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Abstract: Secure multi-party computation (MPC) and homomorphic encryption are very
powerful tools to compute with secret numbers without revealing inputs or any intermediate
values. To securely achieve high accuracy with varying number sizes, one needs to work with
floating points in the secret (secret-shared or encrypted) domain. The main bottleneck of secure
floating points is addition. We improve its efficiency by designing a protocol for multiple
additions, using standard building blocks available in most MPC platforms. The more additions
n were combined, the larger the relative gain, up to a factor 13 with n = 1,024. Additionally, we
introduce a new protocol for securely computing the bitlength (given upper bound M ), the first
one with linear time complexity and constant round complexity. It reduces secure multiplications
with a factor 4 (for the constant-round solution), or the number of communication rounds with
a factor M /2 (for the logarithmic-round solution). We evaluate accuracy, execution time and
communication complexity of our protocols, and release them open source, such that they can
be used to improve the efficiency of secure floating-point arithmetic.

Keywords: secure multi-party computation; floating-point arithmetic; bit length protocol;
cryptography; homomorphic encryption.
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1 Introduction

Secure multi-party computation (MPC) and homomorphic
encryption are very powerful tools to compute with secret
numbers without revealing inputs or any intermediate
values. However, like all cryptographic systems, they can
only deal with integers, whereas applications, e.g., based on
machine learning, often require more accurate floating-point
arithmetic.

This problem is often tackled by computing with
fixed-point arithmetic, i.e., scaled integers. In case both
very small and very large numbers need to be handled,
very large (scaled) integers are needed to preserve accuracy,
which introduces a large overhead during computation, and
while communicating between parties.

To achieve high accuracy with regular integer sizes,
one needs to work with floating points in the secret
(secret-shared or encrypted) domain. This requires a secret
significand and a secret exponent (see first paragraph
of Section 2) for each secret number, and a set
of cryptographic protocols for different floating-point
operations that work on these secret pairs.

Since the first secure floating-point protocols by
Aliasgari et al. (2012), many similar frameworks have
been developed, sometimes as part of more generic MPC
frameworks (see Subsection 1.1). The general conclusion
is that rounding, comparison and division with secure
floating points is cheaper than with secure fixed points,
multiplication is slightly more involved, but the main
bottleneck is additions [Aliasgari et al., (2012), Table 2].
Therefore, the focus of this paper is to improve the
efficiency of secure floating-point additions.

1.1 Related work

Since the initial work by Aliasgari et al. (2012),
many similar secure floating-point frameworks have been
developed. Some are part of larger generic MPC platforms
like Sharemind (Krips and Willemson, 2013; Kamm
and Willemson, 2015; Kerik et al., 2014), ABY from
Demnler et al. (2015), MPyC by Schoenmakers (2018),
SCALE-MAMBA by Abdelraham and Smart (2019) and
MP-SPDZ in Keller (2020).

Although the software platform and implementation
differ, they all use a similar approach for securely
computing y = x1 + x2, given two floating point numbers
xi = si · 2ei , i = 1, 2, each with a significand si of ℓ bits:

1 Find the input xmax with the largest exponent.

2 Is the difference between the two significant?

Compute d = min{emax − emin, ℓ}.

3 Compute sum: s← smax + smin · 2−d.

4 Normalise s to an integer sy of exactly ℓ bits:

a Compute the bits of s.

b Use the bits to compute bit size m of s.

c Set sy ← ⌊s · 2ℓ−m⌋.

5 Set exponent of sum y: ey ← emax +m− ℓ.

Furthermore, Liu et al. (2013) made basic secure
floating-point operations that follow the IEEE-754 standard,
and more recently Rathee et al. (2022) optimised for
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a two-party setting, and for machine learning (Rathee
et al., 2023). Sasaki and Nuida (2020) developed two-party
protocols for securely adding floating points within a small
number of communication rounds. Belorgey et al. (2023)
constructed a platform with an offline precomputation phase
and a fast online phase that mitigates overflow while
securely computing with floating points.

Of particular interest is Catrina (2020a) who introduced
a secure protocol for adding multiple floating points, similar
to ours. Later, Blanton et al. (2023) developed a more
accurate (but less efficient) version of this.

Krips and Willemson (2013) use a scaled integer as
significand, just as Schoenmakers (2018), and optimise
specific functions as inverse, square-root, exponential and
Gaussian error. Abdelraham and Smart (2019) compare
the efficiency of functions like square root, sine, cosine,
exponentiation and logarithm with secure fixed-point
implementations.

1.2 Our contribution

As addition is shown the bottleneck of secure floating-point
operations by Aliasgari et al. (2012), we focus on improving
its efficiency. During a floating-point addition, one needs
to compute the bit length of the new significand (variable
m in step 4 in Subsection 1.1) to properly scale it, which
introduces a large overhead. We present a new secure bit
length protocol that, unlike previous solutions, does not
require bit decomposition (as in step 4a of Subsection 1.1),
and reduces complexity from O(M log2 M) to O(M)
secure multiplications with constant round complexity,
where M is the maximal number of input bits. We show
how to simultaneously compute functions on the bit length
without extra secure multiplications.

