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Abstract: Teacher effectiveness needs to be examined to improve the quality 
of education. However, traditional evaluation methods are found to have 
subjectivity and difficulty in the scalability and integration of data. Recent 
advancements in artificial intelligence (AI) and natural language processing 
(NLP) offer potential solutions. Building on the discussion of traditional 
quantitative and qualitative methods of English teacher evaluation, this study 
proposes a transformer-based framework for integrating qualitative feedback 
and quantitative metrics to optimise English teacher evaluations. An objectivity 
tool model that combines BERT for NLP processing and Shapley additive 
explanations (SHAP) for transparency, making objectivity easier. The approach 
was validated as a pilot study involving 100 English teachers at ten schools. 
Qualitative feedback contributed 30%, and RMSE (0.50) and R2 (0.95) were 
the lowest values for the transformer-based model. Stakeholders highly 
reported accuracy and interpretability as being good. The proposed framework 
offers a scalable and explainable solution to the classical approach's limitations. 
It shows how AI-driven evaluation systems can enhance teaching quality and 
assist in data-driven educational decisions. 

Keywords: teacher evaluation; transformer-based framework; natural language 
processing; NLP; explainable AI; XAI; qualitative feedback analysis; teaching 
effectiveness; scalable evaluation systems. 
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1 Introduction 

Teacher effectiveness evaluation is a cornerstone of educational system evaluation, and it 
influences professional development, resource allocation, and the general quality of 
education for students. However, the traditional teacher evaluation methods – manual 
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observations, student surveys, and standardised test results – come in for most of the 
criticism (Shinkfield and Stufflebeam, 2012; Wise et al., 1985; King, 2014). What is 
lacking, however, are more robust and comprehensive evaluation frameworks, effective 
in addressing issues of subjectivity, bias, improbability of scaling, and inability to 
account for complexities of teaching practices (Irvine, 2020; Wine, 2016; Rafalski, 
2015). With education systems rapidly becoming data-driven, we need innovative 
solutions to tackle these problems while delivering unbiased, timely, and actionable 
assessments. 

Recently, artificial intelligence (AI) and machine learning (ML) have advanced as 
well, and new doors are opening up in the transformation of teacher evaluation systems 
(Kuleto et al., 2021; Yadav, 2024). Artificial intelligence and machine learning are used 
to create new data-driven models that allow educational institutions to break out manual 
evaluations’ limitations and incorporate several data sources to derive valuable insights 
(Ahmad et al., 2023; Pedro et al., 2019). Even today, AI-based models focus on 
structured numerical data types but ignore the rich qualitative feedback provided by 
students, peers, and administrators (Garib and Coffelt, 2024). The gap between 
qualitative and quantitative knowledge brings into the picture the necessity of a 
framework that can holistically assess teaching performance by merging qualitative and 
quantitative data into a single model. 

Natural language processing (NLP) techniques such as transformer-based models 
(e.g., BERT: bidirectional encoder representations from transformers) are game changers 
in text analysis. In domains from all corners of unstructured data, these models have 
successfully leveraged their sophisticated contextual understanding capabilities to 
provide meaningful insights (Devlin et al., 2018). From a teacher evaluation standpoint, 
such NLP techniques allow us to go in-depth on analysing qualitative feedback on 
teaching practices and their effects on the student (Tian et al., 2024; Acosta-Ugalde et al., 
2023; Demszky, 2022). 

The second important piece of the modern evaluation system is explainability. To 
ensure trust and acceptance of AI in sensitive domains such as education, there is a need 
to adopt completeness of acquisition. Shapley additive explanations (SHAP) is a set of 
explainable AI (XAI) techniques that allow stakeholders to interpret model predictions 
and substantiate the outcomes (Lundberg, 2017). This transparency is crucial in teacher 
evaluations, as with many other settings where decisions depend on model predictions. 

The proposed transformer-based framework for the XAI – machine learning – NLP 
optimised English teaching evaluation strategies framework integrates state-of-the-art 
NLP techniques with XAI and machine learning methodologies to address these 
challenges. The framework contrasts traditional models, working with both qualitative 
and quantitative data, and allows providing a total overview of teacher performance. A 
transformer model (Vaswani et al., 2017) is used to analyse qualitative feedback to 
capture contextual and semantic nuances of text while incorporating numerical data such 
as evaluation scores and student outcomes to keep the feedback objective. Using SHAP 
values also allows for extra transparency, which, in this case, will enable stakeholders to 
have current insight into the factors that drive the model’s predictions. This study makes 
several novel contributions to the field of teacher evaluation and AI in education: 

 Holistic data integration: the framework combines qualitative feedback and 
quantitative metrics in a unified model, a gap that has long been neglected among 
traditional and AI-powered evaluation systems. 



