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Abstract: Traditional image style transfer methods cannot preserve the content 
and structural features of the original image while maintaining a specific style. 
To preserve the semantic information of the original image, a multi-scale  
cycle-consistency generative adversarial network model is developed. This 
model can enable innovative style transformations while maintaining the 
original artistic characteristics of illustrations. This model can better capture 
and integrate detailed features of different styles by performing style transfer at 
different resolution levels. The results showed that the proposed model 
improved the inception score by 1.755 and 0.122 respectively compared to the 
other two methods, indicating a significant improvement in image generation 
quality and superiority in image generation. When the low-level texture feature 
loss, adversarial loss, and high-level concept feature loss were removed, the 
Frechet inception distance value significantly increased from 73.72 to 102.28, 
an increase of approximately 38.74%, emphasising the role of these 
components in the model. The model proposed in this study achieves diverse 
style transfer and can maintain high image quality when generating stylised 
images, providing artists and designers with greater creative inspiration and 
choice space. 
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1 Introduction 

In the digital art and image processing, style transfer technology is an innovative 
approach that allows artists and designers to give their original image content a new 
visual style while preserving it. This technology not only enriches the forms of artistic 
expression, but also provides new possibilities for image editing and visual effects 
production (Chen et al., 2024; Yan et al., 2024). As the digital media and online culture 
develop, the role of illustration art in visual communication and cultural expression is 
increasingly prominent. Through style transfer techniques, more possibilities can be 
provided for illustration creation, allowing artists to explore and experiment with 
different visual languages while maintaining their personal style. Although various style 
transfer methods have been proposed, there are still certain limitations when dealing with 
specific types of images such as illustrations, comics, etc. (Han et al., 2024; Wang et al., 
2024). For example, generative adversarial networks (GANs) introduced a cyclic 
consistency loss function on the basis of unidirectional mapping, which to some extent 
avoids model collapse through bidirectional mapping. However, instability may 
sometimes occur during training (Azni et al., 2023). Moreover, traditional GANs may 
encounter problems such as loss of details or inconsistent styles when processing 
complex images (Nammee, 2023). As a cutting-edge image processing technology,  
cycle-consistent generative adversarial network (CycleGAN) can achieve high-quality 
image style transfer without the need for a large amount of paired data, which makes it 
highly applicable in artistic creation and commercial design. 

Image style transfer and editing techniques have broad application prospects in 
practical applications, including game development, film production, virtual reality, and 
other fields. Satchidanandam et al. (2023) combined the subjective loss algorithm of deep 
neural networks with semantic segmentation technology to enhance the aesthetic 
correctness of style transfer, and integrated it into GAN to achieve automatic 
segmentation for precise understanding of image meaning. Experiments showed that this 
method significantly outperformed traditional methods in terms of visual accuracy. Wang 
(2023) used neural networks to extract style and content, and achieved ethnic clothing 
style transfer through image reconstruction techniques. The shoulder affine 
transformation in colour space constrained the transformation of input and output images, 
effectively suppressing image distortion. Gao et al. (2021) proposed a wallpaper texture 
generation and style transfer framework grounded on multi-label semantics and GAN. 
This method evaluated the authenticity of generated wallpapers and the degree to which 
they conform to specified attributes by training a perception model, and generated 
wallpaper images with specific styles using multi-label semantics as conditional 
variables. The experiment findings confirmed that this method could generate wallpaper 
textures that conform to human aesthetics and have artistic features. Richter et al. (2022) 
developed a new image patch sampling strategy to address the differences in scene layout 
distribution in existing datasets, and introduced architecture improvements for multiple 
deep network modules. The experiment outcomes denoted that compared with existing 
image to image translation methods and other baselines, this method has made significant 
progress in stability and practicality. Durrant (2022) developed a deep learning model, 
designated Prot2Prot, which is capable of rapidly emulating authentic visualisation styles 
and facilitating the generation of molecular representations that are readily 
comprehensible. Compared with traditional 3D graphics programs, Prot2Prot could create 
images in a short amount of time and even run efficiently in web browsers. 
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Chen et al. (2024) put forth a system for transforming facial photographs into 
portraits with a distinctive charcoal sketch style. The system employed CycleGAN to 
generate paired examples of Pix2Pix, thereby enabling the conversion of photos into 
comics. The findings indicated that the images generated by the system could effectively 
reproduce the comedic style, especially in the facial area. To raise the quality of 
generated images, Yan et al. (2024) proposed an SAR image ship wake data enhancement 
method based on improved CycleGAN. To resolve the issue of incomplete data in the 
generated images at the microscopic level, a least squares loss was utilised. Moreover, a 
convolutional block attention module was integrated into the decoder of the generator 
with the objective of improving the quality of the generated images. Sugiyama and 
Aikawa (2024) proposed a method for detecting defects by utilising the differences 
between the pseudo images generated by CycleGAN and the original images. Compared 
with traditional binary detection methods, this method could detect defects independently 
of the shooting environment, greatly reducing the risk of ignoring defects. 

