neural network caused by motor dynamic parameters such as motor parameter drift and 
motor aging encountered in actual engineering. In addition, in order to make full use of 
the advantages of vibration and current signals in motor fault diagnosis, this paper 
proposes a knowledge transfer method between modes. 
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The main innovation of this method is to explicitly add the characteristics of motor 
parameter change information to the classifier network by embedding the PIM in the 
neural network model. By combining the domain adaptive method and small sample 
learning method, the ability of resisting variable parameters and the performance of small 
sample learning in fault diagnosis are improved. 

A cross modal knowledge transfer method from vibration signal model to current 
signal model is designed. Through the design of feature alignment between different 
modal models and knowledge distillation in the output layer, the fault diagnosis 
knowledge learned from the vibration signal model is transferred to the current signal 
model to achieve better fault diagnosis performance without relying on the vibration 
signal in the reasoning stage. The effectiveness of the proposed method is verified on the 
multi-modal fault dataset of electric UAV motor. 

2 Related works 

Motor signal acquisition is the premise of motor fault diagnosis, and it mainly collects 
and analyses temperature, vibration, current and other signals. Motor temperature signal 
acquisition mainly places temperature sensors at sensitive parts such as bearing ends and 
stators in advance to collect the temperature of each part of the motor for diagnosis and 
analysis. Lang et al. (2021) introduced the change and measurement of rotor temperature 
when the motor fails. Vibration signal acquisition is mainly aimed at whether the motor 
has mechanical faults. Usually, acceleration sensors are selected and pre-installed in 
bearings, fans, bases and other parts where mechanical faults may occur. Because the 
motor often produces abnormal vibration when it fails, the vibration signal usually 
contains a large number of fault characteristics of motor operation. Therefore, the type 
and location of the fault can be judged by analysing the characteristic values such as 
frequency and amplitude of the vibration signal. In Liang et al. (2021), the envelope 
signal containing fault characteristic information was obtained by spectral kurtosis 
method and Hilben envelope demodulation, which highlighted the fault characteristic 
information and quickly and effectively identifies the characteristic frequency of the fault 
signal. Current signal acquisition is mainly aimed at whether the motor has an electrical 
fault. Because the fault will cause the change of stator current, a current sensor is usually 
installed in advance to collect the motor stator current signal. Lin (2021a) made fuzzy 
diagnosis of motor inter-turn short circuit fault by collecting current signal. The diagnosis 
results show that this method can well reflect the degree of motor inter-turn fault. Lin 
(2021b) used discrete wavelet transform algorithm to extract the fault characteristics of 
current signals, and effectively identified the characteristic frequency of fault signals. 

Fourier transform (FT) can transform the signal in the time domain to the 
corresponding frequency domain, and the abnormal state of the signal can be more 
intuitively identified according to the frequency domain. However, the FT is completely 
transformed in the frequency domain. Because of the transformation of the integral 
function, the unstationary part of the signal becomes smooth, and it is easy to lose the 
useful information contained in the original signal without time domain information. 
Therefore, most FTs are aimed at linear stationary signals (Long et al., 2021a).  
Short-time Fourier is an improvement of FT, and it uses nonlinear stationary signals as 
the superposition of short-time linear stationary signals, and is achieved by windowing 
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the time domain window, and translating this window can cover the whole time domain. 
In this way, the time-frequency representation of the signal can be obtained by FT 
transforming the signal in each window (Long et al., 2021b). Nath et al. (2021) processed 
the fault signal by windowed interpolation fast FT. Niu et al. (2023) used the nonlinear 
short-time Fourier transform (NLSTFT) method to accurately estimate the instantaneous 
frequency of vibration signals. The decisive factor of short-time Fourier transform 
(STFT) is the window function, which is essentially based on single resolution analysis. 
Therefore, if the resolution needs to be changed, the corresponding window function 
must be re-selected. 