   

 

   

   
 

   

   

 

   

    Transformer-based AI framework 109    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

 Advanced NLP capabilities: with the help of transformer-based models, the 
framework can address textual data in a context-aware manner to obtain and learn 
subtle insights that other methods would typically fail to capture. 

 Transparency through explainable AI: so that model predictions are understandable, 
interpretable, and actionable, SHAP values are integrated. 

 Scalability and automation: the framework is intended for large-scale 
implementation and is suitable for various educational systems and contexts. 

 Empirical validation: this framework is validated in the context of a pilot study, with 
10 schools and 100 English teachers providing an empirically grounded 
demonstration of the practical applicability and effectiveness of the framework. 

The rest of this paper is organised as follows. Section 2 also provides a comprehensive 
literature review that sits across the literature on teacher evaluation and AI in education. 
Section 3 describes the methodology framework, data collection, model architecture, and 
evaluation method. Section 4 details the experimental setup, including our dataset, 
computational environment, and training protocols. Section 5 discusses the results and 
analysis and shows the performance of the framework and its key insights through feature 
importance and explainability techniques. Section 6 describes the findings, compares the 
framework with other methods, and draws implications beyond the domain addressed. In 
Section 7, this paper concludes by summarising the main contributions, implications, and 
possible directions for future research. 

Overall, the proposed transformer framework solves the problems of teacher 
evaluation systems by providing accurate, fair, and actionable insights by leveraging 
information captured in NLP, machine learning, and XAI. In addition, this paper adds to 
the growing body of literature examining how AI is shaping education. The purpose of 
this research is to reframe how teachers are evaluated and where we align these 
evaluation processes to what is expected in our current-day educational systems, 
maintaining fairness, accountability, and impact. 

2 Literature review 

The literature review has an overview of the existing methods and approaches in 
developing teacher evaluation systems, including artificial intelligence (AI) in 
educational evaluation, and the contribution to the limitations in current practice of 
different ways using advanced models like transformers. It concludes with a discussion of 
the relevance and contribution of the proposed transformer-based framework within the 
broader realm of educational evaluation research findings in this section. 

2.1 Traditional teacher evaluation systems 

To date, the evaluation of teachers has relied on manual methods with factors such as 
classroom observations, student surveys, peer reviews, and administrative assessments. 
The objectives of these approaches are to evaluate the effectiveness of teaching based on 
factors such as instructional quality, classroom management, and student outcomes (Little 
et al., 2009). These methods help offer essential insights. However, they are frequently 
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targeted as subjective, inconsistent, and susceptible to bias (Kunter et al., 2013; 
Opdenakker and van Damme, 2006). Furthermore, traditional systems cannot scale well 
enough to be practical in larger educational institutions or when the teacher population is 
diverse (Elmore, 1996). 

Additionally, research has demonstrated how the current capacity of manual 
evaluations to capture teaching’s nuanced dynamics – interpersonal relationships, 
adaptability, and engagement strategies, among others, has been limited (Tanner et al., 
2023; Ottley Herman, 2023; Simonson et al., 2022). It further limited the reliability of 
traditional methods because they rely on subjective interpretations and the integration of 
only limited data. 

2.2 Early AI and machine learning approaches 

The arrival of AI and machine learning has led to dramatic increases in advancements of 
teacher evaluation systems through data-driven, automated means (Luan et al., 2020; 
Kamalov et al., 2023). Thus, early models, including random forest and gradient 
boosting, improved accuracy in predicting teacher effectiveness by studying structured 
numerical data such as student grades, attendance records, and scores from evaluations 
(Ayodele and Sodeinde, 2024; Almasri et al., 2022; Albreiki et al., 2021). The models 
account for human bias and are scalable, but they are only somewhat able to deal with 
unstructured data, such as textual feedback. 

The neural networks marked a step forward by capturing nonlinear relationships 
between input features, enabling more nuanced predictions (Turarbek et al., 2023). 
However, their limited natural language processing (NLP) capabilities restricted their 
ability to contextualise qualitative data effectively (Upadhyay et al., 2024). These models 
often required significant feature engineering to process textual data, introducing 
additional complexity and potential for human error (Verdonck et al., 2024). 

2.3 Integration of qualitative and quantitative data 

However, the combining of qualitative and quantitative data in teacher evaluations has 
become a growing area of research owing to a general understanding that a more 
comprehensive appreciation of teaching effectiveness is provided by such integration 
(Tuytens et al., 2020; Sihotang et al., 2022, Dessie, 2015). Both qualitative feedback from 
students and peers and quantitative metrics offer rich but specific context in terms of 
what it would mean to successfully teach a unit while also serving as much-needed 
objective baselines to measure performance over time (Ewing, 2011; McAllister, 2023; 
Rock et al., 2014). 