In summary, the existing models are limited in practical applications and difficult to 
widely apply to various style transfer tasks. The style transfer model based on GAN is 
prone to pattern collapse and overfitting, and the generator may ‘remember’ a few style 
images, resulting in copying these images during generation. Despite the fact that 
numerous models have been developed to achieve multi-domain style transfer, the 
domain of style transfer remains constrained, which makes it challenging to achieve more 
detailed transformations. In response to the above issues, an innovative illustration image 
style transfer model based on multi-scale CycleGAN is proposed. By using an improved 
generator to transform illustration images from one domain to another, the discriminator 
determines the authenticity of the illustration images. Then, by introducing a cyclic 
consistency loss function, it ensures that the transformed illustration images remain 
consistent in content without relying on paired data. 

The main contributions of this research include: 

1 a multi-scale CycleGan-based illustration image style transfer model is proposed, 
which can achieve high-quality style transfer while maintaining the image content 
structure 

2 by introducing multi-scale generator and discriminator, the training stability and 
image generation quality of the model are significantly improved 

3 the superior performance of the model on multiple datasets is verified through 
experiments, especially the significant improvement in image similarity and style 
retention. 

2 Methods and materials 

2.1 Feature extraction of illustration images 

In transferring illustration style information, traditional single channel feature 
transformation paths usually only focus on single dimensional features such as colour, 
texture, or shape, while ignoring the interaction between these features and the overall 
artistic effect. However, in the content and style encoding stage, if effective semantic and 
style associations are not established, fusion errors may occur in the decoding stage, 
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which cannot capture the deep style features in the illustration, such as complex textures 
and details, resulting in inaccurate transmission of style features (Yan et al., 2024). The 
domain sense indicator refers to the quantitative index used to measure whether the 
image generated by the model in the target domain (TD) (such as different illustration 
styles) conforms to the semantic and artistic characteristics of the domain in the task of 
cross-domain image style transfer. It can help the network capture the attributes of the 
domain from a given reference image, and then adaptively adjust the degree of stylisation 
and structural preservation based on these attributes. This design enables DSTN to 
transition between artistic style and photo realistic style, generating high-quality stylised 
results regardless of the target field. Therefore, the study introduces domain sensitive 
indicators into the network structure of illustration image feature extraction, as shown in 
Figure 1. 

Figure 1 Illustration image feature extraction network structure (see online version for colours) 
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In the style information encoding stage, the feature maps output by each layer of the 
encoder are processed through a 3 ∗ 3 convolutional layer and wavelet pooling operation 
is introduced to form a channel set feature map. The purpose of this step is to combine 
style information with content features so that both the content and style of the image can 
be considered in subsequent processing. The feature map DI

iW  output by each layer of 
the encoder can be expressed by equation (1). 