The new bit length protocol additionally speeds up the
computation of many secure floating-point functions that
use Padé polynomials, because their inputs need to be
scaled to fixed intervals.

Furthermore, we present a protocol that combines
several secure floating-point additions in one [we found
a similar approach in Catrina (2020a, Protocol 3)], and
analyse its accuracy. Because the bit length protocol
needs to be invoked only once, this significantly reduces
complexity. We show a couple of optimisations that further
accelerate the multiple addition protocol, which can be
used more generic in secure floating-point arithmetic. In
particular, speeding up the exponentiation in step 3 of
Subsection 1.1, and the secure division in step 4c.

Summarising the main contributions of this paper:

1 The accuracy analysis of a protocol that combines the
addition of multiple floating points (see
Subsection 2.3).

2 A new bit length protocol with linear time complexity
and constant round complexity (see Subsection 3.1).

3 Speeding up the secure division while adding floating
points (see Subsection 3.2).

4 Speeding up the secure exponentiation while adding
floating points (see Subsection 3.3).

5 Open source software from TNO (2024), based on
MPyC, implementing our secure floating point
arithmetic, including multiplication, division, square
root and logarithm functions.

Although implemented in MPyC, our improvements are
applicable to all secure floating point platforms (see
Subsection 4.4).

2 Design

We implement a secure floating point with a secret signed
integer for the significand and a secret signed integer for the
exponent. More specific, a floating point x is represented
as sx · 2ex , where 2ℓ−1 ≤ |sx| < 2ℓ and |ex| < 2k, such
that significand and exponent have bit sizes ℓ+ 1 and
k + 1 respectively, and the significand contains a maximal
number of significant bits.

Unlike other implementations, we do not use a separate
sign bit. We also avoid a zero bit and allow the exception
sx = 0, in case x = 0.

Although similar protocols could be designed for
homomorphic encryption, we restrict ourselves to MPC,
and use the MPyC framework by Schoenmakers (2018) for
implementations. The significand has type SecInt within
MPyC, which creates a Shamir secret sharing modulus
with a headroom of κ bits, κ being the statistical security
parameter. This is convenient for secure operations that
require additive blinding. Similar for the exponent.

We use ⟨.⟩ to denote secret-shared values, and the
notation (x < y) to denote the binary outcome of the
comparison x < y. The symbol ÷ is used for integer
division, yielding the integer quotient of the division. We
use ⊕ for exclusive-or of bits.

Before presenting our multiple addition protocol, we
introduce the accuracy requirements of (secure) floating
points.

2.1 Accuracy requirements

How to decide whether a floating point with integer
significand sx and integer exponent ex is an accurate
representation of real number x? First, the exponent should
be correct, which means that there is a real number s, such
that 2ℓ−1 ≤ |s| < 2ℓ and s · 2ex = x. This means that

ex = ⌊log2 |x|⌋ − ℓ+ 1,

provided x ̸= 0. Because we are not able to represent zero
consistently, this case needs to be handled separately. In
our protocol from Subsection 2.2 we then obtain a zero
significand, but it is also possible to introduce a separate
zero flag for this case.

Because the exponent is limited to k bits, we might
run into overflow (ex ≥ 2k) or underflow (ex ≤ −2k)
problems, which we conveniently neglect in this paper.
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Given the exponent, the significand should be
sufficiently accurate, which means that sx should be the
integer closest to x · 2−ex . As we are computing in the
encrypted (or secret-shared) domain, where rounding off is
expensive compared to truncation, we relax this a little to

|sx − x · 2−ex | < 1.

To show that it is not always easy to meet these
accuracy requirements with secure floating points, consider
the computation of y = log2 x, given x. As y = ex +
log2 sx = ex + ℓ− 1 + ϵ, for some 0 ≤ ϵ < 1, it might
seem sufficient to find an approximation of ϵ with an
absolute accuracy of 2−ℓ to determine sy . However, if x ≈
1, then y ≈ 0, so either ϵ ≈ 0, or ϵ ≈ 1. One can show
that |y| ≥ 2−ℓ (if x ̸= 1) because sx is an integer, but that
means we need to approximate ϵ with an absolute accuracy
of 2−2ℓ to make sure that sy will be accurate. This and
similar observed errors were also described in Rathee et al.
(2022).

2.2 Multiple additions

We describe a protocol for securely adding multiple
floating points, with the following specification, where all
significands and exponents are secret:

Input: xi = si · 2ei , 1 ≤ i ≤ n, with

2ℓ−1 ≤ |si| < 2ℓ and |ei| < 2k

Output: y = sy · 2ey , with

2ℓ−1 ≤ |sy| < 2ℓ and y ≈
∑n

i=1 xi

The output should fulfil the accuracy requirements of the
previous subsection. However, the analysis in the next
subsection shows that in some exceptional cases, our
generic approach will not lead to a perfectly accurate
outcome.