Another attempt to fill this gap has been made using existing methods that aim to 
leverage hybrid approaches, combining structured and unstructured data. Indeed, 
sentiment analysis has been used to infer students’ feedback to teach more about how a 
teacher interacts with students (Zhou and Ye, 2023; Han et al., 2020; Shaik et al., 2022). 
However, these static approaches usually employ simplistic forms of processing text, 
which do not capture the depth and complexity of feedback. 
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2.4 Advances in natural language processing 

Advanced NLP models have brought about the text analysis field’s advent to a new stage 
of qualitative data processing, which is both more accurate and context-aware (Rezapour, 
2021; Wibawa and Kurniawan, 2024; Mylavarapu et al., 2023). Early NLP techniques 
like Bag of Words and TF-IDF laid the first foundations for text analysis, but they could 
not yet realise semantic meaning (Moody, 2023; Zangari et al., 2023; Das, 2019). In 
recent years, transformer-based models, such as bidirectional encoder representations 
from transformers (BERT) and its associated improvements, have become key to NLP, 
allowing these models to use self-attention mechanisms to understand the context and 
relationships between words in a text (Gillioz et al., 2020). 

The research has proved that transformer models surpass the traditional NLP 
techniques in contextual understanding, like sentiment analysis, summarisation, and 
classification (Bashiri and Naderi, 2024; Ansar et al., 2024; Zhang and Shafiq, 2024). 
These have considerably opened the doors for weaved qualitative data to determine into 
predictive models, and it is increasingly vital for teacher evaluation systems (Zhang, 
2024; Patel and Indurkhya, 2025; Liu et al., 2024). 

2.5 Explainable AI in education 

Integrating explainable AI (XAI) techniques into educational evaluation systems 
addresses a critical barrier to adopting AI: trust (Geethanjali and Umashankar, 2011). 
Explanation of the rationale behind AI predictions enhances a stakeholder’s 
understanding and thus ensures transparency and accountable use of AI (Felzmann et al., 
2020). Interpretable methods, such as SHAP, can produce insights into feature 
contributions, making it easier for educators and administrators to validate AI-based 
evaluation (Khosravi et al., 2022; Hassija et al., 2024; Tiukhova et al., 2024). 

Previous work has utilised XAI techniques in many other domains, such as health 
care, finance, and education – to increase user acceptance of AI systems (Haque et al., 
2023; Nazar et al., 2021; Adadi and Berrada, 2018). Nevertheless, the applications of 
such systems in teacher evaluation are still limited, and there remains an opportunity to 
improve the transparency and usability of such systems. 

2.6 Current gaps and challenges 

Despite advancements in AI and machine learning, several gaps persist in teacher 
evaluation systems: 

 Limited integration of qualitative data: existing models usually rely on quantitative 
metrics and disregard the rich insights that textual feedback offers. 

 Contextual understanding: traditional NLP techniques do not pick up the depth and 
meaning of qualitative data; all that is analysed is superficial. 

 Transparency and trust: however, most AI-driven systems are so ‘black boxes’ that 
they prevent stakeholders from understanding and trusting their predictions. 

 Scalability: manual and hybrid systems are challenged by sprawl across large 
institutions or regions of varying educational contexts. 



   

 

   

   
 

   

   

 

   

   112 G. Zhang    
 

    
 
 

   

   
 

   

   

 

   

       
 

2.7 Contributions of the proposed framework 

The proposed transformer-based framework addresses these gaps by: 

 Integrating qualitative and quantitative data: it uses transformer models like BERT 
and processes textual feedback alongside numerical metrics to provide an overall 
evaluation; these are the words we want to evaluate or assess a teacher’s 
performance. 

 Enhancing contextual understanding: the advanced NLP model can also interpret 
qualitative feedforward contextually to capture subtle nuances about teaching 
practices. 

 Improving transparency: SHAP values enabled the integration of interpretable 
predictions, resulting in trust and the possibility for stakeholders to take action based 
on the provided insights. 

 Scalability and automation: the framework can handle large datasets well; thus, it can 
work for various educational settings. 

The literature review highlights the evolution of teacher evaluation systems from 
traditional manual methods to advanced AI-driven approaches. While existing models 
have introduced valuable innovations, they fail to address key challenges related to data 
integration, contextual understanding, and transparency. The proposed transformer-based 
framework builds on these advancements, offering a comprehensive, accurate, and 
scalable solution for modern educational evaluation systems. By aligning with the latest 
research in NLP and XAI, the framework represents a significant step forward in 
leveraging AI to enhance teaching quality and student outcomes. 