( )( )( )DI
i i iiW λ FC Gram W W ′= ⊗   (1) 

In equation (1), Wi refers to the feature map extracted from the ith layer; iW ′  denotes the 
feature map processed by the channel attention mechanism; ⊗ stands for channel 
connection operator, used to integrate information between channels; the fully connected 
layers FC and λ with weight sharing are used to further process these features. The style 
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of illustration images often exhibits distinct regional features, indicating that different 
parts of the image may display vastly different style information. To preserve this 
regional style feature during style transfer, the model used must be able to recognise and 
process the information of these style domains separately (Sugiyama and Aikawa, 2024; 
Zhao et al., 2021). This paper studies the weighted fusion of input features through the 
attention mechanism, so as to enhance the feature representation of important regions. 
The attention mechanism computes the weight A for each spatial position through two 
convolutional layers and an activation function, as shown in equation (2). 

( )( )2 1Re LU

fused

A σ W W F
F F A

 =


=

 


 (2) 

In equation (2), W1 is the weight matrix of the first convolution layer, and W2 is the 
weight matrix of the second convolution layer. σ is the sigmoid activation function, 
which normalises the output to the [0, 1] range, representing the attention weight for each 
spatial location.   means multiplication-by-element. The calculated attention weight A 
is used to weight the input feature F, and the final fusion feature Ffused is the product of 
the input feature and the attention weight, which emphasises the features of important 
regions. 

Figure 2 Self-attention semantic feature matching channel (see online version for colours) 
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The model for transferring illustration styles should not only maintain the overall style 
(i.e., the unified style of the entire image), but also maintain the local style (i.e., the style 
of specific areas of the image). This requires the model to accurately process style 
features to ensure that each region in the final generated image can accurately display its 
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expected style. To achieve adaptive fusion of style features and content features, a self 
attention semantic feature matching channel grounded on the self-attention factorised 
instance normalisation (SAVIN) module is proposed in the study, as shown in Figure 2. 
This self attention mechanism enables the model to simultaneously consider global 
information when processing features, thereby more effectively understanding the overall 
context of the image (Yang et al., 2021; Gupta et al., 2019; Kim et al., 2023). 

The study takes the content feature dW ′  and style feature sW ′  as inputs, and learns the 
normalisation parameters bs and cs by identifying the semantic correspondence and key 
features between dW ′  and .sW ′  The description of the conversion process can be 
represented by equation (3). 

( )( )_ _, ,d s s d s d s s d sW W c a W W a b′ ′ = ⊗ + +  (3) 

In equation (3), ad_s and as_d are used to capture the semantic correspondence between 
dW ′  and sW ′  before style matching. The calculation methods for bs and cs are shown in 

equation (4). 

( )( )
( )( )

1 1

1 1

,

,

s γ c s

s β c s

c ReLU conv SA W W

b ReLU conv SA W W

×

×

 = ⊗

 = ⊗

 (4) 

In equation (4), SAγ and SAβ enhance feature representation through self attention 
mechanisms, thereby enabling the model to direct its focus towards the key elements of 
the image, thereby raising the quality and accuracy of style transfer. In this way, the 
model can not only learn the correspondence between content and style, but also 
effectively transfer style features to the content image while maintaining the content 
structure. 

2.2 Construction of illustration style transfer model based on multi-scale 
CycleGAN 

Traditional image transformation models typically require a large amount of paired 
training data, while CycleGAN only requires two sets of images from different domains, 
without one-to-one correspondence. By introducing cyclic consistency loss, CycleGAN 
can learn more stable and meaningful mapping relationships. However, traditional 
CycleGAN may lose some detail information when dealing with image style transfer. To 
address this issue, a multi-scale CycleGAN model is raised, which can better preserve the 
detailed information of images by learning their content and style features at different 
scales. The generator framework of multi-scale CycleGAN is denoted in Figure 3. 

In Figure 3, Real_X and Real_Y respectively represent real image instances from the 
image distribution domain X and the illustration image distribution domain Y. GXY is a 
generator network responsible for converting images from the X domain to the Y domain, 
while GYX transfers images from the Y domain to the X domain. Ystructure is an image 
generated by GXY grounded on the probability distribution of the Y domain. Ytexture is a 
single channel grayscale image obtained by applying function transformation to Ystructure, 
aimed at extracting texture features of the image. Yimpression applies Gaussian blur 
technique to process Ystructure and generate blurred images, aiming to capture the overall 
conceptual information of the image while maintaining smooth transitions of edges and 
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eliminating texture and details of the image. DYT, DYS and DYI are three discriminative 
networks used to evaluate the underlying texture features, adversarial loss, and high-level 
conceptual features of images, respectively. 