Because the largest inputs will determine ey, it makes
sense to compute emax = max{ei | 1 ≤ i ≤ n}, and write
y = s · 2emax , with

s =
n∑

i=1

si · 2ei−emax .

We know that 0 ≤ |s| < n · 2ℓ ≤ 2λ, where λ = ℓ+
⌈log2 n⌉, but s is not necessarily integer. Performing n
secure divisions ti ← si ÷ 2emax−ei will be costly, but if we
neglect the inputs with small exponents ei, i.e., ei < emax −
λ, we can use the integer ti = si · 2ei−emax+λ with scaling
factor 2−λ.

The final step is to compute T =
∑

i ti and scale the
integer T to an sy with ℓ significant bits. This leads to the
following approach:

1 Find the largest exponent ⟨emax⟩, where

emax = max{ei | 1 ≤ i ≤ n}.

2 For i = 1 to n do

a Compute ⟨δi⟩ = ⟨(ei ≥ emax − λ)⟩

{Neglect inputs with δi = 0}.

b Compute ⟨ti⟩ ← ⟨si⟩ · ⟨2ei−emax+λ⟩ · ⟨δi⟩.

3 Compute ⟨T ⟩ ←
∑n

i=1⟨ti⟩

{Approximation of s with scaling factor 2−λ}.

4 Normalise T to an integer sy of exactly ℓ bits:

a Compute bit length ⟨m⟩ of ⟨|T |⟩, 0 ≤ m ≤ 2λ.

b Compute integer division ⟨sy⟩ ← ⟨T ÷ 2m−ℓ⟩.

5 Set ⟨ey⟩ to ⟨emax⟩ − λ+ (⟨m⟩ − ℓ).

The multiple additions protocol is designed to achieve both
high accuracy and good efficiency. Its accuracy is analysed
in the next subsection. In Section 3, we describe efficient
implementations of the various steps.

2.3 Accuracy analysis

We will show that sy · 2ey is an accurate approximation of
y =

∑n
i=1 δi · xi. We have

y = 2emax ·
n∑

i=1

δi · si · 2ei−emax

= 2emax ·
n∑

i=1

ti · 2−λ

= 2emax−λ · T
= 2ey+ℓ−m · T.

Therefore, given that sy is an accurate computation of
the integer division T ÷ 2m−ℓ, i.e., |sy − T

2m−ℓ | < 1, we
conclude that |sy − y · 2−ey | < 1, because y · 2−ey = T ·
2ℓ−m, and indeed sy · 2ey turns out to be an accurate
approximation of y =

∑n
i=1 δi · xi.

The δi are chosen to exclude small exponents with ei <
emax − λ, because then∣∣∣∣∣∣

∑
i,δi=0

si · 2ei−emax

∣∣∣∣∣∣ < (n− 1) · 2ℓ · 2−1−λ <
1

2
.

This does not imply that sy · 2ey always is an accurate
approximation of y =

∑n
i=1 xi, although in many cases it

will be. For example when |
∑

i,δi=1 si · 2ei−emax | ≥ 2ℓ−1,
which is the case when all large inputs have the same sign.
Another example is the case where the input exponents are
close to each other, i.e., all δi equal one.

The computation is accurate in the standard case n =
2 as well, because either both δi are one, or exactly one
significand remains (with at least ℓ significant bits).

A typical negative exception is the case n = 3
with |x2| ≪ |x1| and x3 = −x1, because then y = x2 is
much smaller than expected. On the other hand, two
standard floating-point additions would also yield the same
erroneous result y = (x1 + x2) + x3 = x1 + x3 = 0. This
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case is easily generalised to larger values of n: one group
of large numbers that sum to zero, and another group of
smaller numbers that will be neglected.

A way to mitigate this inaccuracy (at the obvious cost
of efficiency) is to not only compute y =

∑n
i=1 δi · xi, but

also y′ =
∑n

i=1(1− δi) · xi in a similar way, and add those
together. Another way would be to increase λ, or use
the superaccumulator of Blanton et al. (2023). A general
measure to increase accuracy is to add up all positive, and
all negative numbers, separately.

2.4 Security

We implemented our protocol with MPyC, which uses
Shamir secret sharing, and used standard building blocks
from de Hoogh (2012) that are available in the platform.
MPyC tolerates a dishonest minority of up to t, 0 ≤
t < η/2, parties out of the total number η of parties
(Schoenmakers, 2018). Therefore, it automatically follows
that our protocols (see Subsection 2.2 and Section 3) are
secure in the same security model.

The only exception might be step 2 of the bit length
protocol (see Subsection 3.1), where an intermediate value
c is revealed. In this step, standard additive blinding is used,
which is secure because the random number r has κ (the
statistical security parameter) more bits than the secret value
x. All other steps consist of standard computations with
secret sharings without additionally revealing intermediate
results.