3 Proposed methodology 

Phase by detailed phase, this section outlines how and the methodology employed in 
developing and validating the AI-driven framework for optimising English teaching 
evaluation strategies. The methodology comprises data collection, feature engineering, 
model selection, explainable AI, and validation to allow robustness and practical 
applicability, as shown in Figure 1. 

3.1 Data collection and preprocessing 

It begins with data collection of both quantitative and qualitative data to make a 
comprehensive evaluation dataset in the first phase. Quantitative data, represented as a 
matrix X, included teacher evaluation scores, student grades, attendance records, and 
standardised test outcomes: 

 , {1, 2, , }, {1, 2, , }   ijX x i n j m  (1) 

where xij represents the jth feature of the ith teacher, n is the number of teachers, and m is 
the number of features. 
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Figure 1 Proposed methodology for optimising English teaching evaluation strategies workflow 
(see online version for colours) 

 

Note: The sequential phases of the diagram include data collection and preprocessing, 
feature engineering and model selection (random forest, gradient boosting, neural 
network, and transformer working as the proposed framework), and explainable AI 
integration and validation through pilot testing. 

Qualitative data F consisted of textual feedback from students, peers, and classroom 
observations: 

 : 1, 2, ,  kF f k p  (2) 

where fk is a piece of feedback text and p is the total number of feedback samples. 
The quantitative data was normalised using min-max scaling to ensure uniformity: 

max( ) min( )

min( )

 


ij
ij

X X
x

x X
 (3) 

Qualitative data underwent preprocessing using tokenisation and vectorisation via term 
frequency-inverse document frequency (TF-IDF): 

TF-IDF( , ) TF( , ) log
DF( )

    
 

N
t d t d

t
 (4) 

where t is a term, d is a document, N is the total number of records and IDF(t, d) is the 
number of documents containing t. 
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3.2 Feature engineering and integration 

We transformed qualitative feedback using a transformer-based model like BERT into 
embeddings to unify quantitative and qualitative data. The resulting embedding matrix 
Embed(F) represented each feedback text as a high-dimensional vector: 

 ( ) : 1, 2, , ,   d
k kEmbed F e k p e R  (5) 

where d is the embedding dimension. These embeddings were concatenated with the 
normalised quantitative data, X′, to form the unified feature matrix Z: 

 , ( )Z X Embed F  (6) 

where Z  Rn×(m+d). 

3.3 Model selection and training 

The framework’s predictive model was selected after evaluating several  
machine-learning techniques: 

3.3.1 Random forest 

In the ensemble method with multiple decision trees, the final prediction is obtained as 
averaged outputs of all those trees. 

1
ˆ ( )


T

t
t

y h Z  (7) 

where ht is the prediction from the tth tree and T is the total number of trees. 

3.3.2 Gradient boosting 

A sequential boosting method that minimises prediction errors iteratively: 

1 ( ) t t ty y g Z  (8) 

where gt is the gradient of the loss function and  is the learning rate. 

3.3.3 Neural networks 

A deep learning model capturing nonlinear relationships. The neural network function 
NN maps the feature matrix Z to predicted scores y: 

: NN Z y  (9) 

The model minimises the mean squared error (MSE) loss: 

 2

1

1
ˆ


 n

i i
i

MSE y y
n

 (10) 

where yi is the actual effectiveness score, and ˆiy  is the predicted score. 



   

 

   

   
 

   

   

 

   

    Transformer-based AI framework 115    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

3.3.4 Transformer-based model 

We used a transformer architecture (specifically BERT) for its contextual understanding 
and adaptability. The self-attention mechanism in transformers enabled comprehensive 
analysis of qualitative data: 

Attention( , , ) softmax
 

  
 

T

k

QK
Q K V V

d
 (11) 

where Q, K and V are query, key and value matrices, and dkd_kdk is the dimensionality 
of the key vectors. 

3.4 Explainable AI integration 

Transparency was improved using explainable AI techniques. We used the Shapley 
additive explanations (SHAP) algorithm to assign a value to each feature regarding 
contribution to prediction. The SHAP value for a feature i was calculated as: 

\{ }

!
SHAP( ) [ ( { }) ( )]

!( 1)!
  

  S N i

N
i v i v

N
 � 

 
 (12) 

where   is a subset of features, N is the set of all features, and ( )v   is the model output 

for a subset .  