Figure 3 Schematic diagram of the generator structure (see online version for colours) 
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The effectiveness of network structure depends on the careful design of the loss function. 
A multi-scale adversarial loss function L was developed, which consists of three parts: 
the low-level texture feature loss ,textureYL  adversarial loss ,structureYL  and high-level 
conceptual feature loss impressionYL  of the image, corresponding to the fitting degree of the 
generated image in the TD at three different semantic levels. Texture loss focuses on the 
high-frequency texture features generated during the unidirectional mapping process 
from the source domain to the TD, without involving other factors such as colour or 
brightness of the image. The specific expression of the loss function is shown in  
equation (5). 

[ ] ( )( )( )( ) ( )ln ( ) ln 1 ( )texture data y data xY y P YT x P YT XYE D y E D K GL x∼ ∼  = + −   (5) 

In equation (5), x is the source domain image, y is the TD image, and ( )data xx PE ∼  is the data 
distribution. K represents a function processing step that does not include a neural 
network. Similar to the loss of low-level texture features, the design of high-level concept 
loss focuses on the colour composition and surface features of illustration images. The 
specific expression for this loss is shown in equation (6). 

[ ] ( )( )( )( ) ( )ln ( ) ln 1 ( )impression data y data xY y P YI x P YI XYL E D y E D V G x∼ ∼  = + −   (6) 

In equation (6), V refers to the function that applies Gaussian blur processing to the 
generated image. The structural loss of the intermediate layer adopts the adversarial loss 
in GAN, and its specific loss expression is shown in equation (7). 
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[ ] ( )( )( ) ( )ln ( ) ln 1 ( )structure data y data xY y P YS x P YS XYL E D y E D G x∼ ∼  = + −   (7) 

The goal of the research is to optimise the mapping process from the source domain to 
the TD while reducing the mapping strength from the TD to the source domain. 
Therefore, for images in the TD, the study adopted the multi-scale adversarial loss 
mentioned above to replace the adversarial loss in the traditional CycleGAN model, to 
guide the optimisation process of the network more strictly. An adaptive style weighting 
mechanism is also introduced to dynamically adjust the weight of style loss according to 
the complexity of style images to ensure that style features are not diluted. In the concrete 
implementation, the research uses the gradient information of style image to measure its 
complexity and dynamically adjusts the weight of style loss. The calculation formula is 
shown in equation (8). 

( ) ( ) ( )
texture structure impressionY Y

l l l
texture structure impression YL λ λ λL L L+ +=  (8) 

In equation (8), ( ) ,l
textureλ  ( )l

structureλ  and ( )l
impressionλ  are the weights of texture feature loss, 

adversarial loss and high-level concept feature loss at layer l, respectively. In each 
iteration, the gradient information and complexity of the style image are recalculated, the 
style loss weight is dynamically adjusted, and the generated image is optimised. 

To enhance the generalisation ability of the network, it is necessary to consider the 
interaction between the extracted image features in the original network, which may 
make the network sensitive to external factors such as the dataset. The multi-scale 
CycleGAN introduces multi-scale generators, each responsible for converting images of 
different resolutions, as shown in Figure 4. These generators gradually convert low 
resolution images into high-resolution images through cascading, thereby achieving 
multi-scale image conversion. 

Figure 4 CycleGAN generator structure diagram (see online version for colours) 
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These images are then fed into the adaptive instance normalisation (Pix2Pix) structure for 
further feature extraction. Pix2Pix technology can transfer the style of one image to 
another, aligning two encoding layers that need to be fused by merging input features. 
The main merit of Pix2Pix is its ability to achieve arbitrary style transfer and reduce the 
number of parameters in the calculation process. The calculation process of Pix2Pix style 
transfer can be described by equation (9) given the feature vector x of the content image 
and the feature vector y of the style image. 
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( )( , ) ( ) ( )
( )

x μ xAdalN x y σ y μ y
σ x
− = + 

 
 (9) 

In equation (9), μ and σ represent the mean and standard deviation calculated for each 
batch of data. The structure and composition modules of the multi-scale CycleGAN 
discrimination network are shown in Figure 5. 