There are many deep learning models, which are mostly used in the fields of speech 
and image recognition, computer vision, information retrieval and fault diagnosis.  
Wen Jiangtao et al. combined compressed sensing theory with deep learning. In order to 
reduce the redundant information of data without losing useful information, compressed 
sensing theory was introduced to process data. Finally, deep learning was used to 
diagnose faults and obtain high accuracy (Saha et al., 2022). Shao et al. (2020) used deep 
network to extract the joint features after spectrum and time domain fusion, and used 
particle swarm support vector machine to diagnose the joint features, which improved the 
diagnosis accuracy and verifies the adaptability of deep learning. Shen et al. (2020) 
introduced deep learning models into fault diagnosis. Through simulation experiments, it 
shows that deep learning has certain advantages in improving diagnosis accuracy and is 
feasible in this field. 

The signals collected in the motor are usually one-dimensional time domain signals. 
In order to use a two-dimensional convolutional neural network for feature extraction, the 
collected signals need to be converted into two-dimensional grid data. At the same time, 
the relationship between each data point and its upper, lower, left and right data points 
contains useful information. Because the motor fault signal is usually non-stationary, its 
characteristics change with time and working conditions. However, because the motor 
rotation is periodical, it can be considered that it has the characteristics of short-term 
stability (Sun et al., 2022). 

STFT can increase the characteristic reflection of FT in time dimension by 
windowing the input signal in FT. For one-dimensional signal, its output is a  
two-dimensional matrix of time and spectrum, which is a means to extract the 
characteristics of non-stationary signals. Compared with wavelet transform, it is more 
efficient for grid output processing data (Tang et al., 2020). 

3 Network structure design and training of fault diagnosis methods 

3.1 Signal pre-processing 

Considering the grid characteristics of the input signal of the feature extraction neural 
network, the size of GPU memory and the computational efficiency, the data with a 
sampling time T(s) of one second is selected as a data input, and the output matrix size is 
256 × 256. Therefore, if the sampling frequency is fs (Hz), the number of data is T × fs. 
Hamming window is selected as the window function, the selection of overlap rate shall 
be determined according to the characteristics of the signal. If the signal contains 
important high-frequency components, a high overlap rate can help retain this 
information. However, the motor signal processed in this paper is mainly high-frequency 
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components, and selecting a higher overlap rate can effectively improve the accuracy of 
data processing High overlap rate will bring high load pressure to the system. 
Considering the hardware conditions of the system in this paper, the window overlap 
ratio is  = 0.8, and the window length W is calculated according to the following 
formula (Wang and Xu, 2021): 

( )sT f W W
wide

W W

   


 



 (1) 

Among them,  = 0.8. The output matrix frequency range is selected according to the 
relationship between the motor speed range and the fault frequency, and the STFT 
algorithm is used to convert the input timing sequence signal into a two-dimensional 
matrix. The dataset used in this paper uses CWRU motor bearing fault dataset and MFPT 
motor bearing fault dataset. Frequency selection is based on the combination of these two 
datasets. The frequency range selected in this paper is 0~6,000 Hz. This frequency is also 
one of the basic parameters of the subsequent experimental study in this paper. Figure 1 
shows the 0.2 second motor bearing fault acceleration signal and the two-dimensional 
matrix diagram obtained by STFT of the signal data. 

Figure 1 Process of signal conversion into two-dimensional matrix (see online version  
for colours) 
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3.2 Network structure 

The dense module is the core of DenseNet, which represents how data is connected and 
propagated between convolutional modules in the network, and consists of multiple 
convolutional modules. The convolution module includes a convolution layer, an 
activation function and a batch normalisation layer. Its characteristic is that the input and 
output matrices are the same size. The purpose is to facilitate the splicing of the 
convolution module output in the dense module in the channel dimension. The 
connections inside the dense module are shown in Figure 2. The number of output 
channels of each convolutional layer is also called the growth rate of the dense module. 
Moreover, all convolutional layers in the same dense module have the same output 
dimension and the same output matrix size. The output of each layer will be connected to 
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the input of all subsequent convolutional layers. splicing, so the number of output 
channels in each layer can be expressed as (Wang et al., 2020): 

( 1 )nOC IC N N OC      (2) 

Among them, OCn represents the number of output channels of the convolutional module 
of the nth layer, IC and OC respectively represent the number of input channels and the 
number of output channels of a single convolutional layer, and OC is also equal to the 
number of convolution kernels in the convolutional layer, and N represents the number of 
convolution modules contained in the dense module. The network and parameter capacity 
can be adjusted by adjusting the number and growth rate of convolution modules in dense 
modules. 