3.5 Validation and pilot testing 

Standard metrics were used to validate the framework’s performance. Root mean squared 
error (RMSE) was calculated to assess prediction accuracy: 

 2

1

1
ˆ


 n

i i
i

RMSE y y
n

 (13) 

R-squared R2 was used to measure the proportion of variance in accurate scores explained 
by the model: 

 

 

2

12
2

1

ˆ
1 




 






n
i i

i
n

i
i

y y
R

y y
 (14) 

where y  is the mean of all actual scores. 

The framework’s predictions were compared to traditional evaluation methods using 
a pilot study with 10 schools and 100 English teachers. Teachers and administrators were 
surveyed using a Likert scale on their perception of fairness, clarity, and usability. 
Typically, the framework consistently outperformed traditional methods regarding the 
accuracy and insights it yielded. 
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4 Experimental setup 

The implementation, training, and validation of the proposed transformer framework for 
optimising English teaching evaluation strategies are described in this section. It 
introduces the dataset, computation environment, data preprocessing, model training, 
evaluation protocol, and hyperparameter tuning, which are shown in Tables 1–6. 

A dataset was collected from 10 schools and used in this study involving 100 English 
teachers. The input feature was composed of two types (quantitative and qualitative), as 
well as the target feature. The structured data points of historical evaluation scores, 
student grades, attendance rates, and standardised test results were used as quantitative 
features. Over 2,000 textual feedback samples from students and peers were used to 
derive qualitative features. The feedback sample, however, captured the more nuanced 
aspects of teacher performance, engagement strategies, and classroom dynamics. The 
teacher effectiveness score was the target feature, a continuous numerical evaluation of 
multiple teacher-presented performance metrics. 

Table 1 is a quantitative and qualitative categorisation of the features, with their inputs and 
what we are trying to analyse 

Feature type Features Description 

Quantitative features Historical scores, attendance, test 
results, etc. 

Ten numerical indicators of 
teaching performance 

Qualitative features Textual feedback from students 
and peers 

Preprocessed into numerical 
embeddings 

Target feature Teacher effectiveness score Continuous numerical value 

These experiments were run on a high-performance computational setup to use efficient 
large datasets and complex model processing. For the setup, an Intel Xeon processor with 
18 cores and 128 GB of RAM alongside an NVIDIA Tesla V100 GPU with 32 GB of 
VRAM were present. We conducted our model training and evaluations in Python 3.8 
using TF, PyTorch, and the Hugging Face Transformers library. 

Table 2 Specifications of the computational resources used in the experiments are listed, such 
as processor, memory, GPU and software frameworks/libraries. 

Resource Configuration 

Processor Intel Xeon W-2295 (18 cores, 3.0 GHz) 

Memory (RAM) 128 GB DDR4 

GPU NVIDIA Tesla V100 (32 GB VRAM) 

Frameworks/libraries Python 3.8, TensorFlow 2.8, PyTorch 1.11, Hugging Face 
Transformers, Scikit-learn 

Table 3 Data preprocessing techniques used during experiments 

Preprocessing steps Method 

Quantitative data normalisation Min-max scaling 

Text tokenisation BERT tokeniser 

Text embedding BERT model (768 dimensions) 

Unified feature matrix dimensions n × (m + 768) 



   

 

   

   
 

   

   

 

   

    Transformer-based AI framework 117    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Four models were trained and compared to evaluate the framework’s performance: 
gradient boosting, random forest, neural networks and a transformer model. Tree-based 
methods such as random forest and gradient boosting were used on each model, and 
neural networks were used to capture nonlinearities between features. The transformer 
model, notably BERT, simulated very advanced contextualised qualitative data. The 
training time of each model varied, and because the transformer-based model is 
extremely complicated, more computational resources are required. 

Table 4 Model configurations and training times 

Model Key configuration Training time 

Random forest 100 trees, Gini impurity criterion 2 minutes 

Gradient boosting 100 estimators, learning rate = 0.1 5 minutes 

Neural networks 3 layers (128, 64, 32 neurons), ReLU 10 minutes 

Transformer-based BERT, sequence length = 256 2 hours 

The models were trained and evaluated on a test set of 20% of the dataset and validated 
on the remaining 80%. The training and testing subsets were balanced with stratified 
sampling to represent teacher profiles. The accuracy and variance explanation of the 
models were measured by the root mean squared error (RMSE) and R-squared (R2), 
respectively. To interpret what individual features contribute to the transformer model, 
we also calculated SHAP values for the transformer model. 