Our protocol is described by standard building
blocks that are available in most MPC platforms (see
Subsection 4.4). When implemented in a different platform
than MPyC, however, our protocol would inherit the
security model of the other platform.

2.5 Multiple multiplications

We designed an efficient protocol for adding multiple
floating points. This is the main bottle neck of secure
floating points, because the sum needs to be normalised by
means of an expensive bit length protocol.

There are two reasons why combining n multiplications
is less attractive:

1 It requires less effort to normalise the product of n
significands, because the range of the product is
smaller: 2n(ℓ−1) ≤ |

∏n
i=1 si| < 2nℓ. The bit length

protocol can be adjusted to work with lower bounds.

2 With growing n, the size of the product of the
significands increases more than its sum, and
computing with larger (secret-shared) numbers is less
efficient.

Nevertheless, we designed a similar protocol for multiple
multiplications, which is available in our open source
library. For n = 128 the execution time was reduced by a
factor 4.7, compared to factor 10 with the same number of
additions (TNO, 2024).

3 Increasing efficiency

We assume standard solutions for the less advanced steps,
like secure comparison (step 2a) and secure maximum (step
1). In this section we describe efficient implementations
for the complicated steps of the multiple addition protocol.
In particular, Subsection 3.1 shows a new way to securely
compute the bit length of an integer (step 4a), the most
intensive step of the protocol as confirmed by Catrina
(2020b). In Subsection 3.2, the integer division from step
4b is worked out to a less intensive computation. And
finally, the exponentiations from step 2b are computed in
an alternative, more efficient way in Subsection 3.3.

By avoiding secure bit decomposition in all steps,
we reduced the multiple addition protocol to linear
complexity (with small constant) and a constant number
of communication rounds. See Section 4 for performance
graphs.

3.1 Bit length

Computing the bit length is the problem of determining
⟨m⟩, such that 2m−1 ≤ x < 2m, given secret-sharing ⟨x⟩
of integer x, 0 ≤ x < 2M . Here M is a known upper
bound, e.g., M = 2λ in the multiple addition protocol. This
operation is frequently used in secure floating points and
often forms the bottle neck of performance. It is used
for rescaling the significand after addition, or assuring the
proper range for Padé polynomial approximations.

Previous solutions tackled this problem (known, e.g.,
as ‘most significant non-zero bit (MSNZB)’ in Rathee
et al., 2022) by computing the bits of x, leading to a
complexity of O(M log2 M) secure multiplications and
O(log2 M) communication rounds (de Hoogh, 2012). Bit
decomposition is called Zn-to-Z2 in Liu et al. (2013), and
can be done in constant rounds, but for practical values
of M a logarithmic round solution is preferred (de Hoogh,
2012). We found a new solution that, as far as we are
aware, is the first to take only O(M) secure multiplications
within constant rounds, thereby significantly improving the
efficiency of secure floating points.

The main idea is to additively blind ⟨x⟩ with a
large random number ⟨r⟩, reveal c = x+ r, and study
the right most (least significant) M + 1 (secret) bits
(c⊕ r)M . . . (c⊕ r)0 of exclusive-or sequence ⟨c⊕ r⟩. If
there were no carry-overs in the bitwise addition of
x and the right most M + 1 bits of r, then these
bits would equal the bits of x, and the left most
1 would be at position m− 1. The latter still holds,
as long as there was no carry-over at specifically
position m− 1. If there was a carry-over at position
m− 1, then the left most 1 of (c⊕ r)M . . . (c⊕ r)0 would
end up beyond position m− 1.

By analysing the bitwise addition, we are able to trace
back the propagation of a potential carry-over at position
m− 1 and obtain a sequence t, such that the position of the
left most 1 of tM . . . t0 is (almost) equal to the position of
the left most 1 of x, i.e., m− 1. In Figure 1 an example
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is depicted to support the reader while reading the next
paragraphs and understanding the protocol and its variables.

Let αi be the carry-over at position i, 0 ≤ i ≤M , then

ci = xi ⊕ ri ⊕ αi−1, and
αi = (xi + ri + αi−1 > 1).

Suppose the carry-over at index m− 1 propagated as far as
index µ, then αi = 0, i ≥ µ, and αi = 1, m− 1 ≤ i < µ.
We consider two cases:

• For m ≤ i < µ, we have xi = 0, such that
ci ⊕ ri = αi−1 = 1, and ri should be 1 to set αi = 1.

• For i = µ, we also have ci ⊕ ri = αi−1 = 1, but now
ri = 0 to avoid setting αµ.

This means we can distinguish between m ≤ i < µ and i =
µ with the pair (ci, ri), which equals (0, 1) in the first case,
and (1, 0) in the second case. These (0, 1) cases for 0 ≤
i ≤M are circled in Table 1.