Figure 2 Dense module (see online version for colours) 

 

In this paper, the neural network structure is used for parameter identification (Figure 3). 
The structure of the module, predicted parameters, etc. can be customised according to 
the needs. When the output is a continuous variable, it is necessary to specify the 
parameter variation range in advance, so as to improve the resolution of neural network 
parameter recognition and facilitate label normalisation. The number of prediction 
parameters is the number of neurons output by the module. 

Considering the GPU capacity and training data size, the structural design of the  
four-class discriminant classifier in this paper is shown in Figure 4(a). Among them, the 
function of the ID-flatten layer is to convert the three-dimensional tensor obtained from 
the feature extractor into a one-dimensional vector that can be used by the densely 
connected layer (Xue et al., 2022). 

Figure 3 Network structure of single PIM 
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Figure 4 Classifier network, (a) discriminative classifier (b) measurement based small sample 
classifier 

  

(a) (b) 

The structure of the small sample classifier is shown in Figure 4(b). Different from the 
discriminant classifier, which directly outputs the classification results from the fully 
connected network, this small sample classifier uses the feature calculation of the Support 
set data to obtain the class centre, and uses the distance measure of the test sample from 
the class centre in the feature space as the output, and then outputs the classification 
probability prediction in the form of Softmax layer one-hot. 

3.3 Network domain adaptive architecture 

Domain adaptive learning of feature edge distribution in the network can help the 
network further improve the stability of network performance under various parameters. 
Borrowing source domain data as prior knowledge, only a small amount of target domain 
data is used to build a high-performance target domain deep network model, which 
enables the network to maintain high accuracy when used in motors under new unknown 
parameters. In this paper, discriminant network method is used for domain adaptive 
learning. Its structure is shown in Figure 5(a). The adaptive layer network structure is 
shown in Figure 5(c) (Yin and Cen, 2022). 

The domain discriminator is similar to the classifier network for discriminating 
whether features in the adaptive layer originate from the source domain or the target 
domain. When the domain discriminator is trained, the parameters are fixed, and the data 
of the source domain and the target domain are randomly passed into the data of the 
source domain and the target domain, and the adaptive network layer is trained by 
controlling the loss function to ensure that the classifier keeps high accuracy, so that the 
output features of the adaptive layer are approximate when the input of the source domain 
and the input of the target domain, thus reducing the recognition accuracy of the domain 
discriminator and making the edge distribution of the network features approximate. 



   

 

   

   
 

   

   

 

   

   30 Y. Xie et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Combining the network structure of feature extractor and classifier, this paper designs a 
domain discriminator as shown in Figure 5(b) (Zhang et al., 2022). 

Figure 5 Domain adaptive network structure, (a) overall network connection diagram (b) domain 
classifier network structure (c) adaptive layer network 

  

(a)     (b) 

3.4 Model training and fault diagnosis methods 

The network training method in this paper is: 

1 Training parameter recognition network: According to the principle of motor, the 
prediction parameters and parameter range are selected, and the training dataset with 
the prediction parameters as labels is constructed, and the parameter identification 
network structure is constructed. If the predicted parameters are continuous values, 
the parameters are normalised according to the parameter range as training labels. 

2 Training the feature extraction network: The feature extraction network structure is 
built, and the probabilistic discriminant classifier structure is built. Then, the gray 
image obtained from the motor signal is taken as the input, the fault classification is 
taken as the output dataset, the Cross-Entropy is taken as the loss function, and the 
Adam is taken as the optimisation algorithm. The feature extractor inputs the gray 
image, outputs the input of the connection classifier and the actual value of the 
network prediction parameter is connected to the input of the classifier, and its 
structure is shown in Figure 6. 