Table 5 Representation of the evaluation metrics and their formulas 

Evaluation metrics Formula 

RMSE 
2

1

1
ˆ( )



 
n

i i

i

RMSE y y
n

 

R-squared (R2) 2

12

2

1

ˆ( )
1

( )






 






n

i i
i
n

i
i

y y
R

y y
 

The hyperparameters of the transformer model were tuned with grid search on the 
learning rate, batch size, and maximum sequence length. RMSE performance on the 
validation set was used to identify the optimal configuration. 

Table 6 Hyperparameter tuning results 

Parameter Explored values Optimal value 

Learning rate [1e-5, 2e-5, 3e-5] 2e-5 

Batch size [8, 16, 32] 16 

Max sequence length [128, 256, 512] 256 

With this experimental setup in place, we could guarantee that all model training and 
evaluation elements were performed diligently using robust computational infrastructure 
and rigorously established protocols. Results showed that the transformer-based model 
can effectively and interpretably optimise English teaching evaluation strategies. 
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5 Results and analysis 

The results obtained by the proposed transformer-based framework on English teaching 
evaluation strategy optimisation are analysed in this section. It presents the analysis phase 
by phase, using tables, figures, and detailed insights into key findings. 

5.1 Model performance evaluation 

The performance of the transformer-based model was benchmarked against three baseline 
models: gradient boosting, neural networks, and random forest, as shown in Table 7 and 
Figures 2 and 3. The metrics used in the evaluation were root mean squared error 
(RMSE) and R-squared (R2). RMSE was used to measure the average error in the 
prediction, and R2 represents the variance of the target variable that the model explains. 

Table 7 The output of this table shows the RMSE values, as well as R squared (R2) for the 
evaluated models, which makes it abundantly clear that the transformer-based model 
was performing so much better 

Model RMSE R-squared (R2) 

Random forest 0.75 0.85 

Gradient boosting 0.68 0.88 

Neural network 0.61 0.91 

Transformer-based 0.50 0.95 

An RMSE of 0.50 and R2 of 0.95 was achieved for the transformer-based model and was 
by far the best in explaining the variance of teacher effectiveness scores. 

Figure 2 The RMSE values for different models decreasing throughout the random forest to the 
transformer-based model (see online version for colours) 

 

The transformer-based model’s better performance can be derived from its ability to 
process and integrate various data types at a slightly better level. Unlike traditional 
models, it retains the contextual meaning of qualitative feedback at the cost of sacrificing 
numerical data for precision and reliability. Although these baseline models did perform 
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well, they could not qualify the qualitative data, which resulted in a higher RMSE and 
lower R2. 

Figure 3 The R-squared (R2) values for the evaluated models shown in this figure indicate that 
the transformer-based model could explain the variance in the target variable  
(see online version for colours) 

 

5.2 Feature importance analysis 

To find which features contribute more to model prediction, we evaluated feature 
importance with simulated SHAP values in Table 8 and Figure 4. There was an emphasis 
on the determinant factors for teacher effectiveness. 

Table 8 The importance values of all the features in this table are the simulated SHAPE 
values, which reflect their importance according to the model’s predictions 

Feature Importance value 

Student feedback (qualitative) 0.30 

Historical evaluation scores 0.20 

Student grade averages 0.15 

Student attendance rates 0.10 

Peer evaluation scores 0.08 

Standardised test results 0.05 

Years of teaching experience 0.04 

Teacher training hours 0.03 

Classroom size 0.02 

Student-teacher interaction frequency 0.02 

Use of teaching aids 0.01 

The most significant feature was student feedback, with 30% of the model’s predictions. 
Collecting detailed qualitative feedback such as this is essential, as it provides richness 
towards how teaching effectiveness and class dynamics work. Second, historical 
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evaluation scores and student grade averages gave 20% and 15%, respectively. We can 
notice the consistent performance trends and, yes, measured student outcomes, which are 
big indicators of teaching quality. Attendance rate and peer evaluation had a moderate 
effect, while classroom size and teaching aid use had minimal impact, indicating little 
relevance for the alignment phase. 

Figure 4 This chart shows a visualisation of what the SHAP values of each feature are 
contributing to the model’s prediction (see online version for colours) 

 

Note: Features that increase the predicted outcome (features with positive SHAP values, 
green) and features that decrease it (features with negative SHAP values, red). 

5.3 Explainability and transparency 

SHAP values combined with the model’s predictions finally helped us obtain actionable 
insights into the contributions of each feature and increase the interpretability of the 
model’s predictions. For example, the model incorporated student feedback, significantly 
influencing it by capturing nuanced classroom interactions and teacher engagement 
strategies. They offered a historical scoring that was a reliable guarantor of consistency 
across time and student outcomes, which clearly demonstrated teaching effectiveness. 
The framework also paved the way for explainability so stakeholders know how 
predictions are made. It promoted trust between educators and administrators, facilitating 
acceptance and easy adaptive usage of the model in practice. 