Figure 5 CycleGAN discriminator structure diagram (see online version for colours) 
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Corresponding to multi-scale generators, multi-scale discriminators also include multiple 
discriminators, each responsible for image discrimination of different resolutions. These 
discriminators work together to ensure accurate differentiation between real images and 
generated images at different scales. The discriminator part of the multi-scale CycleGAN 
extracts features from the input image through four convolutional layers and determines 
the authenticity of the input image through a one-dimensional output convolutional layer. 

To make the model easier to deploy on edge computing devices, some of the common 
convolutional modules in the model are replaced with deeply separable convolutions to 
reduce the amount of computation of the network parameters, resulting in a lighter model 
and faster detection. Compared with traditional convolution, depth-separable convolution 
has fewer parameters. Assuming that the size of the convolution kernel is h × w × c1 and 
has the convolution filling operation, the size of the feature graph H × W × c1 after 
traditional convolution is H × W × c2. Depth-separable convolution is a combination of 
deep convolution and point-by-point convolution. The depth separable convolution is 
responsible for filtering, its convolution kernel size is h × w × 1, and the deep 
convolution has c1 convolution nuclei acting on each channel. The point-by-point 
convolution is responsible for transforming the channel, and the size of the convolution 
kernel is 1 × 1 × c1. There are c2 convolution nuclei in the point convolution that act on 
the output feature map of the depth convolution. Therefore, the parameters of depth 
convolution PDepthwise and point convolution PPointwise are calculated as shown in  
equation (10). 

( )
1

1 2

( 1)
1 1

Depthwise

Pointwise

P h w c
P c c

= × × ×


= × × ×
 (10) 

The parameter calculation equation of depth-separable convolution PDepthwise separable is 
shown in equation (11). 
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1 1 2

2
1 2 2

1 1
( )

Depthwise separahle Depthwise Pointwise

Depthwise separable

P P P h w c c c
P
h w c c c h w

= + = × × + ×

 = + × × × ×

 (11) 

Depth-separable convolution decomposes traditional convolution, and its parameter 
calculation is one-tenth of that of traditional convolution. Some common convolutional 
modules in the network model are replaced by deep separable convolutional modules in 
the experiment, which significantly reduces the number of model parameters and the 
model detection delay. 

3 Results 

3.1 Performance analysis of multi-scale CycleGAN 

The experimental environment consisted of an Intel (R) Pentium (R) CPU with a main 
frequency of 3.60 GHz, 8 GB of memory, 500 GB of hard drive, a Windows 10 operating 
system host with 110 GB of memory, a 1 TB hard drive, and a 16 GB × 2 NVIDIA Tesla 
P100 graphics card. The experimental parameters: epoch was set to 200, optimiser was 
set to ADAM, and initial learning rate was set to 0.001. 

The ArtBench dataset was selected for the experiment. This dataset was a class 
balanced, high-quality, clean annotated, and standardised art generation dataset. The 
dataset was provided in three versions, each with a different image resolution. The 
resolution of the images was 32 × 32, 256 × 256, and the original image size. The three 
versions of the ArtBench-10 dataset were in CIFAR (32 × 32, tar archive), ImageFolder 
(256 × 256, folder), and LSUN (raw image size, LMDB file) formats, making it easy to 
use for different machine learning frameworks and image synthesis codebases. The study 
used Pillow in Python to apply augmentation operations to each image in the training 
dataset to generate new augmented samples. Even if the content and style images do not 
match semantically, a large number of training samples can be generated by combining 
different content and style images. For example, 50 content images can be combined with 
50 style images to produce 10,000 different stylised results. 