3 Training domain classifier: The domain classifier with domain adaptive structure is 
constructed, and the target domain and source domain data are randomly mixed in a 
ratio of 1: 1 to construct a dataset. If there is too little data in the target domain, the 
ratio of source domain data can be appropriately increased to 1.3: 1. Then, the source 
domain data label is added as 0, the target domain data label is 1, and  
binary-cross-entropy is taken as the loss function. The feature extraction network, the 
adaptive layer and the domain classifier network are connected in series, and the 
domain classifier is trained to make its discrimination accuracy reach about 80%. 
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4 Training the adaptive layer: The feature extractor, the adaptive layer and the 
classifier are connected, and the domain classifier is connected after the adaptive 
layer. According to the requirements, the PIM can be connected, and its structure is 
shown in Figure 7. The classifier loss function ℓc (Ds, γs) and the domain classifier 
loss function ℓdomain (Ds, γs) are constructed, and the sum of the two loss functions is 
taken as the overall loss function ℓtotal, which can be expressed as: 

   , ,total c s s domain s tD γ λ D γ     (3) 

Among them, λ is the weight coefficient, which takes different values according to 
the difference of loss function and network output structure. The degree to which the 
source domain sample classification accuracy limits the domain adaptive layer 
transformation can be adjusted by the adjusted value of λ, and engineering 
experience is ℓc:λℓdomain ≈ 2:1. 

Figure 6 Training structure diagram of feature extraction network 

 

5 The algorithm repeats steps 3 and step 4, and increases the discrimination accuracy 
in step 3 to 70 ~ 80% each time, until the domain discrimination accuracy in step 4 
decreases to 50%, and the overall loss no longer decreases. 

6 When there is very little data in the target domain, the probabilistic discriminant 
classifier based on cross entropy after migration may not be able to distinguish 
features, so it is necessary to build a small sample learning classifier model to 
improve network performance. The trained network classifier structure in step 5 is 
replaced with the small sample classifier in Figure 5(b), the weight of FC (64) layer 
is initialised to the weight of FC (64) of the discriminant classifier in Figure 5(a), and 
the trained feature extraction network, adaptive layer and PIM are connected. The 
labelled data of the source domain is used to form the support set in the form of N-
way K-shot, and the data of the target domain is used to form the query set, and the 
Euclidean distance is selected as the spatial metric function d(ꞏ). First, the central 
point of each class in the Support set is calculated, and the calculation formula is: 
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( , )i i

i
n

x y

x
c

k
   (4) 

cn is the centre point coordinate of the nth class in the N class, Sn represents all 
samples belonging to the nth class in the support set, and k is the number of samples 
of each class in the support set. 

Figure 7 Adaptive layer training 

 

Then, the algorithm calculates the distance between cn and Qn through the spatial metric 
function, and Qn represents all samples belonging to the nth class in the query set. The 
resulting distance is calculated by the softmax layer as the probability: 

   
   

exp ,
( )

exp ,

f i n
i

f i n

d g x c
P n

N
d g x c

n





 (5) 

Pi(n) represents the probability that the sample xi of the query set is in the nth class, and 
gf(ꞏ) is the mapping function between the sample and the feature space. Therefore, the 
metric loss function ld is defined as: 

 
( , )

log ( )
i i n

N

d i i

x y Q n

l y P n


     (6) 

When the sample in Qn has no label, yi is the category of u closest to the sample. Setting 
the small sample classifier parameters can train all parameters of other layers of the fixed 
network. Using Adam as the optimiser to train the classifier network until the verification 
set loss function is minimised, the centre point coordinates of the current Epoch are saved 
as a local file after each training. 
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The calculation method of smoothing formula layer in this paper is as follows: 

1

ˆ
N

i i i

i

λ

N 

      (7) 

Among them, ˆi  is the prediction parameter of the actual output of the current input grey 

image, i is the output parameter of the PIM of the previous input grey image, 
1

N

i

i

N

  

represents the average value of the output parameter of the identification module of the 
previous input grey image from the current time to the previous N, and λ is the weight 
coefficient used to adjust the stability degree. 