Furthermore, we can trace back the carry-over
propagation to position m by setting ti = 0 (these are the
framed zeros 0 of t in Table 1) whenever (ci−1, ri−1) =
(0, 1), and setting ti = (c⊕ r)i, otherwise, for 1 ≤ i ≤M .
This works as long as (ci−1, ri−1) ̸= (0, 1) for i = m− 1,
because we don’t want to incorrectly set tm−1 to zero.
For i = m− 1 we have xm−1 = 1 and cm−1 ⊕ rm−1 =
1⊕ αm−2. We distinguish two cases:

• If αm−2 = 1, then cm−1 ⊕ rm−1 = 0, such that tm
will not be set to zero.

• If αm−2 = 0, then cm−1 ⊕ rm−1 = 1. If
cm−2 ⊕ rm−2 = 1 (and tm−1 might be set to zero),
then xm−2 ⊕ αm−3 = 1. Given that αm−2 is not set,
we derive rm−2 = 0 and safely conclude that tm−1

will not be set to zero.

Therefore, the back propagation of the carry-over will stop
at either index m or m− 1. When we have computed the
index m′ of the left most 1 of t (the index is one less than
the bit length), we know that either m′ = m, or m′ = m−
1. We can distinguish both cases by the secure comparison
⟨δ⟩ ← ⟨(x < 2m

′
)⟩ and obtain ⟨m⟩ ← ⟨m′⟩ − ⟨δ⟩+ 1. In

the example of Table 1, we have m′ = 4 (because t4 = 1
and t5 = t6 = 0) and x = 26, such that δ = (26 < 24) = 0.

Given sequence t, we can compute the index m′ of
the left most 1 by adding the bits of the prefix-or p of
t, which are defined as pi = t0 ∨ t1 ∨ . . . ∨ ti, 0 ≤ i ≤M .
This entire analysis leads to the following protocol:

1 Compute ⟨r⟩ of random number r, consisting of at
least κ more bits than x, κ being the statistical
security parameter:

a Securely generate secret sharings of M + 1
random bits ⟨ri⟩, 0 ≤ i ≤M , and a secret-sharing
of a random number r′ of at least κ bits.

b Compute the random number
⟨r⟩ ← 2M+1 · ⟨r′⟩+

∑M
i=0⟨ri⟩ · 2i.

2 Compute and reveal ⟨c⟩ ← ⟨x⟩+ ⟨r⟩.

3 Locally compute the secret sequence ⟨c⊕ r⟩ for the
first M + 1 bits:

For i← 0 to M do:

If ci = 0 then ⟨(c⊕ r)i⟩ ← ⟨ri⟩,

else ⟨(c⊕ r)i⟩ ← 1− ⟨ri⟩.

4 Trace back the carry-over in one round, obtaining
sequence ⟨t⟩:

a ⟨t0⟩ ← ⟨(c⊕ r)0⟩.

b For i← 1 to M do:

if ci−1 = 0 then ⟨ti⟩ ← (1− ⟨ri−1⟩) · ⟨(c⊕ r)i⟩

else ⟨ti⟩ ← ⟨(c⊕ r)i⟩.

5 Compute the prefix-or ⟨p⟩ of ⟨t⟩:

a Compute ⟨yi⟩ ← 1 + ⟨ti⟩, 0 ≤ i ≤M .

b Compute ⟨zi⟩ ←
∏M

j=i⟨yj⟩, 0 ≤ i ≤M with one
fan-in multiplication.

c Compute ⟨pi⟩ ← 1− ⟨(zi mod 2)⟩, 0 ≤ i ≤M .

6 Given p, compute first guess ⟨m′⟩ ← −1 +
∑M

i=0⟨pi⟩
and simultaneously

⟨2m′⟩ ← ⟨p0⟩+
∑M

i=1 2
i−1 · ⟨pi⟩.

7 Run the secure comparison ⟨δ⟩ ← ⟨(x < 2m
′
)⟩.

8 Compute ⟨m⟩ ← ⟨m′⟩ − ⟨δ⟩+ 1.

The protocol is also correct for x = 0, because then p0 = 0,
m′ = −1, and 2m

′
= 0, such that δ = 0 and m = 0. Table 1

shows a small example to illustrate the role of all variables.

Table 1 Example for bit length protocol

x = 26 = 11010 input

6 5 4 3 2 1 0 index M . . . 0

0 0 1 1 0 1 0 x

1 0 1⃝ 0 0 1⃝ 1 r

1 1 0⃝ 1 1 0⃝ 1 c = x+ r

0 0 1 0 0 1 0 carry-over α
0 1 1 1 1 1 0 c⊕ r

0 0 1 1 0 1 0 t (traced back)
0 0 1 1 1 1 1 prefix-or p

m = m′ − (x < 2m
′
) + 1 = 4− 0 + 1 = 5 output

We presented a constant-round solution from (de Hoogh,
2012; PreOrC) for the prefix-or in step 5, but other
approaches are known. It uses a fan-in multiplication to
simultaneously compute the products zi, 0 ≤ i ≤M , in
two communication rounds (de Hoogh, 2012; KMulC). In
Schoenmakers and Tuyls (2012), an efficient solution can
be found to compute the parity bits zi mod 2, known as
least significant bit gate.
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Similarly as ⟨2m′⟩ in step 6, we can use the prefix-or ⟨p⟩
to compute ⟨2−m⟩ without additional secure multiplications,
which value is needed elsewhere (see next subsection)
in the (multiple) addition protocol: ⟨2−m′⟩ ← 2− ⟨p0⟩ −∑M

i=1 2
−i⟨pi⟩ and ⟨2−m⟩ ← (1 + ⟨δ⟩) · ⟨2−m′⟩ · 2−1.