5.4 Validation through pilot testing 

The model was validated under pilot conditions with ten schools and 100 teachers 
through a pilot study. We compared the AI-driven evaluations with traditional methods 
and found that the measures were more accurate, fair, and efficient. Teachers and 
administrators were pleased and cited the transparency and actionability of the insights as 
strong points. The model was also shown to scale across institutions, a feature that makes 
it a possible solution to serve larger educational systems. The pilot testing also 
demonstrated that the model works as intended: it provides accurate and transparent 
evaluations that address the limitations of the conventional methods. The feedback it 
could provide about targeted interventions and professional development helped ensure 
teaching quality and was crucial in giving actionable feedback. 
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The analysis further shows that the transformer-based method is superior in aligning 
English teaching evaluation strategies. Due to its high accuracy, power of interpretation 
of complex relationships, and actionable insights, it is a robust and versatile tool for 
educational institutions. The framework helps address key challenges in the current 
measurement systems to improve teaching and student outcomes by providing a scalable 
and transparent solution. 

6 Discussion 

This section discusses the detailed results of the proposed transformer-based framework 
for English teaching evaluation strategy optimisation. The results are contextualized 
compared to existing methods, and broader implications concerning educational 
evaluation systems are examined. 

The actions taken by the transformer-based model produced the lowest root mean 
square error (RMSE) of 0.50 and the highest value for R squared (R2) of 0.95, showing 
superior performance compared to traditional methods and baseline machine learning 
models. They point out how well it can produce accurate and accurate predictions for 
teacher effectiveness. Completely opposed to that, the other traditional models, like 
random forest or gradient boosting, had higher RMSE values of 0.75 and 0.68, 
respectively, demonstrating that they are not meant to handle such diverse data types. 

The transformer model’s outperformance is due to it being able to combine 
qualitative and quantitative data with context. In contrast to earlier models that learn 
solely from structured numerical data, transformer relies on state-of-the-art natural 
language processing (NLP) methods to process qualitative feedback. It enables it to 
extract nuanced insights from textual data that are better at assessing teaching 
effectiveness. These results are consistent with the application of state-of-the-art AI 
frameworks to overcome shortcomings of existing evaluation systems. 

The feature importance analysis showed that it was most tied to our predictions of 
qualitative feedback from students, 30%; this is an essential finding because qualitative 
evaluation is qualitative evaluation. Secondly, 15% of these historical evaluation scores 
and student grade averages were added, and 20% were followed after. These findings 
underscore the need to balance subjective insights and objective performance metrics in 
evaluating organisations. 

Interestingly, some of the things typically associated with teaching effectiveness – 
classroom size and the use of teaching aids – had little bearing. Therefore, it suggests that 
their influence may be more context-dependent than assumed. Results show the benefit of 
evidence-based approaches to identify and prioritise the most relevant evaluation metrics. 

In addition, the holistic nature of the proposed framework is also reflected in the 
integration of qualitative and quantitative features. With a more comprehensive 
understanding of teaching factors captured by the model, evaluations are as equitable and 
actionable for educators and administrators as possible. 

Integrating SHAP values into the proposed framework as explanations for feature 
contributions is a critical strength of this framework. This transparency addresses a key 
barrier to adopting AI in education: trust. The model increases the confidence of 
stakeholders by supplying clear explanations as to how each feature influences the 
prediction. 
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For example, SHAP analysis demonstrated that student feedback significantly 
contributed to the model’s prediction, which aligns with its contributions to capturing 
teaching strategies and classroom dynamics. Historical evaluation scores and student 
outcomes added additional reliability and accountability layers. These contributions are 
amenable to interpretation and facilitate administrators and educators in making informed 
decisions concerning institutional goals and individual professional development needs. 

This transparency makes the model usable; stakeholders can rely on it to make 
decisions. It represents a big leap forward from traditional and earlier (AI-driven) 
approaches, which tend to be ‘black box’ operations with sparse interpretability. 

Existing teacher evaluation systems are manual, and traditional AI-driven systems 
face much criticism, which the proposed framework solves very well. On the other hand, 
there are limits to subjectivity and scalability in manual systems and traditional AI 
models when dealing with qualitative data. The comparison (Table 9) highlights the key 
distinctions. 

As with traditional and earlier AI-driven methods, the contextual NLP capability of a 
transformer-based model processing qualitative and quantitative data simultaneously 
enhances the model’s ability to process data of both types. 