When the small sample classifier is used for fault diagnosis, the dotted line part of the 
small sample classifier in Figure 5(b) is not connected, and the class centre coordinates 
are directly obtained by reading the local file saved during training. 

3.5 Research on knowledge transfer between modes of vibration signal model 
and current signal model 

The analysis of this paper is based on the following three assumptions: 

1 The bearing is a rigid body without significant deformation. 

2 The outer ring is fixed. 

3 There is no sliding friction in the rolling elements. 

As shown in Table 1, the theoretical vibration frequencies of faults in different parts can 
be obtained. In the table, d represents the diameter of rolling elements, D represents the 
pitch circle diameter of rolling elements, f represents the inner ring rotation speed,  
represents the contact angle, and n represents the number of rolling elements. 

Table 1 Theoretical frequency of different bearing failures 

Fault location Vibration frequency 

Outer ring failure 1 cos
2

nf d

D
  
 

  

Inner ring failure 1 cos
2

nf d

D
  
 

  

Cage failure 1 cos
2

f d

D
  
 

  

Rolling element failure 
2

1 cos
2

Df d

d D

    
  

  

When a single point of failure occurs in the motor bearing, its load torque changes, so the 
load torque of the motor can be expressed by formula (8): 
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0L L
ck

k
T T T δ t

f





    
 

  (8) 

In the formula, TL0 represents the constant component of torque, 
c

k
δ t

f
  
 

 represents the 

torque excited by bearing fault, fc represents the characteristic frequency of bearing 
failure. Furthermore, according to the kinematics equation, formula (9) can be obtained. 

0
ck

k
ω ω ω δ t

f





    
 

  (9) 

In the formula, ω0 represents the constant component of the rotational speed, and 

ck

k
δ t

f





  
 

  is the fluctuation component of the rotational speed. According to the 

speed formula of the motor, the back electromotive force of the motor can be obtained, as 
shown in formula (10). 

   0

0

sin 2 sin 2r r
ck

k
e e P πf t e P πf t δ t

f





       
 

  (10) 

According to the current principle, the input current expression of the motor stator can be 
further obtained, as shown in formula (11). 

    0

1

sin 2 sin 2k r k r c k
r k

U e
I I πPk f t φ I π P f kf t φ

R j Pω L






       

     (11) 

From the above analysis, it can be obtained that the current signal of the motor contains 
the characteristic frequency P ꞏ fr  kfc of motor bearing fault, and in the formula, fr 
represents the frequency of the power supply and fc represents the characteristic 
frequency of bearing fault. 

In order to amplify the generalisation information contained in the ‘soft label’ of the 
original modal model, the temperature parameter T is introduced to heat up the 
knowledge of the ‘soft label’. The calculation formula is shown in formula (12). 

 
 

exp

exp

i
i

j i

z T
q

z T



 (12) 

In the formula, zi represents the predicted value of the ith category in the model output, qi 
is the soft label after temperature increase, and T represents the temperature (when T = 1, 
it degenerates to the standard softmax function). In the training process, the KL 
divergence of the soft label after heating by formula (12) is obtained by minimising the 
target modal model and the original modal model classifier [as shown in formula (13)], 
so that the target modal model can learn the knowledge of the original modal model. 
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     

    

 

 
 (13) 

At the same time, by minimising the mean square error (MSE) of the output feature 
vectors of the target modal model and the original modal model feature layer, the target 
modal model can further learn the feature extraction knowledge of the original modal 
model through the intermediate feature layer. The objective function of inter-modal 
knowledge transfer learning can be written as formula (14): 

c distance distillL L L L     (14) 

In the formula, L is the total loss function of model training, Lc represents the supervised 
learning loss, Ldistance represents the distance loss of the mean square error of the feature 
layer between the target modal model and the original modal model, Ldistill represents the 
KL divergence loss of the classifier output between the target modal model and the 
original modal model, and  and  represent the knowledge transfer loss weight. 