Figure 6 Accuracy comparison, (a) accuracy results of different models on the test set (b) 
accuracy results of different models on the training set (see online version for colours) 
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A comparative analysis was conducted on the performance of multi-scale CycleGAN, 
traditional CycleGAN, unsupervised image conversion generates adversarial networks 
(UIC-GAN) and deep convolutional GAN (DCGAN) using evaluation indicators such as 
accuracy, recall, and F1 score. From Figure 6(a), the accuracy results of the multi-scale 
CycleGAN on the three versions of the test set were 93.8%, 95.1%, and 94.6%. The 
proposed model had high accuracy and could effectively identify and classify samples. 
The results in Figure 6(b) also indicated that multi-scale CycleGAN had the highest 
accuracy on the training set. 

The results in Figure 7 indicated that the proposed algorithm performed well in terms 
of recall, especially on the test set. Its recall rate on the test set exceeded 90%, with the 
highest reaching 94.6%. This indicated that the model could effectively identify positive 
samples, demonstrating the advantage of the proposed algorithm in terms of recall rate 
compared to these two algorithms. 

Figure 7 Comparison of recall rates, (a) recall results of different models on the test set (b) recall 
results of different models on the training set (see online version for colours) 
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Figure 8 Comparison of F1 values, (a) training set (b) test set (see online version for colours) 
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Figure 8 shows that after 100 iterations on the test set, the F1 score of the proposed model 
converged to 97.6%. The F1 score is a statistical measure that represents the harmonic 
mean of two key metrics: accuracy and recall. It is a comprehensive indicator that 
assesses the overall accuracy and recall ability of a given model, making it a valuable 
metric for evaluating the performance of such models. Compared with the StyleGAN 
algorithm, the F1 score of the proposed model increased by 2.3%, indicating that on the 



   

 

   

   
 

   

   

 

   

   12 Y. Liang and Y. Yan    
 

    
 
 

   

   
 

   

   

 

   

       
 

test set, the model performed better in balancing accuracy and recall, and could more 
effectively identify samples while reducing false positives and false negatives. 

3.2 Analysis of the application effect of style transfer model in multi-scale 
CycleGAN 

The study validated the efficacy of the style transfer model for multi-scale CycleGAN 
using three indicators: peak signal-to-noise ratio (PSNR), Frechet inception distance 
(FID) and inception score (IS). PSNR is a critical indicator for measuring image quality, 
and the PSNR curves of the three models are shown in Figure 9. From Figure 9(a), the 
algorithm raised in the training set achieved a PSNR of 95.9 after 80 iterations.  
UIC-GAN reached the second highest PSNR index value at 85 iterations, 88.7, DCGAN 
reached the PSNR index value at 90 iterations, and CycleGAN reached the lowest PSNR 
index value at 90 iterations, 77.6. Figure 9(b) further demonstrated the PSNR 
performance of the proposed algorithm on the test set, and the PSNR of the raised 
algorithm was consistently higher than the other two algorithms. This indicated that the 
proposed algorithm could maintain high image quality on different datasets and had good 
stability. 

Figure 9 PSNR curves of different algorithms, (a) training set (b) test set (see online version  
for colours) 
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Figure 10 clearly shows that the proposed model consistently maintained a low FID value 
at different training cycles, indicating that the model had a faster convergence speed 
compared to the comparative network model. When the model reached the convergence 
state, through quantitative analysis of objective evaluation indicators, it was found that 
compared with DCGAN, UIC-GAN and CycleGAN, the FID value of the proposed 
model decreased by 21.80%, 34.33% and 35.71% respectively, while the IS value 
increased by 1.755, 0.122 and 1.852 respectively. These results indicated that the network 
generated illustration images proposed in the study had a statistical distribution that is 
closer to real image data, exhibiting higher image quality and lower risk of pattern 
collapse. 
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Figure 10 Illustration style transfer task FID/IS score comparison (see online version  
for colours) 
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To assess the improvement effect of each module raised in the study, the elimination 
method was used to investigate the impact of removing a single module on network 
performance. Here, A1, A2 and A3 represent the loss of low-level texture features, 
adversarial features, and high-level conceptual features, respectively. B denotes the 
multi-scale generator, C denotes the multi-scale discriminator, and D denotes the 
activation function. At the training cycle of 400, ablation experiments were conducted 
and FID scores were recorded, as shown in Table 1. From the data in the table, the 
proposed method had the most significant improvement in network performance. When 
this module was removed, the FID value increased from 73.72 to 102.28, an increase of 
about 38.74%, which indicated that the fitting ability of the model to the TD was 
significantly reduced. In addition, removing any of the sub modules A1, A2 and A3 
separately would result in an increase in FID values, indicating that these three sub 
modules that make up the multi-scale adversarial loss can improve model performance. 
For other modules, when removing the multi-scale generator, multi-scale discriminator, 
and activation function separately, the FID values increased by 5.90%, 2.63%, and 
1.76%, respectively. 
Table 1 Comparison of FID scores in ablation experiments 