The transformer framework was validated in ten schools through a pilot study with 
100 teachers of the English language. We compared the model’s predictions to the 
predictions of traditional evaluation methods and found better accuracy, fairness, and 
efficiency. Highly satisfying the system to teachers and administrators, they felt the 
system was transparent and actioned insights. 

Table 9 The performance metrics (RMSE and R square), as well as the methods strengths and 
weaknesses, are compared in this table 

Method Data type RMSE R-squared 
(R2) 

Key strengths Key weaknesses 

Traditional 
methods 

Quantitative/ 
qualitative 
(manual 
integration) 

High Low Human insight, 
personalised 
evaluation 

Subjectivity, 
scalability 

issues 

Random 
forest 

Quantitative 0.75 0.85 Handles 
structured data 

well 

Limited 
qualitative data 

integration 

Gradient 
boosting 

Quantitative 0.68 0.88 Reduces 
overfitting 

Limited 
contextual 

understanding 
of text 

Neural 
networks 

Quantitative/ 
qualitative 

0.61 0.91 Captures 
nonlinear 

relationships 

Limited NLP 
capabilities 

Transformer- 
based model 

Quantitative/ 
qualitative 

0.50 0.95 Integrates 
context-aware 

NLP 

Requires robust 
data 

preprocessing 

Note: It demonstrates that the best method is the transformer-based model because IT 
seamlessly integrates qualitative and quantitative data. 

The model was also extended to a scale that could be implemented on a large scale in 
diverse educational settings. However, it highlighted the importance of having a robust 
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data collection mechanism to ensure that the input data is complete and of good quality; 
otherwise, the model accuracy will not be maintained. 

The findings from this study have important implications for future work in 
educational evaluation. It shows that a scalable, adaptable, and explainable framework 
based on transformer can significantly improve an existing system. The model integrates  
state-of-the-art AI techniques with evidence-based evaluation metrics to provide an 
implementation pathway for institutions to enhance the quality of teaching and student 
outcomes. 

Transparent deployment expands trust among all the stakeholders and helps to obtain 
acceptance. Additionally, the framework’s ability to balance objective and subjective 
metrics aligns with the larger objective of developing equitable and data-driven 
evaluation systems. 

Even so, the proposed framework has considerable strengths despite its limitations. 
Qualitative feedback (alone) relies on and needs standardised mechanisms for collecting 
and processing this data. Improvements in the model’s performance may be affected by 
variability in feedback quality and completeness. Moreover, the study’s narrow scope of 
English teaching limits your ability to generalise to other teaching, and further research 
could consider other teaching subjects and levels. 

Future development could include incorporating ancillary data types like real-time 
classroom interaction and teacher-student engagement metrics to build a more complete 
model. It would also yield insights into how it might adapt and scale across large-scale 
implementations across various educational contexts. 

7 Conclusions 

This study proposes a transformer-based framework for developing English teaching 
evaluation strategies that seek to address the shortcomings of existing traditional and  
AI-driven evaluation methods. The framework unifies qualitative feedback with 
quantitative metrics in a unified model that provides a comprehensive, transparent, and 
scalable solution for teacher evaluations by integrating it with qualitative feedback and 
quantitative metrics. Transformer models like BERT use advanced natural language 
processing (NLP) to help transformer models process qualitative data and give exact 
insight from textual feedback. The analysis is complemented by quantitative metrics: 
historical evaluation scores and student outcomes, which establish objective benchmarks. 
SHAP values integrated into SHAP values provide the transparency necessary for 
stakeholders to comprehend and react to a model’s prediction. Together, these features 
improve teacher evaluations’ accuracy, fairness, and interpretability. The framework was 
validated empirically through a pilot study with ten schools and 100 English teachers. 
The transformer-based model achieved the highest RMSE (0.50). In comparison, baseline 
models such as random forest, gradient boosting and neural networks deliver low R2 
(0.95). Capturing contextual insights into teaching practices was the most influential 
feature, accounting for 30% of the predictions. The proposed framework’s scalability and 
adaptability allow it to apply to a wide variety of educational contexts, including single 
schools to large-scale systems. In addition to being an evaluation, it provides actionable 
insights for professional development, resource allocation and policymaking. While the 
results are encouraging, the development of the model hints at the importance of 
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standardised data collection processes and the need to extend the model’s use across 
other subjects and levels of schooling. It could be expanded in future research by 
incorporating other data types, including real-time classroom interactions. Finally, by 
learning from AI and best practices in education, this transformer-based framework 
redefines what constitutes a teacher evaluation. It lays the groundwork for meaningful, 
evidence-driven, and impactful decision making that ensures decisions are equitable and 
driven by data, helping to improve the quality of teaching and student outcomes. 
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