4 Experimental studies 

4.1 Experimental environment 

The experimental platform of this paper is set as i9 processor, GPU is GTX1080, video 
memory is 16G, operating system is Windows 10, deep learning framework is PyTorch 
1.7, IDE is Jupyter Notebook, data pre-processing uses MATLAB 2022, Python version 
is 3.7, Cuda version is 10.1. 

The network experimental dataset uses the motor bearing fault dataset of CWRU 
versus the MFPT motor bearing fault dataset. 

The pre-processing parameters are set to have a sampling time of 1 second, an 
overlap rate of 50%, an output grey pixel of 256 * 256 ×, and a frequency range of  
0~6 kHz. After pre-processing the dataset, 7,005 CWRU datasets are obtained, including 
551 normal data, 1,708 inner ring fault data, 2,999 outer ring fault data and 1,747 roller 
fault data. After pre-processing the MFPT dataset, 32 pieces of normal data, 36 pieces of 
inner ring fault variable load data, 32 pieces of outer ring fault constant load data and 36 
pieces of variable load data are obtained. 

The motor surface vibration acceleration signal is used as the characteristic fault 
signal input, and the load is used as a single variable parameter in all experiments to 
identify the bearing fault of the motor. The CWRU dataset is divided into four types of 
datasets: A, B, C and D according to four loads of 0, 1, 2 and 3. Moreover, each class of 
dataset contains all types of fault signals. In addition, a dataset composed of a variety of 
load data is also combined. For example, class A, B, and C data are combined with the 
fault type as the combination dimension as class A/B/C source domain data, and the 
target domain datasettings are also combined in this way. The merged dataset precision 
and F1 are shown by the classification results according to the sum of all classes 
contained in the dataset. 
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In this experiment, CWRU dataset is used to measure the basic performance of speed 
network with four kinds of datasets: A, B, C and D divided by load as type variable. The 
changes of network fault diagnosis accuracy when load changes are compared, and the 
changes of network accuracy when PIM is used and not used are compared. 

Accuracy (Acc) is one of the main indicators for judging classification performance, 
defined as the proportion of correctly classified samples to the total number of test 
samples. Its calculation is: 

TP
Acc

TP TN FP FN


  
 (15) 

The parameter explanation is as follows: TP: true positive, FN: false negative, FP: false 
positive, and TN: true negative. 

Using the top 50% of the raw data for each fault category, obtain 2,000 training 
samples for each category under each speed condition. The remaining 50% of the raw 
data is sampled non overlapping, generating 500 test samples for each category at each 
speed to obtain the test domain data In order to verify the performance of the proposed 
method under limited training samples, a series of experiments were conducted by 
randomly selecting different numbers of training samples from the original training set to 
compare the performance of the model under different training sample conditions. The 
number of samples for each category in the series training set is 20, 40, 50, 100, 160, 400, 
500, 1,000, 1,500, and 2,000 respectively. In order to eliminate the fluctuation of 
experimental results caused by random sampling, the experiment was repeated five times 
for each sample size to obtain the average test accuracy. The initial learning rate for 
model training is set to 0.0001. 

4.2 Results 

In order to fit the parameter changes, the parameter recognition module is first trained. 
The dataset is divided into the training set and the test set according to 7:3, epoch is 100, 
batch is 30, and the learning rate is 0.001. The average error of the test set is shown in 
Figure 8. 

The training feature extractor, adaptive layer, classifier network is constructed, which 
is a batch size of 50. Moreover, 200 epoches are uniformly trained for each type of 
network, the learning rate is 0.001, the partition ratio of the dataset to the test set is 7: 3, 
and each Epoch in a single data domain takes about 11.2 seconds. The changes of 
accuracy rate and F1 during the training process that the training domain is A, the test 
domain is A, and PIM is not used and PIM is used, are drawn separately, as shown in 
Figure 9.The results of each experiment are recorded as the evaluation of the model 
parameters of the Epoch with the highest test set F1 among the 20 epoches before the end 
of training. Moreover, each experiment is repeated three times, and the average value of 
the three evaluations is taken to record the table. When the non-training domain is used 
for testing, all the data of the target domain are used for testing. The overall experimental 
results are shown in Table 2. 