3.2 Normalisation

We show an efficient implementation for the secure integer
division sy ← T ÷ 2m−ℓ of step 4b. The first idea is to
transform the secret divisor to a public divisor, which leads
to a more efficient operation:

T ÷ 2m−ℓ = (T · (22λ · 2−m))÷ 22λ−ℓ.

Assuming that 2−m has been computed simultaneously in
step 4a, we can compute the integer 22λ−m and multiply it
with T , resulting in an integer of at most 2λ bits (because
|T | < 2m). Subsequently, a division with public divisor
22λ−ℓ will yield sy .

Catrina (2020a) uses a different, less efficient approach:
he precomputes T ÷ 2m−ℓ for all possible values of m
(PreDiv2m) to ensure a fast online phase.

The second idea is to further relax the division with
public divisor, also called truncation, to not only improve
efficiency, but also increase accuracy. To explain that, we
elaborate on the truncation operation, which is often needed
to remove the least significant bits of an integer:

Trunc(⟨x⟩, d) = ⟨⌊x · 2−d⌋⟩,

where d is a public positive integer. The protocol for
truncation typically starts by blinding x with a large secret
number r: ⟨c⟩ = ⟨x⟩+ ⟨r⟩, revealing c, and then computing

Trunc(⟨x⟩, d) = (c÷ 2d)− ⟨r ÷ 2d⟩ − ⟨δ⟩,

where δ is the binary outcome of the secure comparison
(c mod 2d < ⟨r mod 2d⟩) (Veugen, 2014). As the
computation of ⟨δ⟩ forms the computational bottleneck
of the truncation protocol, one could easily accelerate it
by skipping the secure comparison at the cost of a small
inaccuracy (Veugen, 2014). This new truncation is also
known as probabilistic rounding (TruncPr) (Schoenmakers,
2018) and Div2mP (Catrina, 2020a).

However, in our goal of removing the d least significant
bits, TruncPr will not decrease, but improve accuracy,
because TruncPr(x, d) will on average produce a better
integer approximation of x · 2−d than Trunc(x, d). The
reason is that when x mod 2d is large, then the addition of r
is likely to cause a carry-over modulo 2d, in which case δ =
1. Removing δ = 1 means that x · 2−d is rounded upwards
instead of downwards, which is correct in case x mod 2d

is large. It is less likely that the rounding is incorrectly
performed upwards in case x mod 2d is small.

The only problem with TruncPr is that there is a
slight probability of overflow, which will lead to sy =
2ℓ instead of sy = 2ℓ − 1. If m ≤ ℓ, then the division by
2m−ℓ is actually a multiplication and the outcome will
be exact. Only if m > ℓ, overflow might happen. This

effect will probably fade out during multiple floating-point
computations, and could be easily eliminated by using a
secure equality (⟨sy⟩ ← ⟨sy⟩ − ⟨(sy = 2ℓ)⟩), which takes
less effort than a secure comparison.

As a side note, probabilistic rounding can also be used
during secure multiplication of floating points, without the
risk of overflow, because then |s1 · s2| ≤ (2ℓ − 1)2 = 22ℓ −
2ℓ+1 + 1, so |s1 · s2| ÷ 2ℓ < 2ℓ − 1.

3.3 Avoiding secure exponentiation

In step 2b of the multiple addition protocol (see
Subsection 2.2) we need to compute ⟨2ei−emax+λ⟩ for each
term i. The straightforward approach is to use a secure
exponentiation protocol. Computing ⟨2x⟩ securely for secret
integer ⟨x⟩ is usually done through bit decomposition,
because 2x =

∏
i(2

2i · xi + 1− xi), given the bits x =∑
i 2

i · xi, which has a O(ℓ log ℓ) complexity (de Hoogh,
2012; Abdelraham and Smart, 2019).

However, in our multiple addition protocol, we only
need to compute ⟨2x⟩ for x ∈ {0, . . . , λ}, i.e., the
inputs with δi = 1. An alternative way of computing
these is to generate a Lagrange polynomial q(x) of
degree λ+ 1 such that q(x) = 2x for x ∈ {0, . . . , λ}.
Computing ⟨2ei−emax+λ⟩ = ⟨q(ei − emax + λ)⟩ will take λ
multiplications and λ communication rounds using Horner’s
rule, or one fan-in multiplication (to compute ⟨(ei − emax +
λ)j⟩ for all j) in one round.