A1 A2 A3 B C D FID 
√ √ √ √ √ √ 73.72 
 √ √ √ √ √ 89.39 
√  √ √ √ √ 94.23 
√ √  √ √ √ 79.46 
   √ √ √ 102.28 
√ √ √  √ √ 78.07 
√ √ √ √  √ 75.66 
√ √ √ √ √  75.02 

Figure 11 shows the contrast map of the transfer effect of illustration image style. In the 
case of consistent training data and environmental conditions, although traditional 
cycleGAN can better preserve the content and colour of the source image, insufficient 
model training may lead to instability and distortion of texture information. The third 
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column shows that DCGAN enhanced network stability, with no significant distortion in 
the image, but the colour and structural information was not as good as the basic 
cycleGAN model. The fourth column indicates that UIC-GAN was not inferior to 
traditional cycleGAN in learning colour and structural information, but it suffered from 
texture distortion and colour saturation issues. The fifth column shows the transfer effect 
of multi-scale cycleGAN illustration style, where the image conversion successfully 
avoids distortion and displays the best transfer effect. 

Figure 11 Animation style transfer contrast diagram (see online version for colours) 
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4 Conclusions 

The study explored the application of multi-scale CycleGAN in style transfer of 
illustration images. To enhance the effectiveness of style transfer, the existing CycleGAN 
network structure was optimised. The focus of optimisation was to enhance the 
performance of the style encoder and discriminator. By improving these two components, 
the network could more accurately capture and reproduce the target style, while 
generating more realistic images. Finally, multiple network comparison experiments were 
conducted on the art style image dataset. The results indicated that the network generated 
illustration images proposed in the study had a statistical distribution that was closer to 
real image data, exhibiting higher image quality and lower risk of pattern collapse. 
Compared with traditional CycleGAN, UIC-GAN and DCGAN, the FID value of  
multi-scale CycleGAN decreased by 21.80%, 34.33% and 35.71%, respectively, and the 
IS value increased by 1.755, 0.122 and 1.852, respectively. Multi-scale CycleGAN 
showed higher stability during training. By introducing multi-scale generator and 



   

 

   

   
 

   

   

 

   

    The style transfer model of illustration images based on multi-scale CycleGAN 15    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

discriminator, multi-scale anti-loss function and adaptive style weight mechanism, the 
model could converge faster and the quality of the generated image was more stable 
during training. The ablation experiment showed that when removing the low-level 
texture feature loss, adversarial loss, and high-level conceptual feature loss, the FID value 
increased from 73.72 to 102.28, an increase of about 38.74%. When removing the  
multi-scale generator, multi-scale discriminator, and activation function separately, the 
FID values increased by 5.90%, 2.63% and 1.76%, respectively. Therefore, this model 
has certain potential for application in the reconstruction of style and content in 
illustration art expression. Scientificity is an important factor in evaluating the 
effectiveness of illustration style expression, but this evaluation is limited to qualitative 
measurement. In the future, a quantitative analysis method for image information 
preservation can be developed by combining image information measurement, 
Wasserstein distance, quantitative evaluation factors, and style loss calculation, providing 
a comprehensive framework to evaluate the results of illustration style transfer. 
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