Table 3 further compares the recall rate results of different backbone networks using 
the knowledge transfer method between modes. S1–S9 respectively corresponds to nine 
motor health states: normal, bearing outer ring fault, bearing cage fault, bearing rolling 
element fault, bearing inner ring fault, rotor shaft bending, rotor permanent magnet 
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demagnetisation, stator winding inter phase short circuit, and stator winding inter turn 
short circuit. 

Figure 8 Training process of PIM (see online version for colours) 

 

Table 2 Performance test results of variable load network (Acc: %) 

Test domain 

A  B  C  D Training domain 

Acc F1  Acc F1  Acc F1  Acc F1 

A 97.42 0.98  67.12 0.65  66.23 0.64  48.02 0.35 

A (+PIM) 97.61 0.98  70.29 0.68  64.75 0.61  51.98 0.40 

B 72.86 0.75  98.60 0.99  90.39 0.91  67.32 0.70 

B (+PIM) 70.29 0.73  98.51 0.99  90.19 0.92  63.95 0.66 

C 70.59 0.73  91.38 0.92  98.41 0.98  72.96 0.74 

C (+PIM) 64.94 0.72  90.59 0.92  98.70 0.99  85.64 0.85 

D 54.85 0.44  74.84 0.75  82.37 0.85  96.53 0.97 

D (+PIM) 60.98 0.67  81.58 0.86  93.65 0.95  99.00 0.99 

A/B/C 95.63 0.97  97.42 0.98  97.71 0.98  87.12 0.87 

A/B/C (+PIM) 97.81 0.98  98.70 0.99  98.90 0.99  88.90 0.91 

Table 3 Comparison of recall rate (%) before and after knowledge transfer between modes 

 S1 S2 S3 S4 S5 S6 S7 S8 S9 

WDCNN 84.15 52.36 100 80.97 73.76 100 100 100 100 

SDCNN 72.59 47.40 100 71.92 84.51 100 100 100 100 

SDCNNRRD 96.00 66.68 100 77.94 68.90 100 100 100 100 

WDCNN + MKT 73.65 80.61 100 85.86 89.36 100 100 100 100 

SDCNN + MKT 81.56 83.67 100 80.83 87.03 100 100 100 100 

Model in this article 84.53 82.77 100 82.34 87.70 100 100 100 100 
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Figure 9 Training process and real-time test results of class A dataset, (a) comparison results of 
accuracy of motor fault diagnosis training set (b) comparison results of accuracy of 
motor fault diagnosis test set (c) comparison of F1 test results for motor fault diagnosis 
data (see online version for colours) 
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(c) 

The average accuracy diagrams of non-source domains and non-source domains with 
PIM in each source domain are shown in Figure 10. 
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Figure 10 Histogram of accuracy results of performance test of variable load network  
(see online version for colours) 

 

4.3 Analysis and discussion 

It can be seen from Figure 8 that the average error between the predicted value and the 
true value of the parameter training parameter recognition module after 100 epoches is 
0.05 (±0.1). 

It can be found from Figure 9 that with the increase of network training times, the 
accuracy of the test set and F1 index gradually increase, and the network reaches an 
accuracy of about 96% and F1 of 0.95 at 60 epoches. In the two cases with and without 
PIM, the convergence curve and convergence speed of the network in the first 30 epoches 
are similar, but the network without PIM module converges faster during the 
improvement of accuracy from 93% to 97%. After that, the network accuracy can be 
stable at around 98% and no longer improve, and the frequency and range of accuracy 
fluctuations in subsequent Epoch gradually decrease. The main reason for the fluctuation 
of accuracy is that the number of categories in this experiment is small, and due to the 
limitation of hardware platform, the training method uses a smaller batch. When the 
randomly sampled batch deviates greatly from the overall data distribution or test set 
distribution, it is easy to make the model produce a large fluctuation of test accuracy, 
which can be alleviated by increasing the batch and reducing the learning rate. 