By avoiding the bit decomposition we reduced the
computational complexity from O(ℓ log ℓ) down to O(ℓ).
Catrina (2020a) uses the Lagrange polynomials qi(x) =
(x = i), i ∈ {0, . . . , λ} together with the precomputed
divisions (see Subsection 3.2), which also avoids secure
exponentiations, but in a slightly less efficient way.

4 Performance

We implemented secure floating points, including the
multiple addition protocol, with the MPyC framework, and
released it open source (TNO, 2024). We also implemented
a variant (see the Appendix) that additionally stores 2e mod
22λ to accelerate secure floating-point operations.

We used secure integer type SecInt(2λ) from MPyC for
the significand (and SecInt(k + 1) for the exponent), which
automatically assigns a (2λ+ κ)-bit Shamir secret-sharing
modulus to the significand.

The number of secure multiplications determines
both computational (execution time) and communication
complexity (amount of communication), because secure
additions can be performed without communication. The
network latency is mostly determined by the number of
communication rounds.

4.1 Multiple additions

We ran the multiple addition protocol, as presented here,
and measured execution times on a single computer (with
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three parties) for n = 2 up to n = 128 addends (with
increasing secret-sharing modulus because λ increases with
n), and compared it with n single additions (our multiple
addition protocol with two addends and a (2(ℓ+ 1) + κ)-bit
modulus).

Figure 1 Multiple additions (see online version for colours)

Figure 1 shows the clear gain of combining additions,
caused by eliminating n− 1 bit length computations. The
execution time was reduced by a factor that increases in n
up to factor 13 with n = 1,024 combined additions.

Because we used a single computer to conduct our
experiments, communication has been neglected. We expect
the advantage of combined addition to be actually larger,
because the single addition approach has substantially more
communication rounds.

4.2 Bit length protocol

Previous solutions (see Subsection 3.1) use a bit
decomposition protocol to determine the bit length. The bit
decomposition protocol replaces the first four steps of our
bit length protocol and produces a similar sequence t, in
their case exactly representing the input bits. The fifth step
is the same for everyone, and computes the prefix-or p of
sequence t.

Logarithmic and constant-round solutions exist for
both bit decomposition and prefix-or, the constant-round
ones requiring more secure multiplications. Therefore, for
smaller input sizes, it might be interesting to use a solution
with logarithmic instead of constant communication rounds.
To clearly distinguish the constant communication round
solution from the logarithmic one, we counted the number
of secure multiplications and the number of communication
rounds. We used the PhD thesis of de Hoogh (2012) for
this, which describes the bit decomposition (BitDec) and
prefix-or (PreOr) protocols that are used in MPyC.

Figure 2 Constant round bit length protocol
(see online version for colours)

The gain of the new bit length protocol is shown in Figure 2
(constant rounds) and Figure 3 (logarithmic rounds), where
we used constant-round and logarithmic-round solutions
respectively for both bit decomposition and prefix-or.
The number of secure multiplications (invocations) of our
protocol is clearly smaller in the case of constant rounds,
going from roughly 44.5 ·M to 10.5 ·M invocations, and
is more or less equal for the logarithmic round protocols.

Figure 3 Logarithmic round bit length protocol
(see online version for colours)

The advantage of the new bit length protocol in the case of
logarithmic rounds becomes clear when counting the total
number of communication rounds, as depicted in Table 2.
The number of communication rounds is reduced with a
factor M/2, M being the maximal number of input bits.

Table 2 Number of communication rounds

Bit length protocol Constant Logarithmic rounds
rounds

Using bit dec. 15 2 + (1 +M/2) log2 M
This paper 10 7 + log2 M
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4.3 Normalisation and exponentiation

To show the gain of our other two improvements, namely
the use of TruncPr instead of Trunc, and replacing of
exponentiation by polynomial evaluation, we counted the
number of secure multiplications and the number of
communication rounds, as before, using de Hoogh (2012).

As depicted in Table 3, the alternative truncation
protocol saves a factor 4 in multiplications, and halves the
number of communication rounds.

Table 3 Complexity of truncating d bits

Protocol Secure multiplications rounds

Trunc 4d+ 2 4
TruncPr d+ 1 2

The main difference between a secure exponentiation
and a secure polynomial evaluation is the additional
bit decomposition protocol for the exponentiation. Both
solutions need a fan-in multiplication (KMul) to either
multiply the ℓ bitwise exponents, or compute the exponents
of the λ = ℓ+ ⌈log2 n⌉ terms.

Table 4 Complexity of computing exponents

Protocol Secure Rounds
multiplications

Exponentiation 3ℓ+ ℓ log2 ℓ log2 ℓ+ 14

Polynomial evaluation 3(ℓ+ ⌈log2 n⌉)− 1 2

The results have been summarised in Table 4, and show
the clear advantage of polynomial evaluation, even for large
number n of addends.

4.4 Other platforms

We have shown several improvements for secure floating
points in MPC. Although implemented in MPyC, they apply
to other platforms as well. This holds for the multiple
addition approach, the improved bit length protocol,
the normalisation with public divisor and probabilistic
rounding, and the use of Lagrange interpolation to avoid
secure exponentiations.