It can be seen from Table 3 that the network feature extractor and classifier structure 
can achieve an accuracy of more than 97.5% for its own type of load data under 200 
epoches. However, when the load parameters change, the accuracy of fault identification 
of the network changes greatly. From the test of class A network on classes B, C and D 
data, it can be seen that the load of B, C and D gradually increases compared with Class 
A network, and the parameter gap gradually becomes larger. Therefore, the recognition 
accuracy and feature distribution difference of Class A network on other data domains 
increase with the increase of load parameter gap. Therefore, it reflects that the change of 
motor load parameters can be correctly identified by the neural network in the dataset. 
When the training data is consistent with the test data, adding PIM improves 0.2%,  
–0.1%, 0.3% and 2.5% in the data domains A, B, C and D, respectively, compared with 
not adding PIM. Considering the model training error, it cannot be concluded that PIM 
has improved when the training data is consistent with the test data. 
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Careful observation of Table 3 shows that even without using the inter modal 
knowledge transfer method, the three backbone networks perform very well in four fault 
types: bearing cage fault, rotor shaft bending, rotor permanent magnet demagnetisation, 
stator winding inter phase short circuit and stator winding inter turn short circuit (S6–S9). 
However, the classification performance is weak in the four categories of normal, bearing 
outer ring fault, bearing rolling element fault and bearing inner ring fault. After applying 
the knowledge transfer method between modes proposed in this paper, the performance 
of different backbone networks has been improved. 

As can be seen from Figure 10, when the training data is inconsistent with the test 
data, the average improvement of the model with PIM in the five training domains A, B, 
C, D, and A/B/C to the test domain is 1.9%, –0.71%, 2.1%, 8.4%, and 2.0% respectively. 
Therefore, PIM can improve the fault identification performance of the network under the 
variable parameters of the motor, and make the network have certain characteristics of 
resistance to variable parameters. 

Comparing the results of the network with training domains A/B/C, A, B and C with 
the test domain D, it can be found that when the network parameters are closer, the 
stronger the ability of the network to resist changing parameters, the difference between 
C and D parameters is the smallest, and the similarity of feature space is the largest. 
When PIM is not used, the test accuracy of network models with training domains C and 
A/B/C is nearly 14% different than that of D domain. It shows that using more data to 
enrich the model feature domain is helpful to improve the model fault recognition 
performance under variable parameters. After adding PIM to enrich the feature domain, 
the accuracy of both D domain is improved respectively. It is not difficult to find that 
adding PIM to the model is helpful to enrich the feature domain, and the performance 
improvement is greater for the model with less feature domain than the model with larger 
feature domain 

5 Conclusions 

In this paper, two problems faced by motor fault diagnosis based on deep learning are 
studied, namely, the decline of fault recognition accuracy caused by motor parameter 
changes and the problem of small samples, and a motor fault diagnosis method based on 
deep transfer learning is proposed. Moreover, this paper introduces the causes, functions 
and conception process of this method in detail, and briefly introduces how to select 
motor fault characteristic signals. Then, through four sets of experiments, this paper 
gradually analyses the performance, effectiveness and advancement of the network in the 
face of variable parameter problems and small sample problems. From the experimental 
results, it can be seen that the motor fault diagnosis method based on deep transfer 
learning proposed in this paper is feasible and effective in CWRU public dataset, and can 
solve the problem of decreasing accuracy of neural network fault recognition caused by 
motor variable parameters, insufficient number of target samples, unlabeled target 
samples and other small sample problems to some extent. 

At the same time, this paper provides a large number of engineering measured data 
for the problem of insufficient samples faced by complex machinery such as motors, 
which lays a good foundation for follow-up research. In the follow-up, it is necessary to 
carry out experimental tests for other types of motor faults that are not involved in the 
experiment in this paper. In addition, it is necessary to train the PIM and the basic 
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network model with generative models such as generative adversarial networks and auto-
encoders to improve the fault diagnosis stability of the network under variable 
parameters. 

This paper uses CWRU and MFPT datasets to carry out experiments, focusing on the 
specific motor fault types. It is necessary to discuss how to extend the method to other 
fault types or datasets not involved in this study, which will help to promote the method. 
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