Although the multiple addition (and multiplication)
approach is suitable for all MPC platforms, the specific
improvements work with secret sharing systems over a field
that have a head room to work with a statistical security
parameter, like SPDZ (Keller, 2020) and SCALE-MAMBA
(Abdelraham and Smart, 2019). The conversion with public
divisor and the Lagrange interpolation do not specifically
require a head room. Although garbled circuits work on the
bit level (Demnler et al., 2015), they can still profit from
combining multiple additions (and multiplications), but the
specific steps would be worked out differently.

4.5 Application

In general, floating points are preferred over fixed points,
in case computations have to be performed with both very

large and very small numbers, because of their accuracy. In
other situations where there is less variation in size, fixed
points will be the most efficient choice.

A typical application for floating points is the Cox
proportion hazard model that is used for, e.g., survival
analysis in the medical domain (Kamphorst et al., 2022).
During the iterative optimisation of the model parameters
β, variables Gn

r need to be computed, given by

Gn
r =

Z1
r e

βT ·Z1

+ . . .+ Zn
r e

βT ·Zn

eβT ·Z1 + . . .+ eβT ·Zn , (1)

where Zi
r is the value of covariate r for subject i

[Kamphorst et al., 2022, equation (7)]. They rewrote
equation (1) as a weighted covariate Gn

r =
∑n

i=1 ηi · Zi
r,

where

ηi = (eβ
T ·(Z1−Zi) + . . .+ eβ

T ·(Zn−Zi))−1, (2)

such that the computations could be performed with secure
fixed points with modest length, leading to a reasonably
accurate model, as illustrated in Figure 4.

Figure 4 Accuracy in Cox proportion hazard model
(see online version for colours)

Figure 5 Execution time in Cox proportion hazard model
(see online version for colours)

However, when using our secure floating point approach,
the computation of equation (1) would have been
straightforward, leading to more accurate solutions and
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requiring less computation time. The different execution
times have been depicted in Figure 5.

For these small experiments, we randomly sampled
realistic values for the model parameters and covariates, and
used fixed-points with 32 bits and scaling factor 2−16, and
similar floating-points with a significand and exponent of
16 bits. Although not all terms are positive, our multiple
addition protocol achieved much better accuracy, and was
faster than using equation (2) with fixed-points.

An important application of our new bit length
protocol is the use of Padé polynomials in secure
floating point arithmetic (Hart, 1978). These polynomials
provide numerical approximations of various mathematical
functions like logarithm, sine, exponentiation, etc., which
are efficiently computable in the encrypted domain
(Thissen, 2019). Since the approximations are valid within
small intervals, the inputs need to be scaled beforehand,
which requires computing the bit length of the inputs.

5 Conclusions and future research

We were able to significantly speed up the bottleneck of
secure floating points by presenting a new protocol that
combines multiple additions, which can be used in many
MPC platforms. A typical application for our multiple
addition protocol was given. We further accelerated it by
eliminating secure division, and reducing exponentiations to
a two-round evaluation of a Lagrange polynomial.

Furthermore, we reduced the complexity of the bit
length protocol, and by that also of the entire addition
protocol, to linear time with constant rounds. The
new bit length protocol reduces the number of secure
multiplications with a factor 4 (for the constant-round
solution), or the number of communication rounds with a
factor M/2 (for the logarithmic-round solution).

Accuracy requirements of (secure) floating points were
clearly defined, and the accuracy of the multiple addition
protocol was analysed. A different truncation protocol was
suggested to improve both accuracy and efficiency.

The new secure floating-point framework, available
as open source software, was tested and improvements
were quantified. The more additions n were combined,
the larger the relative gain, up to a factor 13 with n =
1024, which would have been larger if we had accounted
for communication time. Similar to combining multiple
additions, we also combined multiple floating-point
multiplications, although a larger secret-sharing modulus
was needed.

5.1 Future research

Instead of the common attempt to reduce the number of
multiplications in a computation, one might develop new
algorithms that minimise the number of additions, because
these form the bottleneck in floating point arithmetic with
MPC.

Furthermore, there is a trade-off between significand
size and the number of terms, which can be explored.
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Appendix

Storing exponents

In our source code (TNO, 2024), implemented within
MPyC, we added the option of storing exponents to
accelerate secure floating-point operations. The idea is that
for each floating point x, not only significand sx (a 2λ-bit
SecInt) and exponent ex (a k + 1-bit SecInt) should be
stored, but also the exponentiation 2ex mod 22λ.

During the addition of secure floating points, this
avoids computing the 2ei−emax from scratch (see step 2b in
Subsection 2.2). Given that ey is eventually set to emax −
λ+m− ℓ, the new exponentiation 2ey is easily computed
with two secure multiplications.

When multiplying two secure floating points, the
precomputed exponentiations are not really beneficial, but
can be easily updated for the product output. However,
when at some point secure floating points need to be
converted to secure integers, they do reduce computational
time.


